
1
HASH TABLES

In this chapter, we’ll solve two problems whose solu-
tions hinge on being able to perform efficient searches.
The first problem is determining whether or not all
snowflakes in a collection are identical. The second is
determining which words are compound words. We
want to solve these problems correctly, but we’ll see
that some correct approaches are simply too slow. We’ll
be able to achieve enormous performance increases
using a data structure known as a hash table, which
we’ll explore at length.

We’ll end the chapter by looking at a third problem: determining how
many ways a letter can be deleted from one word to arrive at another. Here
we’ll see the risks of uncritically using a new data structure—when learning
something new, it’s tempting to try to use it everywhere!

Problem 1: Unique Snowflakes
This is DMOJ problem cco07p2.

The Problem
We’re given a collection of snowflakes, and we have to determine whether
any of the snowflakes in the collection are identical.

A snowflake is represented by six integers, where each integer gives the
length of one of the snowflake’s arms. For example, this is a snowflake:

3, 9, 15, 2, 1, 10

Snowflakes can also have repeated integers, such as

8, 4, 8, 9, 2, 8

What does it mean for two snowflakes to be identical? Let’s work up to
that definition through a few examples.

First we’ll look at these two snowflakes:

1, 2, 3, 4, 5, 6

and

1, 2, 3, 4, 5, 6

These are clearly identical because the integers in one snowflake match
the integers in their corresponding positions in the other snowflake.

Here’s our second example:

1, 2, 3, 4, 5, 6

and

4, 5, 6, 1, 2, 3

These are also identical. We can see this by starting at the 1 in the sec-
ond snowflake and moving right. We see the integers 1, 2, and 3 and then,
wrapping around to the left, we see 4, 5, and 6. These two pieces together
give us the first snowflake.

We can think of each snowflake as a circle. These two snowflakes are
identical because we can choose a starting point for the second snowflake
and follow it to the right to get the first snowflake.

Let’s try a trickier example:

1, 2, 3, 4, 5, 6

and

3, 2, 1, 6, 5, 4

From what we’ve seen so far, we would deduce that these are not identi-
cal. If we start with the 1 in the second snowflake and move right (wrapping
around to the left when we hit the right end), we get 1, 6, 5, 4, 3, 2. That’s
not even close to the 1, 2, 3, 4, 5, 6 in the first snowflake.

However, if we begin at the 1 in the second snowflake and move left in-
stead of right, then we do get exactly 1, 2, 3, 4, 5, 6! Moving left from the 1

2 Chapter 1

gives us 1, 2, 3, and wrapping around to the right, we can proceed leftward
to collect 4, 5, 6.

That’s our third way for two snowflakes to be identical: two snowflakes
are called identical if they match when we move leftward through the num-
bers.

Putting it all together, we can conclude that two snowflakes are identi-
cal if they are the same, if we can make them the same by moving rightward
through one of the snowflakes, or if we can make them the same by moving
leftward through one of the snowflakes.

Input
The first line of input is an integer n, which gives the number of snowflakes
that we’ll be processing. The value n will be between 1 and 100,000. Each
of the following n lines represents one snowflake: each line has six integers,
where each integer is at least zero and at most 10,000,000.

Output
Our output will be a single line of text:

• If there are no identical snowflakes, print exactly
No two snowflakes are alike.

• If there are at least two identical snowflakes, print exactly
Twin snowflakes found.

The time limit for solving the test cases is two seconds.

Simplifying the Problem
One general strategy for solving competitive programming challenges is to
first work with a simpler version of the problem. Let’s warm up by eliminat-
ing some of the complexity from this problem.

Suppose that instead of working with snowflakes made of multiple in-
tegers, we’re working with single integers. We have a collection of integers,
and we want to know whether any are identical. We can test whether two in-
tegers are identical with C’s == operator. We can test all pairs of integers, and
if we find even one pair of identical integers, we’ll stop and output

Twin integers found.

If no identical integers are found, we’ll output

No two integers are alike.

Let’s make an identify_identical function with two nested loops to com-
pare pairs of integers, as shown in Listing 1-1.

void identify_identical(int values[], int n) {

int i, j;

for (i = 0; i < n; i++) {

¶ for (j = i+1; j < n; j++) {

Hash Tables 3

if (values[i] == values[j]) {

printf("Twin integers found.\n");

return;

}

}

}

printf("No two integers are alike.\n");

}

Listing 1-1: Finding identical integers

We feed the integers to the function through the values array. We also
pass in n, the number of integers in the array.

Notice that we start the inner loop at i + 1 and not 0 ¶. If we started at
0, then eventually j would equal i, and we’d compare an element to itself,
giving us a false positive result.

Let’s test identify_identical using this small main function:

int main(void) {

int a[5] = {1, 2, 3, 1, 5};

identify_identical(a, 5);

return 0;

}

Run the code and you will see from the output that our function cor-
rectly identified a matching pair of 1s. In general, I won’t provide much test
code in this book, but it’s important that you play with and test the code
yourself as we go along.

Solving the Core Problem
Let’s take our identify_identical function and try to modify it to solve the
Snowflake problem. To do so, we need to make two extensions to our code:

1. We have to work with six integers at a time, not one. A two-dimensional
array should work nicely here: each row will be a snowflake with six
columns (one column per element).

2. As we saw earlier, there are three ways for two snowflakes to be
identical. Unfortunately, this means we can’t just use == to compare
snowflakes. We need to take into account our “moving right” and
“moving left” criteria (not to mention that == in C doesn’t compare
arrays anyway!). Correctly comparing snowflakes will be the major
update to our algorithm.

To begin, let’s write a pair of helper functions: one for checking “mov-
ing right” and one for checking “moving left.” Each of these helpers takes
three parameters: the first snowflake, the second snowflake, and the starting
point for the second snowflake.

4 Chapter 1

Checking to the Right
Here is the function header for identical_right:

int identical_right(int snow1[], int snow2[], int start)

To determine whether the snowflakes are the same by “moving right,”
we scan snow1 from index 0 and snow2 from index start. If we find correspond-
ing elements that are not equal, then we return 0 to signify that we haven’t
found identical snowflakes. If all the corresponding elements do match,
then we return 1. Think of 0 as representing false and 1 as representing true.

In Listing 1-2 we make a first attempt at writing the code for this func-
tion.

int identical_right(int snow1[], int snow2[],

int start) { //bugged!

int offset;

for (offset =0; offset < 6; offset++) {

¶ if (snow1[offset] != snow2[start + offset])

return 0;

}

return 1;

}

Listing 1-2: Identifying identical snowflakes moving right (bugged!)

As you may notice, this code won’t work as we hope. The problem is
start + offset ¶. If we have start = 4 and offset = 3, then start + offset = 7.
The trouble is snow2[7], as snow2[5] is the farthest index to which we are al-
lowed to go.

