FUNCTIONALISM WITH BLOCKS
AND PROCS

Ruby has two main ancestors: Smalltalk

and Lisp.! From Smalltalk, Ruby gets its heavy
object orientation, which we’ve explored in
some depth up to this point. From Lisp it derives

several ideas from functional programming, which is a very mathematically
inclined approach to programming with a few notable characteristics. First,
variables tend to be defined once, without having their values changed later
on. Additionally, functions tend to be simple, abstract, and used as building
blocks for other functions; the line between functions, which perform opera-
tions, and data, on which functions operate, is often blurry, compared with
non-functional approaches. Functions also tend to do their work by returning
values, rather than having side effects—in Ruby terms, methods that end
with an exclamation point are less common.

Ruby’s support for functional programming is extensive and exciting.
Let’s dive in.

!This is a potentially contentious statement. At a RubyConf, I once asked Matz which other
languages he thought were most influential on Ruby. His response was “Smalltalk and Common
Lisp”. Other folks in the Ruby community (many of them ex-Perl users) stress Ruby’s clear
similarity to Perl. Probably the safest statement is that Ruby descends from Smalltalk and Lisp,
and while it’s a lot like Perl, Perl is more like an aunt or uncle.

Procs

#20 Our First lambda (make_incrementer.rb)

Calling Procs

100

Chapter 6

©

This script explores how Ruby creates functions that should be treated as
objects. Every “thing” in Ruby is an object, so the notion of treating functions
as objects is not conceptually odd. In Ruby, we do this with the command
lambda, which takes a block. Let’s look at that in irb.

irb(main):001:0> double me = lambda { |x| x * 2 }
=> #<Proc:0xb7d1f890@(irb):1>

irb(main):002:0> double me.call(5s)

=> 10

You can see by the return value of line one that the result of calling
lambda is an instance of class Proc. Proc is short for procedure, and while most
objects are defined by what they are, Procs can be thought of primarily as
defined by what they do. Procs have a method called call, which tells that Proc
instance to do whatever it does. In our irb example, we have a Proc instance
called double_me that takes an argument and returns that argument, times two.
On line two, we see that feeding the number 5 into double_me.call results in a
return value of 10, just as you would expect. Itis easy to create other Procs
that do other operations.

irb(main):003:0> triple me = lambda { |x| x * 3 }
=> #<Proc:0xb7d105bc@(irb):3>

irb(main):004:0> triple_me.call(5)

=> 15

Since Procs are objects, just like everything else in Ruby, we can treat
them like any other object. They can be the returned value of a method,
either the key or value of a Hash, arguments to other methods, and whatever
else any object can be. Let’s look at the script that demonstrates this.

The Code

#!/usr/bin/env ruby
make_incrementer.rb

def make_incrementer(delta)
return lambda { |x| x + delta }
end

incrementer_proc_of = Hash.new()
[10, 20].each do |delta]

incrementer_proc_of[delta] = make_incrementer(delta)
end

incrementer proc_of.each_pair do |delta,incrementer proc|
puts "#{delta} + 5 = #{incrementer proc.call(5)}\n"
end

The each_pair

Method

O puts

© incrementer_proc_of.each_pair do |delta,incrementer_ proc|

(6]

(0..5).to_a.each do |other addend|
puts "#{delta} + #{other_addend} = " +
incrementer proc.call(other_addend) + "\n"
end
end

How It Works

At @ we define a method called make_incrementer. It takes a single argument
called delta and returns a Proc (created via lambda) that adds delta to some-
thing else, represented by x. What is that something else? We don’t know yet.
That is precisely the point of this method—it allows us to define an operation
that can be performed multiple times using different parameters, just like

any other function.
We can see how this is useful in the rest of this script. At @ we define a new

Hash called incrementer proc_of. For each of the values 10 and 20, we make an
incrementer (using either 10 or 20 for the value of delta in the make_incrementer
method) and assign the resulting Proc into the incrementer_proc_of Hash. Start-
ing at ®, we read each delta and Proc pair out of the Hash using the each_pair
method and then use puts to print a line describing that delta value and the
result of calling its Proc with the argument of 5.

We @ print a spacer with puts (just for ease of reading the output),

and finally ® output another set of data. This time we add another loop

for a value called other_addend; this is a variable that serves a role analogous

to our static value of 5 in the loop (®). Let’s run this program with
ruby -w make_incrementer.rb and look at the output.

