
Errata for Rust for Rustaceans (updated to 3rd printing) 
 

Page 17: The end of the paragraph that reads: 

“. . . and it reports that the list is still mutably borrowed.” 

should now read:  

“...and it reports that s is still mutably borrowed.” 

 

Page 26: In the “Non-Generic Inner Functions” info box in the “Traits and Trait Bounds” section, we 

deleted the word “instead” where duplicated so it now reads: “. . . you can instead declare such a helper 

function outside the method.” 

 

Page 45: The paragraph beginning “Of course, in the real world” now reads: 

“Sometimes, you don’t know if your code must own data or not, as it is runtime dependent. For this, the 

Cow type is your friend. It lets you represent data that may be owned by holding either a reference or an 

owned value. If asked to produce an owned value when it only has a reference, a Cow uses the ToOwned 

trait to make one behind the scenes, usually by cloning. Cow is typically used in return types to represent 

functions that sometimes allocate. For example, String::from_utf8_lossy allocates only if the 

input contains invalid UTF-8. Cow can also be used in arguments for functions that can sometimes make 

use of owned inputs, but that’s rarer in practice.” 

 

Page 158: In Listing 9-5, the statement starting let init: should be indented by one more level, so 

the full listing reads: 
fn fill(gen: impl FnMut() -> Option<u8>) { 

let mut buf = [MaybeUninit::<u8>::uninit(); 4096]; 

let mut last = 0; 

for (i, g) in std::iter::from_fn(gen).take(4096).enumerate() { 

buf[i] = MaybeUninit::new(g); 

last = i + 1; 

} 

// Safety: all the u8s up to last are initialized. 

let init: &[u8] = unsafe { 

MaybeUninit::slice_assume_init_ref(&buf[..last]) 

}; 

// ... do something with init ... 

} 

 



And in Listing 9-6, the line: 
self.set_len(start + n); 

should now read: 
self.set_len(start + fill); 

 

Page 162: In Listing 9-11, the statement that reads: 
unsafe impl<#[may_dangle] T> for Box<T> { /* ... */ } 

should now read: 
unsafe impl<#[may_dangle] T> Drop for Box<T> { /* ... */ } 

 
Page 202: In the box “The Niche Optimization in FFI,” the sentence that reads: 

“For example, a nullable function pointer can be represented as Option<extern fn(...)>, and a 

nullable data pointer can be represented as Option<*mut T>.” 

should now read: 

“For example, a nullable function pointer can be represented as Option<extern fn(...)>, and a 

nullable data pointer can be represented as Option<NotNull<T>>.” 

 

Page 235: In Listing 13-3, the lines: 
    impl Drop for DropGuard<'_> { 

        fn drop(&mut self) { 

            lock.store(true, Ordering::Release); 

        } 

    } 

should now read: 
    impl Drop for DropGuard<'_> { 

        fn drop(&mut self) { 

            self.0.store(true, Ordering::Release); 

        } 

    } 