This code doesn’t take into account that we must wrap around to the
left of snow2. If our code is about to use an erroneous index of 6 or greater,
we should reset our index by subtracting six. This will let us continue with
index 0 instead of index 6, index 1 instead of index 7, and so on. Let’s try
again with Listing 1-3.

int identical_right(int snow1[], int snow2[],

int start) {

int offset, snow2_index;

for (offset =0; offset < 6; offset++) {

snow2_index = start + offset;

if (snow2_index >= 6)

snow2_index = snow2_index - 6;

if (snow1[offset] != snow2[snow2_index])

return 0;

}

return 1;

}

Listing 1-3: Identifying identical snowflakes moving right

Hash Tables 5

This works, but we can still improve it. One change that many program-
mers would consider making at this point involves using %, the mod opera-
tor. The % operator computes remainders, so x % y returns the remainder
of integer-dividing x by y. For example, 6 % 3 is zero, because there is no re-
mainder when dividing six by three. 6 % 4 is two, because there is two left
over when dividing six by four.

We can use mod here to help with the wraparound behavior. Notice that
0 % 6 is zero, 1 % 6 is one, . . ., 5 % 6 is five. Each of these numbers is smaller
than six and so will itself be the remainder when dividing six. The numbers
zero to five correspond to the legal indices of snow2, so it’s good that % leaves
them alone. For our problematic index 6, 6 % 6 is zero: six divides six evenly,
with no remainder at all, wrapping us around to the start. That’s precisely
the wraparound behavior we wanted.

Let’s update identical_right to use the % operator. Listing 1-4 shows the
new function.

int identical_right(int snow1[], int snow2[], int start) {

int offset;

for (offset =0; offset < 6; offset++) {

if (snow1[offset] != snow2[(start + offset) % 6])

return 0;

}

return 1;

}

Listing 1-4: Identifying identical snowflakes moving right using mod

Whether you use this “mod trick” is up to you. It saves a line of code
and is a common pattern that many programmers will be able to identify.
However, it doesn’t always easily apply, even to problems that exhibit this
same wraparound behavior—for example, identical_left. Let’s turn to this
now.

Checking to the Left
The function identical_left is very similar to identical_right, except that we
need to move left and then wrap around to the right. When traversing right,
we had to be wary of erroneously accessing index 6 or greater; this time, we
have to be wary of accessing index –1 or less.

Unfortunately, our mod solution won’t work here. In C, -1 / 6 is zero,
leaving a remainder of –1, and so -1 % 6 is –1. We’d need -1 % 6 to be five.

In Listing 1-5, we provide the code for the identical_left function.

int identical_left(int snow1[], int snow2[], int start) {

int offset, snow2_index;

for (offset =0; offset < 6; offset++) {

snow2_index = start - offset;

if (snow2_index < 0)

snow2_index = snow2_index + 6;

if (snow1[offset] != snow2[snow2_index])

6 Chapter 1

return 0;

}

return 1;

}

Listing 1-5: Identifying identical snowflakes moving left

Notice the similarity between this function and that of Listing 1-3. All
we did was subtract the offset instead of add it, and change the bounds check
at 6 to a bounds check at -1.

Putting It Together
With these two helper functions, identical_right and identical_left, we can
finally write a function that tells us whether two snowflakes are identical.
Listing 1-6 gives the code for an are_identical function that does this. We
simply test moving right and moving left for each of the possible starting
points in snow2.

int are_identical(int snow1[], int snow2[]) {

int start;

for (start = 0; start < 6; start++) {

¶ if (identical_right(snow1, snow2, start))

return 1;

· if (identical_left(snow1, snow2, start))

return 1;

}

return 0;

}

Listing 1-6: Identifying identical snowflakes

We test whether snow1 and snow2 are the same by moving right in snow2 ¶.
If they are identical according to that criterion, we return 1 (true). We then
similarly check the moving-left criterion ·.

It’s worth pausing here to test the are_identical function on a few sample
snowflake pairs. Please do that before continuing!

Solution 1: Pairwise Comparisons
Whenever we need to compare two snowflakes, we just deploy our are_identical

function instead of ==. Comparing two snowflakes is now as easy as compar-
ing two integers.

Let’s revise our earlier identify_identical function (Listing 1-1) to work
with snowflakes using the new are_identical function (Listing 1-6). We’ll
make pairwise comparisons between snowflakes, printing out one of two
messages depending on whether we find identical snowflakes. The code is
given in Listing 1-7.

void identify_identical(int snowflakes[][6], int n) {

int i, j;

Hash Tables 7

for (i = 0; i < n; i++) {

for (j = i+1; j < n; j++) {

if (are_identical(snowflakes[i], snowflakes[j])) {

printf("Twin snowflakes found.\n");

return;

}

}

}

printf("No two snowflakes are alike.\n");

}

Listing 1-7: Finding Identical Snowflakes

This identify_identical on snowflakes is almost, symbol for symbol, the
same as the identify_identical on integers in Listing 1-1. All we’ve done is
swap == for a function that compares snowflakes.

Reading the Input
We’re not quite ready to submit to our judge. We haven’t yet written the
code to read the snowflakes from standard input. First, revisit the problem
description at the start of the chapter. We need to read a line containing in-
teger n that tells us how many snowflakes there are and then read each of
the following n lines as an individual snowflake.

Listing 1-8 is a main function that processes the input and then calls identify_identical
from Listing 1-7.

#define SIZE 100000

int main(void) {

¶ static int snowflakes[SIZE][6];

int n, i, j;

scanf("%d", &n);

for (i = 0; i < n; i++)

for (j = 0; j < 6; j++)

scanf("%d", &snowflakes[i][j]);

identify_identical(snowflakes, n);

return 0;

}

Listing 1-8: The main function for Solution 1

Notice that the snowflakes array is now a static array ¶. This is because
the array is huge; without using such a static array, the amount of space
needed would likely outstrip the amount of memory available to the func-
tion. We use static to place the array in its own, separate piece of memory,
where space is not a concern. Be careful with static though. Regular local
variables are initialized on each call of a function, but static ones retain
whatever value they had on the previous function call (see “Static Keyword”
in the Introduction).

8 Chapter 1

Also notice that I’ve allocated an array of 100000 snowflakes ¶. You might
be concerned that this is a waste of memory. What if the input has only a
few snowflakes? For competitive programming problems, it’s generally OK
to hard-code the memory requirements for the largest problem instance: the
test cases are likely to stress test your submission on the maximum size any-
way!

The rest of the function is straightforward. We read the number of snowflakes
using scanf, and we use that number to control the number of iterations of
the for loop. For each such iteration, we iterate six times, each time reading
one integer. We then call identify_identical to produce the appropriate out-
put.

Putting this main function together with the other functions we have writ-
ten gives us a complete program that we can submit to the judge. Try it out
. . . and you should get a “Time-Limit Exceeded” error. It looks like we have
more work to do!

Diagnosing the Problem
Our first solution was too slow, so we got a “Time-Limit Exceeded” error.
The trouble is the two nested for loops, which compare each snowflake to
every other snowflake, resulting in a huge number of comparisons when the
number of snowflakes n is large.