The Results
20 + 5 25
10 + 5 15
20+ 0 20
20 + 1 21
20 + 2 22
20 + 3 23
20 + 4 = 24
20 + 5 25
10 + O 10
10 + 1 11
10 + 2 12
10 + 3 13
10 + 4 = 14
10 + 5 15

Functionalism with Blocks and Procs

101

The first two lines before the empty line show the output of the first loop
(with the static value of 5 for the addend), while the rest of the output shows
the result of the second loop, which uses the other_addend variable. Notice
also that each_pair does not order by key, which is why my output has the
delta value of 20 appearing first. Depending on your implementation of
Ruby, you might see a delta of 10 first.

Now you know how to create Procs. Let’s learn how to use them for
something more useful than just demonstrating themselves.

#21 Using Procs for Filtering (matching_members.rb)

Procs as
Arguments

102

Chapter 6

000

So far, we’ve seen that to create a Proc, we call lambda with a block describing
what that Proc should do. This would lead you to believe that there is a special
relationship between Procs and blocks, which there is. Our next script demon-
strates how to use Procs in place of blocks.

The Code

#!/usr/bin/env ruby
matching_members.rb

=begin rdoc

Extend the built-in Array class.
=end

class Array

=begin rdoc
Takes a Proc as an argument, and returns all members
matching the criteria defined by that Proc.
=end
def matching_members(some_proc)
find_all { |i| some_proc.call(i) }
end

end

digits = (0..9).to a

lambdas = Hash.new()

lambdas['five+'] = lambda { |i| i »>=5 }
lambdas['is_even'] = lambda { |i| (i % 2).zero? }

lambdas.keys.sort.each do |lambda_name|
lambda_proc = lambdas[lambda_name]
lambda_value = digits.matching members(lambda_proc).join(',"
puts "#{lambda_name}\t[#{lambda_value}]\n"

end

How It Works

In this script, we open the Array class in order to add a new method called
matching_members (@). It takes a Proc (creatively called some_proc—see the note
below) as an argument and returns the result of calling find_all, which (as its

name suggests) finds all members for which the block is true. In this case, the
condition in the block is the result of calling the Proc argument on the Array
with the Array member in question as the argument to call. After we finish
defining our new method, we set up our digits Array and our Procs with
appropriate names in the lambdas Hash at @.

NOTE Some of my co-workers make fun of the variable and method names I use—like some_proc,
Sor example. I think names should either be very specific, like save_rates_to_local_file!,
or explicitly generic, like some_proc. For truly generic operations, I often use variable
names like any_proc or any_hash, which tell you explicitly that the operations being per-
formed on them are meant to be useful for any Proc or Hash.

At ©, we loop through each sorted lambda_name, and at @ we extract each
Proc out as a variable called lambda_proc. We then find_all members of the
digits Array that match the condition described by that Proc at ©® and puts
an appropriate message at ©.

Running the Script

Let’s see it in action with ruby -w matching members.rb.

The Results

In each case, we filter the members of the digits Array based on some
specific conditions. Hopefully, you’ll find that the names I chose for each
Proc match what that Proc does. The five+ Proc returns true for any argu-
ment that is five or greater.? We see that the results of calling five+ on each
digitin turn returns the correct digits. Similarly, the is_even Proc filters its input,
only returning true for arguments that are even, where evennessis defined as
having a modulus two equal to zero. Again, we get the correct numbers.

What happens when we want to filter based on multiple criteria? We could
filter once with one Proc, assign that result into an Array, and then filter that
result by the second criterion. That’s perfectly valid, but what if we have an
unknown number of filtering conditions? We want a version of matching_members
that can take an arbitrary number of Procs. That’s our next script.

#22 Using Procs for Compounded Filtering
(matching_compound_members.rb)

In this script, we’ll filter Arrays using an arbitrary number of Procs. As before,
we’ll open up the Array class, this time adding two methods. Again, we’ll
filter digits based on simple mathematical tests. Let’s take a look at the
source code and see what’s different.

21t does this by implicit Boolean evaluation of the expression i >= 5.

Functionalism with Blocks and Procs 103

Block

Arguments

Array

Intersections

104

Chapter 6

(1]

© puts "ALL\t[#{digits.matching compound members(lambdas.values).join(","')}]

The Code

#!/usr/bin/env ruby
matching_compound_members.rb

=begin rdoc

Extend the built-in Array class.
=end

class Array

=begin rdoc
Takes a block as an argument and returns a list of
members matching the criteria defined by that block.
=end
def matching_members(&some_block)
find_all(&some_block)
end

=begin rdoc
Takes an Array of Procs as an argument
and returns all members matching the criteria defined
by each Proc via Array.matching_members.
Note that it uses the ampersand to convert from
Proc to block.
=end
def matching_compound_members(procs_array)
procs_array.map do |some_proc|
collect each proc operation
matching_members(&some_proc)
end.inject(self) do |memo,matches |
find all the intersections, starting with self
and whittling down until we only have members
that have matched every proc
memo & matches
end
end

end

Now use these methods in some operations.