Let’s figure out the number of snowflake comparisons our program
makes. Since we compare each pair of snowflakes, we can restate this ques-
tion as asking for the total number of snowflake pairs. For example, if we
have four snowflakes numbered 1, 2, 3, and 4, then our scheme performs six
snowflake comparisons: snowflakes 1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and
4, and 3 and 4. Each pair is formed by choosing one of the n snowflakes as
the first snowflake and then choosing one of the remaining n – 1 snowflakes
as the second snowflake.

For each of n decisions for the first snowflake, we have n – 1 decisions
for the second snowflake. This gives a total of n(n – 1) decisions. However,
n(n – 1) double-counts the true number of snowflake comparisons that we
make—it includes both of the comparisons 1 and 2 and 2 and 1, for example.
Our solution compares these only once, so we can divide by 2, giving n(n –
1)/2 snowflake comparisons for n snowflakes.

This might not seem so slow, but let’s substitute some values of n into
n(n – 1)/2. Substituting 10 gives 10(9)/2 = 45. Performing 45 comparisons
is a piece of cake for any computer and can be done in milliseconds. How
about n = 100? That gives 4, 950: still no problem. It looks like we’re OK
for a small n, but the problem statement says that we can have up to 100, 000
snowflakes. Go ahead and substitute 100, 000 for n in n(n – 1)/2: this gives
4, 999, 950, 000 snowflake comparisons. If you run a test case with 100,000
snowflakes on a typical laptop, it will take maybe four minutes. That’s far
too slow—we need at most two seconds, not several minutes! As a conserva-
tive rule of thumb for today’s computers, think of the number of steps that
we can perform per second as about 30 million. Trying to make 4 billion
snowflake comparisons in two seconds is not doable.

Hash Tables 9

If we expand n(n – 1)/2, we get n2/2 –n/2. The largest exponent there is
2. Algorithm developers therefore call this an O(n2) algorithm, or a quadratic-
time algorithm. O(n2) is pronounced “big O of n squared,” and you can think
of it as telling you the rate at which the amount of work grows relative to the
problem size. For a brief introduction to big O, see Appendix A.

We need to make such a large number of comparisons because identi-
cal snowflakes could show up anywhere in the array. If there were a way to
get identical snowflakes close together in the array, we could quickly deter-
mine whether a particular snowflake was part of an identical pair. To get the
identical snowflakes close together, we can try sorting the array.

Sorting Snowflakes
C has a library function called qsort that makes it easy to sort an array. The
key requirement is a comparison function: it takes pointers to two elements
to sort, and it returns a negative integer if the first element is less than the
second, 0 if they are equal, and a positive integer if the first is greater than
the second. We can use are_identical to determine whether two snowflakes
are equal; if they are, we return 0.

What does it mean though for one snowflake to be less than or greater
than another? It’s tempting to just agree on some arbitrary rule here. We
might say, for example, that the snowflake that is “less” is the one whose first
differing element is smaller than the corresponding element in the other
snowflake. We do that in Listing 1-9.

int compare(const void *first, const void *second) {

int i;

const int *snowflake1 = first;

const int *snowflake2 = second;

if (are_identical(snowflake1, snowflake2))

return 0;

for (i = 0; i < 6; i++)

if (snowflake1[i] < snowflake2[i])

return -1;

return 1;

}

Listing 1-9: Comparison function for sorting

Unfortunately, sorting in this way will not help us solve our problem.
Here’s a four-snowflake test case that would likely fail on your laptop:

4

3 4 5 6 1 2

2 3 4 5 6 7

4 5 6 7 8 9

1 2 3 4 5 6

The first and fourth snowflakes are identical—but the message “No two
snowflakes are alike.” gets output. What’s going wrong?

Here are two facts that qsort might learn as it executes:

10 Chapter 1

1. Snowflake 4 is less than snowflake 2.

2. Snowflake 2 is less than snowflake 1.

From this, qsort could conclude that snowflake 4 is less than snowflake 1,
without ever directly comparing snowflake 4 and snowflake 1! Here it’s re-
lying on the transitive property of less than. If a is less than b, and b is less
than c, then surely a should be less than c. It seems like our definitions of
“less” and “greater” matter after all.

Unfortunately, it isn’t clear how one would define “less” and “greater”
on snowflakes so as to satisfy transitivity. If you’re disappointed, perhaps
you can take solace in the fact that we’ll be able to develop a faster solution
without using sorting at all.

In general, collecting similar values with sorting can be a useful data-
processing technique. As a bonus, good sorting algorithms run quickly—
certainly faster than O(n2), but we aren’t going to be able to use sorting here.

Solution 2: Doing Less Work
Comparing all pairs of snowflakes and trying to sort the snowflakes proved
to be too much work. To work up to our next, and ultimate, solution, let’s
pursue the idea of trying to avoid comparing snowflakes that are obviously
not identical. For example, if we have snowflakes

1, 2, 3, 4, 5, 6

and

82, 100, 3, 1, 2, 999

there’s no way that these snowflakes can be identical. We shouldn’t even
waste our time comparing them.

The numbers in the second snowflake are very different from the num-
bers in the first snowflake. To devise a way to detect that two snowflakes are
different without having to directly compare them, we might begin by com-
paring the snowflake’s first elements, because 1 is very different from 82.
Now consider these two snowflakes:

3, 1, 2, 999, 82, 100

and

82, 100, 3, 1, 2, 999

These two snowflakes are identical even though 3 is very different from
82.

A quick litmus test for determining whether two snowflakes might be
identical is to use the sum of their elements. When we sum our two example
snowflakes, for 1, 2, 3, 4, 5, 6, we get a total of 21, and for 82, 100, 3, 1, 2, 999,
we get 1187. We say that the code for the former snowflake is 21 and the
code for the latter is 1187.

Hash Tables 11

Our hope is that we can throw the “21 snowflakes” in one bin and throw
the “1187 snowflakes” in another, and then we never have to compare the
21s to the 1187s. We can do this binning for each snowflake: add up its ele-
ments, get a code of x, and then store it along with all of the other snowflakes
with code x.

Of course, finding two snowflakes with a code of 21 does not guarantee
they are identical. For example, both 1, 2, 3, 4, 5, 6 and 16, 1, 1, 1, 1, 1

have a code of 21, and they are surely not identical.
That’s OK, because our “sum” rule is designed to weed out snowflakes

that are clearly not identical. This allows us to avoid comparing all pairs—
that’s the source of the inefficiency in Solution 1—and only compare pairs
that have not been filtered out as obviously nonidentical.

In Solution 1, we stored each snowflake consecutively in the array: the
first snowflake at index 0, the second at index 1, and so on. Here, our stor-
age strategy is different: sum codes determine snowflakes’ locations in the
array! That is, for each snowflake, we calculate its code, and use that code as
the index for where to store the snowflake.

We have to solve two problems:

1. Given a snowflake, how do we calculate its code?

2. What do we do when multiple snowflakes have the same code?

Let’s deal with calculating the code first.

Calculating Sum Codes
At first glance, calculating the code seems easy. We could just sum all of the
numbers within each snowflake like so:

int code(int snowflake[]) {

return (snowflake[0] + snowflake[1] + snowflake[2]

+ snowflake[3] + snowflake[4] + snowflake[5]);

}

This works fine for many snowflakes, such as 1, 2, 3, 4, 5, 6, and 82, 100, 3, 1, 2, 999,
but consider a snowflake with huge numbers, such as

1000000, 2000000, 3000000, 4000000, 5000000, 6000000

The code that we calculate is 21000000. We plan to use that code as the in-
dex in an array that holds the snowflakes, so to accommodate this we’d have
to declare an array with room for 21 million elements. When we’re using at
most 100,000 elements, this is an outrageous waste of memory.

We’re going to stick with an array that has room for 100,000 elements.
We’ll need to calculate a snowflake’s code as before, but then we must force
that code to be a number between 0 and 99999 (the minimum and maximum
index in our array). One way to do this is to break out the % mod operator
again. Taking a nonnegative integer mod x yields an integer between 0 and
x – 1. No matter the sum of a snowflake, if we take it mod 100,000, we’ll get a
valid index in our array.

12 Chapter 1

This method has one downside: taking the mod like this will force more
nonidentical snowflakes to end up with the same code. For example, the
sums for 1, 1, 1, 1, 1, 1 and 100001, 1, 1, 1, 1, 1 are different—6 and 100006—
but once we take them mod 100,000, we get 6 in both cases. This is an ac-
ceptable risk to take: we’ll just hope that this doesn’t happen much; when it
does, we’ll perform the necessary pairwise comparisons.

We’ll calculate the sum code for a snowflake and mod it, as in Listing 1-
10.

#define SIZE 100000

int code(int snowflake[]) {

return (snowflake[0] + snowflake[1] + snowflake[2]

+ snowflake[3] + snowflake[4] + snowflake[5]) % SIZE;

}

Listing 1-10: Calculating the Snowflake Code

Snowflake Collisions
In Solution 1, we used the following fragment to store a snowflake at index i

in the snowflakes array:

for (j = 0; j < 6; j++)

scanf("%d", &snowflakes[i][j]);

This worked because exactly one snowflake was stored in each row of
the two-dimensional array.

However, now we have to contend with the 1, 1, 1, 1, 1, 1 and
100001, 1, 1, 1, 1, 1 kind of collision, where, because they’ll end up with the
same mod code and that code serves as the snowflakes index in the array, we
need to store multiple snowflakes in the same array element. That is, each
array element will no longer be one snowflake but a collection of zero or
more snowflakes.

One way to store multiple elements in the same location is to use a linked
list, a data structure that links each element to the next. Here, each element
in the snowflakes array will point to the first snowflake in the linked list; the
remainder of the snowflakes can be accessed through next pointers.

We’ll use a typical linked list implementation. Each snowflake_node con-
tains both a snowflake and a pointer to the next snowflake element. To
collect these two components of a node, we’ll use a struct. We’ll also make
use of typedef, which allows us to later use snowflake_node instead of the full
struct snowflake_node:

typedef struct snowflake_node {

int snowflake[6];

struct snowflake_node *next;

} snowflake_node;

Hash Tables 13

This change necessitates updates to two functions, main and identify_identical,
because those functions previously used arrays.

The New main
You can see the updated main code in Listing 1-11.

int main(void) {

¶ static snowflake_node *snowflakes[SIZE] = {NULL};

· snowflake_node *snow;

int n, i, j, snowflake_code;

scanf("%d", &n);

for (i = 0; i < n; i++) {

¸ snow = malloc(sizeof(snowflake_node));

if (snow == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

for (j = 0; j < 6; j++)

¹ scanf("%d", &snow->snowflake[j]);

º snowflake_code = code(snow->snowflake);

» snow->next = snowflakes[snowflake_code];

¼ snowflakes[snowflake_code] = snow;

}

identify_identical(snowflakes);

//deallocate all malloc'd memory, if you want to be good

return 0;

}

Listing 1-11: The main function for Solution 2

Let’s walk through this code. First, notice that we changed the type of
our array from a two-dimensional array of numbers to a one-dimensional
array of pointers to snowflake nodes ¶. We also declare snow ·, which will
point to snowflake nodes that we allocate.

We use malloc to allocate memory for each snowflake_node ¸. Once we
have read in and stored the six numbers for a snowflake ¹, we use snowflake_code

to hold the snowflake’s code º, calculated using the function we wrote in
Listing 1-10.

The last thing to do is to add the snowflake to the snowflakes array, which
amounts to adding a node to a linked list. We do this by adding the snowflake
to the beginning of the linked list. We first point the inserted node’s next
pointer to the first node in the list », and then we set the start of the list to
point to the inserted node ¼. The order matters here: if we had reversed the
order of these two lines, we would lose access to the elements already in the
linked list!

Notice that, in terms of correctness, it doesn’t matter where in the linked
list we add the new node. It could go at the beginning, the end, or some-
where in the middle—it’s our choice. So we should do whatever is fastest,
and adding to the beginning is fastest because it doesn’t require us to tra-

14 Chapter 1

verse the list at all. If we had to add an element to the end of a linked list,
we’d have to traverse the entire list. If that list had a million elements, we’d
have to follow the next pointers a million times until we got to the end—that
would be very slow!

Let’s work on a quick example of how this main function works. Here’s
the test case:

4

1 2 3 4 5 6

8 3 9 10 15 4

16 1 1 1 1 1

100016 1 1 1 1 1

Each element of snowflakes begins as NULL, the empty linked list. As we
add to snowflakes, elements will begin to point at snowflake nodes. The num-
bers in the first snowflake add up to 21, so it goes into index 21. The second
snowflake goes into index 49. The third snowflake goes into index 21 as well.
Thus now index 21 is a linked list of two snowflakes:

16, 1, 1, 1, 1, 1 followed by 1, 2, 3, 4, 5, 6.
How about the fourth snowflake? That goes into index 21 again, and

now we have a linked list of three snowflakes there. Incidentally, do we have
any identical snowflakes? No! This emphasizes the fact that a linked list with
multiple elements is not sufficient evidence to claim that we have identical
snowflakes. We have to compare each pair of those elements to correctly
state our conclusion. That’s the final piece of the puzzle.

The New identify_identical
We need identify_identical to make all pairwise comparisons of snowflakes
within each linked list. Listing 1-12 shows the code to do so.

void identify_identical(snowflake_node *snowflakes[]) {

snowflake_node *node1, *node2;

int i;

for (i = 0; i < SIZE; i++) {

¶ node1 = snowflakes[i];

while (node1 != NULL) {

· node2 = node1->next;

while (node2 != NULL) {

if (are_identical(node1->snowflake, node2->snowflake)) {

printf("Twin snowflakes found.\n");

return;

}

node2 = node2->next;

}

¸ node1 = node1->next;

}

}

printf("No two snowflakes are alike.\n");

}

Hash Tables 15

Listing 1-12: Identifying identical snowflakes in linked lists

We begin with node1 at the first node in a linked list ¶. We use node2 to
traverse from the node to the right of node1 · all the way to the end of the
linked list. This compares the first snowflake in the linked list to all other
snowflakes in that linked list. We then advance node1 to the second node ¸,
and we compare that second snowflake to each snowflake to its right. We
repeat this until node1 reaches the end of the linked list.