digits = (0..9).to a

lambdas = Hash.new()

lambdas['five+'] = lambda { |i| i if i >=5 }
lambdas['is_even'] = lambda { |i| i if (i % 2).zero? }
lambdas['div_by3'] = lambda { |i| i if (i % 3).zero? }

lambdas.keys.sort.each do |lambda_name|
lambda_proc = lambdas[lambda_name]

lambda_values = digits.matching_members(&lambda_proc).join(',")

puts "#{lambda_name}\t[#{lambda_values}]\n"
end

& Notation for
Blocks and Procs

How It Works

We start by defining a method called matching_members (@), just as before.
However, this time our argument is called some_block instead of some_proc, and
itis preceded by an ampersand. Why?

Blocks, Procs, and the Ampersand

The ampersand (&) is Ruby’s way of expressing blocks and Procs in terms
of each other. It’s very useful for arguments to methods, as you might
imagine. Blocks, you may remember, are simply bits of code between
delimiters such as braces ({ "I'm a block!" }) or the do and end keywords
(do "I'm also a block!" end). Procs are objects made from blocks via the
lambda method. Either of them can be passed into methods, and the amper-
sand is the way to use one as the other. Let’s test this in irb.

irb(main):001:0> class Array

irb(main):002:1> def matches_block(&some_block)
irb(main):003:2> find_all(&some_block)
irb(main):004:2> end

irb(main):005:1> def matches_proc(some_proc)
irb(main):006:2> find_all(&some_proc)
irb(main):007:2> end

irb(main):008:1> end

=> nil

We open the Array class and add a method called matches_block; this
method takes a block (with an ampersand prefix), effectively duplicating the
behavior of the existing find_all method, which it calls. We also add another
method called matches_proc that calls find_all again, but takes a Proc this time.
Then we try them out.

irb(main):009:0> digits = (0..9).to_a

=> [0) 1, 2, 3, 4, 5,6, 7, 8, 9]

irb(main):010:0> digits.matches_block { |x| x > 5 }

=> [6) 7, 8, 9]

irb(main):011:0> digits.matches_proc(lambda { x| x > 5})
=> [6) 7, 8, 9]

The matches_block method dutifully takes a block and passes it along to
the find_all method, transforming it along the way with the ampersand—
once on input and again when passed to find_all. The matches_proc method
takes a Proc and passes that on to find_all, but it only needs to transform
with the ampersand once.

You might think that we could omit the ampersand and just treat a block
argument as a standard variable, like in irb below.

irb(main):001:0> class Array

irb(main):002:1> def matches_block(some_block)
irb(main):003:2> find_all(some_block)
irb(main):004:2> end

Functionalism with Blocks and Procs 105

106

NOTE

Chapter 6

irb(main):005:1> end
=> nil
irb(main):006:0> digits = (0..9).to_a
=> [0) 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):007:0> digits.matches_block { |x| x > 5 }
ArgumentError: wrong number of arguments (0 for 1)
from (irb):7:in “matches_block'
from (irb):7
from :0

That doesn’t work, as you see. Ruby keeps track of the number of
arguments that a given method, block, or Proc expects (a concept called
arity) and complains when there is a mismatch. Our irb example expected a
“real” argument, not just a block, and complained when it didn’t get one.

The gist of the ArgumentError is that blocks are akin to “partial” or “unborn” blocks
and need the lambda method to be made into full-fledged Procs, which can be used as
real arguments to methods. Some methods, like find all, can handle block arguments,
but these block arguments are treated differently than regular arguments and don’t
count toward the number of “real” arguments. We’ll cover this later when we discuss
thewillow_and_anya.rb script. For now, note that our new version of matching_members
takes a block instead of a Proc.

Filtering with Each Proc via map

We also define a new method called matching_compound_members at @. The
matching_compound_members method takes an Array argument called procs_array
and maps a call to matching_members onto each of procs_array’s Proc elements;
this transforms the elements into blocks with the ampersand at ® while doing
the mapping. This results in an Array, each of whose members is an Array
containing all members of the original Array that match the conditions defined
by the Proc. Confused? Take a look in irb.

irb(main):001:1> class Array

irb(main):002:1> def matching_compound _members(procs_array)
irb(main):003:2> procs_array.map do |some_proc|
irb(main):004:3* find_all(&some_proc)

irb(main):005:3> end

irb(main):006:2> end

irb(main):007:1> end

=> nil

irb(main):008:0> digits.matching_compound members([lambda { |x| x > 5 },
lambda { |x| (x % 2).zero? }])

=> [[6) 7, 8, 9]) [0) 2, 4, 6, 8]]

On lines one through seven, we add a shortened version of matching_members
to all Arrays. We call it on line eight, and find that the result is an Array of
Arrays. The first sub-array is all digits greater than five—the result of the first
Proc. The second sub-array is all even digits—the result of the second Proc.
That’s what we have at the end of the map (@) inside matching_compound members.