This code is dangerously similar to identify_identical from Solution 1
(Listing 1-7), which made all pairwise comparisons between any two snowflakes.
This code only makes pairwise comparisons within a single linked list, but
what if someone crafts a test case where all snowflakes end up in the same
linked list? Wouldn’t the performance then be as bad as in Solution 1?

Take a minute to submit Solution 2 to the judge and see for yourself.
You should see that we’ve discovered a much more efficient solution! What
we’ve done is use a data structure called a hash table. We’ll learn more about
hash tables next.

Hash Tables
A hash table consists of two things:

1. An array, in which locations in the array are referred to as buckets

2. A hash function, which takes an object and returns its code as an in-
dex into the array

The code returned by the hash function is referred to as a hashcode; the in-
dex that a hash function returns for an object is where that object is hashed.

Look closely at the code in Listings 1-10 and 1-11 and you’ll see that we
already have both of these things. That code function, which took a snowflake
and produced its code (a number between 0 and 99,999), is a hash function;
and that snowflakes array is the array of buckets, where each bucket contains
a linked list.

Hash Table Design
Designing a hash table involves many design decisions. Let’s talk about three
of them here.

The first decision concerns size. In Unique Snowflakes, we used an ar-
ray size of 100,000 because that’s the maximum number of snowflakes that
can be presented to our program (according to the problem specification).
We could have instead used a smaller or larger array. A smaller array saves
memory. For example, on initialization, a 50,000-element array stores half as
many NULL values as does a 100,000-element array. However, a smaller array
leads to more objects ending up in the same bucket. When objects end up
in the same bucket, we say that a collision has occurred. The problem with
having many collisions is that they lead to long linked lists. Ideally, all of the

16 Chapter 1

linked lists would be short, so that we wouldn’t have to walk through and do
work on many elements. A larger array avoids some of these collisions.

To summarize, we have a memory-time tradeoff here. Make the hash
table too small and collisions run rampant. Make the hash table too big and
memory waste becomes a concern.

The second consideration is our hash function. In our example, our
hash function adds up a snowflake’s numbers mod 100,000. Importantly,
this hash function guarantees that, if two snowflakes are identical, they will
end up in the same bucket. (They might also end up in the same bucket
if they are not identical, of course.) This is the reason why we can search
within linked lists, and not between them, for identical snowflakes.

When solving a problem with a hash table, the hash function that we use
should take into account what it means for two objects to be identical. If two
objects are identical, then they should get hashed to the same bucket. In the
case in which two objects must be exactly equal to be considered “identical,”
we can scramble things so extensively that the mapping between object and
bucket is far more intricate than what we did with the snowflakes. Check out
the oaat hash function in Listing 1-13 for an example.

#define hashsize(n) ((unsigned long)1 << (n))

#define hashmask(n) (hashsize(n) - 1)

unsigned long oaat(char *key, unsigned long len,

unsigned long bits) {

unsigned long hash, i;

for (hash = 0, i = 0; i < len; i++) {

hash += key[i];

hash += (hash << 10);

hash ^= (hash >> 6);

}

hash += (hash << 3);

hash ^= (hash >> 11);

hash += (hash << 15);

return hash & hashmask(bits);

}

int main(void) { //sample call of oaat

long snowflake[] = {1, 2, 3, 4, 5, 6};

//2^17 is the smallest power of 2 that is at least 100000

unsigned long code = oaat((char *)snowflake,

sizeof(snowflake), 17);

printf("%u\n", code);

return 0;

}

Listing 1-13: An intricate hash function

To call oaat, we pass three parameters:

Hash Tables 17

key The data that we want to hash

len The length of those data

bits The number of bits that we want in the resulting hashcode

Raising 2 to the power of bits tells us the maximum value that a hashcode
could have. For example, if we choose 17, then 217 = 131, 072 is the maxi-
mum that a hashcode could be.

How does oaat work? Inside the for loop, it starts by adding the current
byte of the key. That part is similar to what we did when adding up the num-
bers in a snowflake (Listing 1-10). Those left shifts and exclusive ors are in
there to put the key through a blender. Hash functions do this blending to
implement an avalanche effect, which means that a small change in the key’s
bits makes a huge change to the key’s hashcode. Unless you intentionally
created pathological data for this hash function or inserted a huge number
of keys, it would be unlikely that you’d get many collisions. This highlights
an important point: with a single hash function, there is always a collection
of data that will lead to collisions galore and subsequently horrible perfor-
mance. A fancy hash function like oaat can’t protect against that. Unless
we’re concerned about malicious input, though, we can often get away with
using a reasonably good hash function and can assume that our hash func-
tion will spread the data around.

Indeed, this is why our hash-table solution (Solution 2) for Unique Snowflakes
was so successful. We used a good hash function that distributes many non-
identical snowflakes into different buckets. Since we’re not securing our
code from attack, we don’t have to worry about some evil person studying
our code and figuring out how to cause millions of collisions.

For our final design decision, we have to think about what we want to
use as our buckets. In Unique Snowflakes, we used a linked list as each bucket.
Using linked lists like this is known as a chaining scheme.

In another approach, known as open-addressing, each bucket holds at
most one element, and there are no linked lists. To deal with collisions, we
search through buckets until we find one that is empty. For example, sup-
pose that we try to insert an object into bucket number 50 but that bucket 50
is already occupied. We might then try bucket 51, then 52, then 53, stopping
when we find an empty bucket. Unfortunately, this simple sequence can lead
to poor performance when a hash table has many elements stored in it, so
more nuanced search schemes are often used in practice.

Chaining is generally easier to implement than open-addressing, which
is why we used chaining for Unique Snowflakes. However, open-addressing
does have some benefits, including saving memory by not using linked list
nodes.

Why Use Hash Tables?
Using a hash table tremendously accelerates Unique Snowflakes. On a typ-
ical laptop, a test case with 100,000 elements will take only two seconds to
run! No pairwise comparisons of all elements and no sorting is needed, just

18 Chapter 1

a little processing on a bunch of linked lists. In the absence of pathological
data, we expect that each linked list will have only a few elements. As such,
making all pairwise comparisons within a bucket will take only a small, con-
stant number of steps. We therefore expect hash tables to give us a linear-
time solution—something like n steps (in comparison to the n(n – 1)/2 for-
mula we had for Solution 1). In terms of big O, we’d say that we expect an
O(n) solution.

Whenever you’re working on a problem, and you find yourself repeat-
edly searching for some element, consider using a hash table. A hash ta-
ble takes a slow array search and converts it into a fast lookup. Unlike for
Unique Snowflakes, when solving other problems you may be able to begin
by sorting the array. A technique called binary search (discussed in Chap-
ter 6) could then be used to quickly search for elements in the sorted array.
However, even sorting an array and then using binary search can’t compete
with the speed of a hash table.

Problem 2: Compound Words
Let’s go through another problem and pay attention to where a naive solu-
tion would rely on a slow search. We’ll then drop in a hash table for a dra-
matic speedup. We’ll go more quickly than we did for Unique Snowflakes
because now we know what to look for.

This is UVa problem 10391.

The Problem
We are given a wordlist in which each word is a lowercase string. For exam-
ple, we might be given the wordlist containing crea, create, open, and te. We’ll
assume that the strings aren’t very long. Our task is to determine the strings
in the wordlist that are compound words: the concatenation of exactly two
other strings in the wordlist. For the given example, only the string create

is such a compound word, because it is the concatenation of crea and te.

Input
The input is one string (word) per line, in alphabetical order. We’ll get at
most 120,000 strings.

Output
The problem requires us to output each compound word on its own line, in
alphabetical order.

The time limit for solving the test cases is three seconds.

Identifying Compound Words
Once the words have been read in, how do we identify the compound words?
Think of the word create. There are five opportunities for create to be a
compound word:

Hash Tables 19

1. If c is a word and reate is a word

2. If cr is a word and eate is a word

3. If cre is a word and ate is a word

4. If crea is a word and te is a word

5. If creat is a word and e is a word

On the first iteration, we should search the wordlist for c and reate.
If both searches are successful, we have found a compound word. On the
second iteration, we should search the wordlist for cr and eate. We con-
tinue to do this until we have tried all five opportunities, and that’s only for
the string create. Presumably, we’ll have other words to check, too, up to
120,000 of them. That’s a lot of searching, and searching over and over in
a huge wordlist is very time consuming. We’ll speed things up with a hash
table.

Solution
Our solution will again use a hash table of linked lists. As expected, we also
need a hash function.

We won’t use something like the snowflake hash function here, because
it would lead to collisions between words like cat and act that are anagrams.
Unlike in the Unique Snowflakes problem, words should be distinguished
not just by their letters but by the locations of those letters. Some collisions
are inevitable, of course, but we should do what we can to limit their preva-
lence. To that end, we’ll wield that wild oaat hash function from Listing 1-13.

We use four helper functions in our solution.

Reading a Line
We begin with a helper function to read a line (Listing 1-14).

/*based on https://stackoverflow.com/questions/16870485 */

char *read_line(int size) {

char *str;

int ch;

int len = 0;

str = malloc(size);

if (str == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

¶ while ((ch = getchar()) != EOF && (ch != '\n')) {

str[len++] = ch;

if (len == size) {

size = size * 2;

· str = realloc(str, size);

if (str == NULL) {

fprintf(stderr, "realloc error\n");

20 Chapter 1

exit(1);

}

}

}

¸ str[len] = '\0';

return str;

}

Listing 1-14: Reading a line

Unfortunately, the problem specification does not tell us the maximum
length of a line.

We cannot hard-code some maximum word length like 16 or even 100,
because we have no control over the input. The read_line function therefore
takes an initial size that we hope suffices for most or all of the lines. When
we call the function, we give an initial size of 16, because that covers most
English words we’re likely to see. We can use read_line to read characters
¶ up until the array reaches its maximum length; if the array fills up and
the word still isn’t over, it then uses realloc to double the array’s length ·,
thereby creating more space to read more characters. We’re careful to termi-
nate str with a null character ¸; otherwise, it wouldn’t be a valid string!

Searching the Hash Table
Now we’ll create a function in Listing 1-15 to search the hash table for a
given word.

#define NUM_BITS 17

typedef struct word_node {

char **word;

struct word_node *next;

} word_node;

int in_hash_table(word_node *hash_table[], char *find,

unsigned find_len) {

unsigned word_code;

word_node *wordptr;

¶ word_code = oaat(find, find_len, NUM_BITS);

· wordptr = hash_table[word_code];

while (wordptr) {

¸ if ((strlen(*(wordptr->word)) == find_len) &&

(strncmp(*(wordptr->word), find, find_len) == 0))

return 1;

wordptr = wordptr->next;

}

return 0;

}

Listing 1-15: Searching for a word

Hash Tables 21

The in_hash_table function takes a hash table and a word to find in the
hash table. If the word is found, the function returns 1; otherwise, it returns
0. The third parameter, find_len, gives the number of characters in find that
constitutes the word we’re searching for. We need that third parameter be-
cause we’ll want to be able to search for the beginning of a string; without it,
we wouldn’t know how many characters we needed to compare.

The function works by calculating the hashcode of the word ¶ and using
that hashcode to find the appropriate linked list to search ·. The hash table
contains pointers to strings, not strings themselves, hence the leading * in
*(wordptr->word) ¸. (As you’ll see when studying main in Listing 1-17, the hash
table contains pointers rather than strings so that we don’t store duplicate
copies of strings.)

Identifying Compound Words
Now we’re ready to check all possible splits of a word to determine whether
the word is a compound word; Listing 1-16 does the job.

void identify_compound_words(char *words[],

word_node *hash_table[],

int total_words) {

int i, j;

unsigned len;

¶ for (i = 0; i < total_words; i++) {

len = strlen(words[i]);

· for (j = 1; j < len; j++) {

¸ if (in_hash_table(hash_table, words[i], j) &&

in_hash_table(hash_table, &words[i][j], len - j)) {

printf("%s\n", words[i]);

¹ break;

}

}

}

}

Listing 1-16: Identifying compound words

The function identify_compound_words is like identify_identical from Unique
Snowflakes (Listing 1-12). For each word ¶, it generates all possible splits
·, and then it searches the hash table for both the prefix string (prior to
the split point) and suffix string (from the split point on). We use j as the
split point ¸. The first search is for the first j characters of word i. The
second searches for the piece of word i beginning at index j (which has
length len - j). If both searches are successful, then the current word is a
compound word. Notice the use of break ¹; without that, a word would be
printed multiple times if it had multiple valid splits.

You might be surprised at the use of both a hash table and a words ar-
ray. The nodes in the hash table will point to the strings in words, but why
are there two structures here? Why can’t we just use the hash table and not
use the words array? The reason is that we’re required to output the words in

22 Chapter 1

sorted order! Hash tables do not maintain any semblance of sorting—they
blast the elements around. We could sort the compound words as a postpro-
cessing step, but we’d be doing work that’s already done for us. The words
are already sorted when we read them from the input. By going through the
words in the words array in order, we get the sorting for free.

The main Function
The main function is given in Listing 1-17.

#define WORD_LENGTH 16

int main(void) {

¶ static char *words[1 << NUM_BITS] = {NULL};

· static word_node *hash_table[1 << NUM_BITS] = {NULL};

int total = 0;

char *word;

word_node *wordptr;

unsigned length, word_code;

word = read_line(WORD_LENGTH);

while (*word) {

¸ words[total] = word;

wordptr = malloc(sizeof(word_node));

if (wordptr == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

length = strlen(word);

word_code = oaat(word, length, NUM_BITS);

wordptr->word = &words[total];

¹ wordptr->next = hash_table[word_code];

º hash_table[word_code] = wordptr;

word = read_line(WORD_LENGTH);

total++;

}

identify_compound_words(words, hash_table, total);

return 0;

}

Listing 1-17: The main function

To determine the size of the hash table and words array, we’ve used this
strange bit of code: 1 << NUM_BITS at ¶ and ·. We set NUM_BITS to 17 in List-
ing 1-15; 1 << 17 is a shortcut for computing 217, which is 131,072. This is
the smallest power of 2 larger than 120,000 (the maximum number of words
we’ll read). The oaat hash function requires that the hash table have a num-
ber of elements that is a power of 2, so we use 217 for the size of the hash
table and words array.