Finding the Intersections with inject

We don’t stop there. Next we call our old friend the inject method on that
Array of Arrays. You may remember that inject performs an operation suc-
cessively and has a memory for intermediate results. That will be very useful
for us. The inject method takes an optional non-block element for the
initial state of its memory. In our script we use self (@), meaning that the
memory state will be the self Array as it exists prior to any filtering. We also
say that each member of the Array resulting from the map operation will be
called matches. This makes sense because the matches variable represents
members of the initial Array that were found to match the Proc used for
that particular stage of the map operation.

Array Intersections

At ©, we call a method we haven’t seen before on memo. This method happens
to be expressed with the ampersand character, but it has nothing to do with
converting blocks and Procs into each other; it has more to do with set math.

irb(main):001:0> digits = (0..9).to_a

=> [0) 1, 2, 3, 4, 5, 6, 7, 8, 9]

irb(main):002:0> evens = digits.find all { |x| (x % 2).zero? }
=> [0) 2, 4, 6, 8]

irb(main):003:0> digits & evens

=> [0) 2, 4, 6, 8]

irb(main):004:0> half digits = digits.find all { |x| x < 5 }
=> [0) 1, 2, 3, 4]

irb(main):005:0> evens & half digits

=> [0) 2, 4]

Can you guess what this ampersand means? It represents the intersection
of two composite data sets. It basically means Find all members of myself that
also belong to this other thing. When we call it within our inject, we ensure that
once a given Array element fails one test, it no longer appears as a can-
didate for the next test. This happens because the memory of the inject
method (represented by the variable called memo) is automatically set to the
return value of each iteration of the inject method. At @, when we’re done
with all of our mapping and injecting, we’re left with only those members
of the original Array that pass the tests defined by every single Proc in the
procs_array argument. Since Ruby returns the last expression evaluated in a
method, matching_compound_members returns an Array of all members of self
that pass every test represented by the members of procs_array.

After some setup at @ similar to that for the previous script, we output
results using puts at both @ and . Let’s see it in action.

The Results

div_by3 [o0,3,6,9
five+ [5,6,7,8
is_even [0,2,4,6,
ALL (6]

]
»9]

9
8]

Functionalism with Blocks and Procs 107

We call each of these filtering Procs on the digits from zero to nine,
getting the correct members each time. We finally output the prefix ALL
followed by the members that pass all the tests. The number six is the only
digit from zero to nine that is divisible by three, is greater than or equal to
five, and is even. Therefore, it is the only member of the final output.

Hacking the Script

Try defining your own Procs using lambda. You can add them to the section
at @ or replace some of the existing Procs. Feel free to alter the range used

to create the digits Array as well. A larger range of values in digits could help
demonstrate more complex relationships among a greater number of filter-
ing Procs.

#23 Returning Procs as Values (return_proc.rb)

Procs as Hash

Values

Making Strings

with %0

108

Chapter 6

Let’s look at a further demonstration of how to use Procs as data generated
by another function. It’s very similar to the make_incrementer.rb script.

The Code

#!/usr/bin/env ruby
return_proc.rb

def return_proc(criterion, further criterion=1)

proc_of criterion = {
"div_by?' => lambda { |i
'is?' => lambda { |i

}

| i if (i % further_criterion).zero? },
| i == further_criterion }

allow 'is_even' as an alias for divisible by 2

return return_proc('div_by?', 2) if criterion == ('is_even')

proc_to_return = proc_of criterion[criterion]
fail "I don't understand the criterion #{criterion}" unless proc_to_return
return proc_to_return

end
require 'boolean_golf.rb'

Demonstrate calling the proc directly
even_proc = return_proc('is_even') # could have been ('div_by', 2)
div3_proc = return_proc('div_by?', 3)
is10 _proc = return proc('is?', 10)
[4, 5, 6].each do |num|
puts %Q[Is #{num} even?: #{even_proc[num].true?}]
puts %Q[Is #{num} divisible by 3?: #{div3_proc[num].true?}]

The inspect
Method

(9]

puts %Q[Is #{num} 10?: #{is10_proc[num].true?}]
printf("%d is %s.\n\n", num, even proc[num].true? ? 'even' : 'not even')
end

Demonstrate using the proc as a block for a method

digits = (0..9).to a

even_results = digits.find _all(&(return_proc('is_even')))
div3_results = digits.find_all(&(return_proc('div_by?', 3)))
puts %Q[The even digits are #{even_results.inspect}.]

puts %Q[The digits divisible by 3 are #{div3_results.inspect}.]
puts

The Results

If we call this with the command ruby -w return_proc.rb, we get the following
output, all of which is true.

Is 4 even?: true

Is 4 divisible by 3?: false
Is 4 10?: false

4 is even.

Is 5 even?: false

Is 5 divisible by 3?: false
Is 5 10?: false

5 is not even.

Is 6 even?: true

Is 6 divisible by 3?: true
Is 6 10?: false

6 is even.

The even digits are [0, 2, 4, 6, 8].
The digits divisible by 3 are [0, 3, 6, 9].

How It Works

We define a method called return_proc starting at @ that takes a mandatory
criterion and an optional further_criterion, assumed to be one. It then defines
a Hash called proc_of_criterion with keys that match a specific criterion and
values that are Procs corresponding to each criterion. It then allows a caller
to use an alias is_even to mean Divisible by two at @. It does this by recursively
calling itself with the arguments div_by? and 2 when the alias is used.

Assuming that the is_even alias is not used, the method tries to read the
appropriate Proc to use at ®; it fails if it gets a criterion it doesn’t understand.’
If it gets past this point, we know that the method understands its criteria,
because it found a Proc to use. It then returns that Proc, appropriately called
proc_to_return.

¥Were you to modify or extend this method, you could simply add more options to the
proc_of_criterion Hash.

Functionalism with Blocks and Procs 109

110

Chapter 6

We now know that return_proc lives up to its name and returns a Proc.
Let’s use it. At @, we require one of our first scripts, boolean_golf.rb. You may
recall that that script adds the methods true? and false? to every object. This
will come in handy for our next few lines. At @, we define three Procs that
can test numbers for certain conditions. We then use those Procs within the
each block starting at @. For each of the Integers 4, 5, and 6, we test for even-
ness, being divisible by three, and being equal to ten. We also use both the
printf command that we saw in the line_num.rb script and the main ternary
operator, both of which happen at Q.

Proc.call(args) vs. Proc[args]

Notice that we call our Procs with a different syntax here—we don’t use the
call method at all. We can simply put whatever arguments we would use
inside square brackets, and it’s just like using the call method. Let’s verify
this in irb.

irb(main):001:0> is_ten = lambda { |x| x == 10 }
=> #<Proc:0xb7doc8a4@(irb):1>

irb(main):002:0> is_ten.call(10)

=> true

irb(main):003:0> is_ten[10]

=> true

irb(main):004:0> is_ten.call(9)

=> false

irb(main):005:0> is_ten[9]

=> false

I chose to use the bracket syntax in these examples for the sake of brevity.
So far, I've shown how to use Procs that have been returned directly from the
return_proc method. But we can also do other things, such as converting
between blocks and Procs.

Using Procs as Blocks

From ©® to the end of the script, we see how we can cast the output of
return_proc (which we know to be a Proc) into a block with the ampersand
without ever storing the Proc in a variable. After defining our usual digits
Array, we call find_all twice, assigning the results into even_results and
div3_results, respectively. Remember that find_all takes a block. The
ampersand can convert any expression that evaluates to a Proc into a block,
and (return_proc('is_even') is an expression that returns (evaluates to) a Proc.
Therefore, we can coerce (or cast) the expression (return_proc('is_even')
into a perfectly valid block for find_all. We do this, outputting the results via
puts at ©.

The inspect Method

Notice that we call a new method called inspect on each set of results to retain
the brackets and commas that we normally associate with members of Arrays.
The inspect method returns a String representation of whatever object it’s

called on. It is slightly different from the to_s method we’ve already seen.
Let’s check that out in irb.

irb(main):001:0> digits = (0..9).to_a
=> [0) 1, 2, 3, 4, 5, 6) 7, 8) 9]
irb(main):002:0> digits.to_s

=> "0123456789"

irb(main):003:0> digits.inspect

=> "[0) 1, 2, 3, 4, 5, 6) 7, 8) 9]"

You can see that the output of inspect is a bit prettier than the output of
to_s. It also retains more information about what type of object it was called on.

You should now be pretty comfortable with calling Procs, passing them
around, reading them out of Hashes, and converting them to and from blocks,
whether with a lambda or when passing around to methods. Now let’s look at
nesting lambdas within other lambdas.