With our data structures declared, we can start using our helper func-
tions to populate them. We store each word in the words array ¸ and store a

Hash Tables 23

pointer to that word in the hash table at ¹ and º. The technique for adding
each pointer to the hash table is the same as for the Unique Snowflakes
problem: each bucket is a linked list, and we add each pointer to the begin-
ning of one of those lists. Once all words have been read in, we call identify_compound_words
to produce the desired output.

In summary, the hash table and words arrays work in parallel to facili-
tate a blazing-fast implementation: the hash table gives us a fast search, and
words helps us process the words in sorted order. Using a naive solution, with
no hash table, would be far slower. Consider again the code in Listing 1-16,
and suppose we have n words. With a hash table, each search ¸ is expected
to take a small constant number of steps. With no hash table, each such
search would require a scan of the words array and would therefore take up
to n steps! As with Unique Snowflakes, the speedup from using a hash table
amounts to an improvement from O(n2) to O(n).

Problem 3: Spelling Check: Deleting a Letter
Sometimes, problems look like they can be solved in a particular way be-
cause they bear resemblance to other problems. Here’s a problem where it
seems that a hash table is appropriate, but on further reflection we see that
hash tables vastly overcomplicate what is required.

This is Codeforces problem 39J (Spelling Check). (Probably the easiest
way to find it is to Google Codeforces 39J.)

The Problem
In this problem, we are given two strings where the first string has one more
character than the second. Our task is to determine the number of ways in
which one character can be deleted from the first string to arrive at the sec-
ond string. For example, there is one way to get from favour to favor: we can
remove the u from the first string. There are three ways to get from abcdxxxef

to abcdxxef: we can remove any of the x characters from the first string.
The context for the problem is a spellchecker. The first string might

be bizzarre (a misspelled word) and the second might be bizarre (a correct
spelling). In this case, there are two ways to fix the misspelling—by removing
either one of the two zs from the first string. The problem is more general
though, having nothing to do with actual English words or spelling mistakes.

The time limit for solving the test cases is two seconds.

Input
The input is two lines, with the first string on the first line and the second
string on the second line. Each string can be up to one million characters.

Output
If there is no way to remove a character from the first string to get the sec-
ond string, output 0. Otherwise, output two lines:

24 Chapter 1

• On the first line, output the number of ways in which a character
can be deleted from the first string to get the second string.

• On the second line, output a space-separated list of the indices of
the characters in the first string that can be removed to get the sec-
ond string. The problem requires we index a string from 1, not 0.
(That’s a bit annoying, but we’ll be careful.)

For example, for this input:

abcdxxxef

abcdxxef

we would output

3

5 6 7

The 5 6 7 are the indices of the three x characters in the first string,
since we are counting from one (not zero).

Thinking about Hash Tables
I spent a truly embarrassing number of hours searching for the problems
that drive the chapters in this book. The problems dictate what I can teach
you about the relevant data structure or algorithm. I need the problem solu-
tions to be algorithmically complex, but the problems themselves need to be
sufficiently simple so that we can understand what is being asked and keep
the relevant details at hand. I really thought I had found exactly that kind of
hash table problem I needed for this section. Then I went to solve it.

In Problem 2, Compound Words, we were given a wordlist as part of the
input. That was nice, because we just jammed each word from the wordlist
into a hash table and then used the hash table to search for prefixes and
suffixes of each word. Here, in Problem 3, we’re not given a wordlist. Un-
fazed, when I first tried solving this problem, I created a hash table, and I
inserted into it each prefix and suffix of the second (that is, shorter) string.
For example, for the word abc, I would have inserted a, ab, and abc (the pre-
fixes) and c and bc (the suffixes); abc is a suffix too but it is already inserted.
Armed with that hash table, I proceeded to consider each character of the
first string. Removing each character is tantamount to splitting the string
into a prefix and a suffix. Now we’re back in Compound Words land: we can
just use the hash table to check whether both the prefix and suffix are in the
hash table. If they are, then removing that character is one of the ways in
which we can transform the first string into the second.

This technique is tempting, right? Want to give it a try? You can even
reuse some of the code from Compound Words!

The thing I had failed to keep in mind was that each string could be
up to a million characters long. We certainly can’t store all of the prefixes
and suffixes themselves in the hash table—that would take up way too much
memory. I played around with using pointers in the hash table to point to

Hash Tables 25

both the start and end of the prefixes and suffixes. That solves the con-
cerns of memory use, but it doesn’t free us from having to compare these
extra-long strings whenever we perform a search using the hash table. In
Unique Snowflakes and Compound Words, the elements in the hash table
were small: 6 integers for a snowflake and 16 or so characters for a really
long English word. That’s nothing. However, here, the situation is different:
we might have strings of a million characters! Comparing such long strings is
very time consuming.

Another timesink here is computing the hashcode of prefixes and suf-
fixes of these strings. We might call oaat on a string of length 900,000, and
then call it again on a string with one additional character. That duplicates
all of the work from the first oaat call, when all we wanted was to incorporate
one more character into the string being hashed.

Yet, I persisted. I had it in my mind that a hash table was the way to go
here, and I failed to consider alternatives. At this point, I probably should
have taken a fresh look at the problem. Instead, I learned about incremental
hash functions, hash functions that are very fast when generating the hash-
code for an element that is very similar to the previously hashed element.
For example, if I already have the hashcode for abcde, then computing the
hashcode for abcdef using an incremental hash function will be very fast,
because it can lean on the work already done for abcde rather than starting
from scratch.

Another insight was that, if it is too costly to compare extra-long strings,
we cannot compare strings at all. We could just hope that our hash function
is good enough and that we’re lucky enough with the test cases and that no
collisions occur. If we look for some element in the hash table, and we find a
match . . . well, let’s hope it was an actual match and not us getting unlucky
with a false positive. If we’re willing to make this concession, then we can
use a structure that’s simpler than the hash table array that we used up to
this point in the chapter. In array prefix1, each index i gives the hashcode
for the prefix of length i from the first string. In each of three other arrays,
we can do similarly for the suffixes of the first string, prefixes of the second
string, and suffixes of the second string.

Here is some code that shows how the prefix1 array can be built:

//long long is a very large integer type in C99

unsigned long long prefix1[1000001];

prefix1[0] = 0;

for (i = 1; i <= strlen(first_string); i++)

prefix1[i] = prefix1[i-1] * 39 + first_string[i];

The other arrays can be built similarly.
It’s important that we use unsigned integers here. In C, overflow is well

defined on unsigned integers but not signed integers. If a word is long enough,
we’ll definitely get overflow, so we don’t want to allow undefined behavior.

Note how easy it is to calculate the hashcode for prefix1[i] given the
hashcode for prefix1[i-1]: it’s just a multiplication, followed by adding the
new character. Why did I multiply by 39 and add the character? Why didn’t

26 Chapter 1

I use something else for the hash function? Honestly, because what I chose
didn’t lead to any collisions in the Codeforces test cases. Yes, I know, it’s un-
satisfying.

Not to worry though: there’s a better way! To get there, we’ll stare at the
problem a little more closely, instead of just jumping to a hash table solu-
tion.

An Ad Hoc Solution
Let’s think more carefully through an earlier example:

abcdxxxef

abcdxxef

Suppose that we remove the f from the first string (index 9). Does this
make the first string equal the second? No, so 9 will not show up in our space-
separated list of indices. The strings have a long prefix of matching charac-
ters. There are six characters to be exact: abcdxx. After that, the two strings
diverge, where the first string has an x and the second has an e. If we don’t
fix that, then we have no hope that the two strings will be equal. The f is too
far to the right for its deletion to produce equal strings.

That leads to our first observation: if the length of the longest common
prefix (in our example, six, the length of abcdxx) is p, then our only options
for deleting characters are those with indices of ≤p + 1. In our example, we
should consider deleting a, b, c, d, the first x, the second x, and the third x.
Deleting anything to the right of p + 1 doesn’t fix the diverging character at
index p + 1 and hence can’t make the strings equal.

Notice that only some of these deletions actually work. For example,
deleting the a, b, c, or d from the first string does not give us the second
string. Only each of the three deletions of x gives us the second string. So,
while we’ve got an upper bound for indices to consider (≤p+1), we also need
a lower bound.

To think about a lower bound, consider removing the a from the first
string. Does that make the two strings equal? Nope. The reasoning is similar
to that in the previous paragraph: there are diverging characters to the right
of the as that can’t possibly be fixed by removing the as. If the length of the
longest common suffix (in our example, four, the length of xxef) is s, then we
should consider only indices that are ≥n – s, where n is the length of the
first string. In our example, this tells us to consider only indices that are ≥5.
In the above paragraph, we argued that we should look at only indices that
are ≤7. Together, we see that indices 5, 6, and 7 are the ones whose deletion
transforms the first string into the second.

In summary, the indices of interest go from n – s to p + 1. For any index
in this range, we know from p + 1 that the two strings are the same prior to
the index. We also know from n – s that the two strings are the same after the
index. Therefore, once we remove the index, the two strings are identical.
If the range is empty, then there are no indices whose deletion transforms
the first string into the second, so 0 is output in this case. Otherwise, we

Hash Tables 27

use a for loop to loop through the indices and printf to produce the space-
separated list. Let’s take a look at the code!

Longest Common Prefix
We have a helper function in Listing 1-18 to calculate the length of the longest
common prefix of two strings.

int prefix_length(char s1[], char s2[]) {

int i = 1;

while (s1[i] == s2[i])

i++;

return i - 1;

}

Listing 1-18: Calculating the longest common prefix

Here s1 is the first string and s2 is the second string. We use 1 as the
starting index of the strings. Starting at index 1, the loop continues as long
as corresponding characters are equal. (In a case such as abcde and abcd, the e

will fail to match the null terminator at the end of abcd, so i will correctly end
up with value 5.) When the loop terminates, index i is the index of the first
mismatched character; the length of the longest common prefix is therefore
i - 1.

Longest Common Suffix
Now, to calculate the longest common suffix, we use Listing 1-19.

int suffix_length(char s1[], char s2[], int len) {

int i = len;

while (i >= 2 && s1[i] == s2[i-1])

i--;

return len - i;

}

Listing 1-19: Calculating the longest common suffix

The code is quite similar to Listing 1-18. This time, however, we com-
pare from right to left, rather than left to right. For this reason, we need the
len parameter, which gives us the length of the first string. The final com-
parison that we’re allowed to make is i == 2. If we had i == 1, then we’d be
accessing s2[0], which is not a valid element of the string!

The main Function
Finally, we have our main function in Listing 1-20.

#define SIZE 1000000

int main(void) {

¶ static char s1[SIZE + 2], s2[SIZE + 2];

28 Chapter 1

int len, prefix, suffix, total;

· gets(&s1[1]);

¸ gets(&s2[1]);

len = strlen(&s1[1]);

prefix = prefix_length(s1, s2);

suffix = suffix_length(s1, s2, len);

¹ total = (prefix + 1) - (len - suffix) + 1;

º if (total < 0)

» total = 0;

¼ printf("%d\n", total);

½ for (int i = 0; i < total; i++) {

printf("%d", i + len - suffix);

if (i < total - 1)

printf(" ");

else

printf("\n");

}

return 0;

}

Listing 1-20: The main function

We use SIZE + 2 as the size of our two-character arrays ¶. The maximum
number of characters that we’re required to read is one million, but we need
an extra element for the null terminator. We need just one final element
because we start indexing our strings at index 1, “wasting” index 0.

We read the first · and second string ¸. Notice that we pass a pointer
to index 1 of each string: gets will therefore start storing characters at index
1 rather than index 0. After calling our helper functions, we calculate the
number of indices that can be deleted from s1 to give us s2 ¹. If this number
is negative º, then we set it to 0 ». This makes the printf call correct ¼. We
use a for loop ½ to print the correct indices. We want to start printing at
len - suffix, so we add len - suffix to each integer i.

There we have it: a linear-time solution, with no complex code, and
no need for a hash table. Before considering a hash table, ask yourself, is
there anything about the problem that would make hash tables unwieldy? Is
a search really necessary, or are there features of the problem that obviate
such searching in the first place?

Summary
A hash table is a data structure: a way to organize data so that certain oper-
ations are fast. Hash tables speed up the search for some specified element.
To speed up other operations, we need other data structures. For example,
in Chapter 7, we’ll learn about a heap, which is a data structure that can be

Hash Tables 29

used when we need to quickly identify the maximum or minimum element
in an array.

Data structures are general approaches to storing and manipulating
data.The problems in this chapter should give you good intuition for when
a hash table can be used, because hash tables apply to all kinds of problems
beyond what is shown here. Be on the lookout for other problems where
otherwise efficient solutions are hampered by repeated, slow searches.

Notes
Unique Snowflakes is originally from the 2007 Canadian Computing Olympiad.

Spelling Check is originally from the 2010 School Team Contest #1,
hosted by Codeforces. The prefix-suffix solution (used after I finally gave up
on a hash table solution) originates from a note posted at https://codeforces.
com/blog/entry/786.

The oaat (one-at-a-time) hash function is by Bob Jenkins (see http://burtleburtle.
net/bob/hash/doobs.html).

For additional information about hash table applications and implemen-
tations, see Algorithms Illuminated (Part 2): Graph Algorithms and Data Struc-
tures by Tim Roughgarden (2018).

30 Chapter 1

https://codeforces.com/blog/entry/786
https://codeforces.com/blog/entry/786
http://burtleburtle.net/bob/hash/doobs.html
http://burtleburtle.net/bob/hash/doobs.html