#24 Nesting lambdas

Nested
Lambdas

Let’s review Procs for a bit. Procs are just functions that can be treated as
data, what functional programming languages call first-class functions. Functions
can create Procs; we saw that both make_incrementer and return_proc return
Procs of different sorts. Given all that, what prevents us from making a Proc
that returns another Proc when called? Nothing at all.

In the make_exp example below, we create specific versions of Procs that
raise an argument to some specified power. That power is the exp argument
taken by the outer lambda, which is described as a free variable because it is not
an explicit argument to the inner lambda.

The inner lambda, which is returned, has a bound variable called x. It is
bound because it is an explicit argument to that inner lambda. That variable x
is the number that will be raised to the specified power. This example is short,
and the returned value at each stage is very important, so we’ll do this entirely
in irb.

The Code

irb(main):001:0> digits = (0..9).to_a

=> [0) 1, 2, 3, 4, 5, 6, 7, 8, 9]

irb(main):002:0> make_exp proc = lambda { |exp| lambda { |x| x ** exp } }
=> #<Proc:0xb7c97adc@(irb):2>

irb(main):003:0> square_proc = make_exp_proc.call(2)

=> #<Proc:0xb7c97b18@(irb):2>

irb(main):004:0> square_proc.call(s)

=> 25

irb(main):005:0> squares = digits.map { |x| square proc[x] }

=> [o, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Functionalism with Blocks and Procs 11

112

How It Works

We see up to this point that make_exp_proc is a Proc, which returns a Proc
when called. That resulting Proc raises its argument to the exponent used in
the initial call of make_exp_proc. Since in our example, we called make_exp_proc
with 2, we created a Proc that squares its argument, appropriately calling it
square_proc. We also see that the squaring Proc can be used in a mapping oper-
ation onto the digits Array, and that it returns the correct squared values.

irb(main):006:0> cube_proc = make_exp_proc.call(3)

=> #<Proc:0xb7c97b18@(irb):2>

irb(main):007:0> cube_proc.call(3)

=> 27

irb(main):008:0> cubes = digits.map { |x| cube proc[x] }
=> [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

We also see in the rest of the example that make_exp_proc is flexible and
can take arguments other than 2. It works perfectly well with an argument of
3, producing a cubing Proc, which we can use in the same ways as the squar-
ing Proc.

Up to this point, our Procs have tended to implement simple mathe-
matical operations, like addition, multiplication, or exponentiation. But
Procs are functions like any other, and they can output any type of value.
Let’s move on to the next script, which uses Procs that manipulate Strings.

#25 Procs for Text (willow_and_anya.rb)

NOTE

Chapter 6

As I 'was planning the functional programming chapter of this book, I was
watching DVDs of Joss Whedon’s Buffy the Vampire Slayer. I mention this because
I had Procs and blocks on my brain, and I happened to encounter two very
good candidates for text-based examples of lambda operations. In an episode
called “Him,” there is discussion of a “love spell”, an “anti-(love spell) spell”,
and an “anti-(anti-(love spell) spell) spell”. That’s a great example of succes-
sive modifications via a simple function. In another episode called “Same
Time, Same Place,” there is a conversation that demonstrates simple variable
substitution. Both are great examples of simple functions and are good venues
to explore how Procs in Ruby differ based on how we choose to create them.
Here’s the source code.

You obviously don’t need to like Buffy to benefit from reading about these examples.
The specific content that the scripts modify is essentially arbitrary.

The Code

This code consists of three distinct files: one each for the two necessary classes,
and one separate script meant to be directly executed.

The Him Class

#!/usr/bin/env ruby -w
him.1b

® class Him

EPISODE_NAME = 'Him'
BASE = 'love spell’
Constant Procs ANTIDOTE_FOR = lambda { |input| "anti-(#{input}) spell" }

Class Methods ® def Him.describe()
return <<DONE_WITH_HEREDOC

In #{EPISODE_NAME},

Willow refers to an "#{ANTIDOTE_FOR[BASE]}".

Anya mentions an "#{ANTIDOTE_FOR[ANTIDOTE_FOR[BASE]]}".

Xander mentioning an "#{ANTIDOTE_FOR[ANTIDOTE_FOR[ANTIDOTE_FOR[BASE]]]}"
might have been too much.

DONE_WITH_HEREDOC
end

end

The SameTimeSamePlace Class

#!/usr/bin/env ruby -w
same_time_same_place.rb

© class SameTimeSamePlace
EPISODE_NAME = 'Same Time, Same Place’

=begin rdoc
This Hash holds various procedure objects. One is formed by the generally
preferred Kernel.lambda method. Others are created with the older Proc.new
method, which has the benefit of allowing more flexibility in its argument
stack.
=end

® QUESTIONS = {

:ternary => Proc.new do |args|

state = args ? args[o] : 'what'

location = args ? args[1] : 'what’

"Spike's #{state} in the #{location}ment?"
end,

:unlessoth => Proc.new do |*args|
args = %w/what what/ unless args[o]

Functionalism with Blocks and Procs

13

"Spike's #{args[0]} in the #{args[1]}ment?"

end,
Flexible Arity :nitems => Proc.new do |*args|
with Proc.new args.nitems >= 2 || args.replace(['what', 'what'])
"Spike's #{args[0]} in the #{args[1]}ment?"
end,

:second_or => Proc.new do |*args|
args[0] || args.replace(['what', 'what'])
"Spike's #{args[0]} in the #{args[1]}ment?"
end,

:needs_data => lambda do |args]|
"Spike's #{args[0]} in the #{args[1]}ment?"
end

}
© DATA_FROM_ANYA = ['insane', 'base']
® def SameTimeSamePlace.describe()

same_as_procs = [
SameTimeSamePlace.yield block (8QUESTIONS[:nitems]),
QUESTIONS[:second_or].call(),
QUESTIONS[:unlessoth].call(),
SameTimeSamePlace.willow_ask,

return <<DONE
In #{EPISODE_NAME},
Willow asks "#{QUESTIONS[:ternary].call(nil)}",
#{same_as_procs.map do |proc_output|
‘which is the same as "' + proc_output +
end.join("\n ")

}
Anya provides "#{DATA FROM_ANYA.join(', ')}", which forms the full question

"#{SameTimeSamePlace.yield block (DATA_FROM_ANYA, &QUESTIONS[:needs data])}".

DONE
end

=begin rdoc
Wrapping a lambda call within a function can provide
default values for arguments.
=end
@ def SameTimeSamePlace.willow_ask(args = ['what', 'what'])
QUESTIONS[:needs_data][args]
end

114 Chapter 6

The yield
Method

Arrays with %w

=begin rdoc
Passing a block as an argument to a method
=end
def SameTimeSamePlace.yield block(*args, &block)
yield with any necessary args is the same as calling block.call(*args)
yield(*args)
end

end

The willow_and_anya.rb Script

#!/usr/bin/env ruby -w
willow_and_anya.rb

%w[him same_time_same_place].each do |1lib_file]|
require "#{1lib_file}"
end

[Him, SameTimeSamePlace].each do |episode|
puts episode.describe()
end

How It Works

This script performs some complex operations. Let’s consider each class
individually and then look at the separate script that uses them.

The Him Class: Creating Procs with lambda

We define a class called Him at ®. It has three constants: its own EPISODE_NAME,
a BASE item, and a lambda operation to create an ANTIDOTE_FOR something.4
It has one class method called Him.describe (@) that returns a long String
constructed via a here doc. Remember that you can call a Proc with either
some_proc.call(args) or some_proc[args]. In this case, we’ll use the shorter
bracket version again. We’ll report that the character named Willow refers to
the antidote for the base spell. Her associate Anya then mentions the antidote
for that antidote. Whedon avoided yet another call to the antidote-creating
Proc in his show, but our method will continue, outputting the antidote for
the antidote for the antidote.

The SameTimeSamePlace Class: Alternatives to lambda for Creating Procs

Our next class explores more options. SameTimeSamePlace starts at ® and it defines
a Hash constant called QUESTIONS right away at @. Its keys are Symbols, and its

values are Procs. Up until now, we’ve always created Procs with the lambda method,
but we know that Procs are instances of the class Proc. Traditionally, you can
create an instance by calling the new method on a class. Let’s try that in irb.

*I mentioned earlier in the book that lanbdas can make excellent Class Constants. Now you can
see that in action.

Functionalism with Blocks and Procs 115

116

NOTE

Chapter 6

irb(main):001:0> is_even procl = lambda { [x| (x % 2).zero? }
=> #<Proc:0xb7cb687c@(irb):1>

irb(main):002:0> is_even proc2 = Proc.new { |x| (x % 2).zero? }
=> #<Proc:0xb7cacbh4c@(irb):2>

irb(main):003:0> is_even procl.call(7)

=> false

irb(main):004:0> is_even proc2.call(7)

=> false

irb(main):005:0> is_even procl.call(8)

=> true

irb(main):006:0> is_even proc2.call(8)

=> true

That seems to work fine, and each Proc behaves as expected. In actual
practice, there is little difference between Procs created via lambda and Procs
created via Proc.new. Proc.new is a bit more flexible about how it handles argu-
ments, which we’ll soon see. For now, note that the value for the key :ternary
in our QUESTIONS Hash at @ is a Proc that asks if someone named Spike has a
certain state (which is neither already known nor static) in a certain location
(which is also neither already known nor static).

Don’t be fooled by this script’s surface-level silliness. It actually clarifies some very inter-
esting behavior in Ruby’s Procs with regard to arguments and arity. Later scripts that
use these techniques for tasks that are more useful in the real world include scripts that
convert temperatures and play audio files for a radio station.

Flexible Arity for Proc.new

Next, we’ll start exploring Proc.new more for the :unlessoth Symbol key. You’ll
notice that the *args argument to this Proc has a preceding asterisk. This
option is available to Procs created with Proc.new, but not to Procs created
with lambda. It indicates that the argument with the asterisk is optional.
Immediately inside the :unlessoth Proc, we set the value of args if it has no
value at the zeroth index; then we output the same question as the :ternary
version. The only difference is that the args Array is optional for this version.
Note also that we create our double "what" default Array with a %w with slash
delimiters. This is a very handy way to create single-word Arrays.

For the :nitems Symbol key, we use an optional *args with Proc.new again.
The only difference between this version and the :unlessoth version is the way
this tests args. In this version, we call the nitems method on the args Array,
which returns the number of non-nil items. That number needs to be two or
greater; if it isn’t, that means we don’t have enough elements, and so we will
replace args with our default set of two "what"s, just as in the previous Procs.

For the :second_or Symbol key, we see yet another Proc within optional
args created with Proc.new. This version simply tests whether or not the second
item in the args Array can be read. If it cannot be read, we replace args just as
in the :nitems version.

Finally, we create a Proc the way we always have, using lambda. Since argu-
ments to lambda Procs are not optional, we identify this one with the Symbol
:needs_data. Note that this makes the internals of the Proc simpler. It returns

its output value, and we assume that it gets what it needs. After defining our
Procs, the last of which needs data, we should probably have some data. Our
source is Anya again, and we define her DATA_FROM_ANYA Array at ©.

On to the method SameTimeSamePlace.describe at @. It takes no arguments
and defines a local Array variable called same_as_procs. Its first element is the
return value of calling SameTimeSamePlace.yield_block (defined at @) with an
argument that is the Proc associated with the :nitems key in the QUESTIONS
Hash. All of this is cast into a block with the ampersand. We haven’t seen the
yield_block method yet, but it takes two arguments: *args and &block. The first
of these indicates All of your regular arguments, and the second means Whatever
block you got.

Blocks, Arguments, and yield

Remember how I mentioned that blocks are not considered “real” arguments?
Using an ampersand is the way to explicitly refer to the block used to call a
method. Since we have the group of arguments, whatever they may be, and
we have the block, we could call it via block.call(*args). That approach would
work, but we have yet another alternative. Ruby has a method called yield
that means Call whichever block you recetved with whichever arguments are passed to
yield. When you get comfortable with this script, try replacing the yield line
in yield_block with block.call(*args). It will not change the script’s behavior
at all. Let’s verify some of this in irb.

irb(main):001:0> def yield block(*args, 8block)
irb(main):002:1> yield(*args)
irb(main):003:1> end

=> nil

irb(main):004:0> yield block(0) { |x| x + 1 }

=>1

irb(main):005:0> yield block("I am a String") { |x| x.class }
=> String

irb(main):006:0> yield block("How many words?") { |x| x.split(' ').nitems }
=> 3

irb(main):007:0> yield block(o, 1) { |x,y| x ==y }

=> false

irb(main):008:0> yield block(o, 1) { |x,y| x <y }

=> true

Handy, isn’tit? The yield_block method is completely generic, taking any
number of regular arguments and any block and executing (or yielding) that
block with those arguments. It’s a very powerful technique.

Now we understand how our script is using the yield_block method within
SameTimeSamePlace.describe (®). The next two elements of same_as_procs are the
return values of Procs pulled out of the QUESTIONS Hash with the call method.
Our last element is the return value of SameTimeSamePlace.willow ask (@). This
method provides a workaround for Procs created with lambda that need a
specific number of arguments. willow_ask wraps a call to such a Proc within a
traditional method that takes an optional argument. That argument is forcibly
set to whatever the Proc expects before it ever gets to the Proc. This is another
alternative for dealing with the arguments to a Proc.

Functionalism with Blocks and Procs 117

That’s it for the elements of our same_as_procs Array. Now let’s use it. We
return a long here doc String inside SameTimeSamePlace.describe (@). This here
doc String consists of several lines. The first calls the QUESTIONS[:ternary] Proc
with one explicitly nil argument. This will cause our state and location vari-
ables to be set to their default values within the Proc. The next four lines of
output are the result of mapping a String outputter onto the elements of
same_as_procs. Remember that those elements are the return values of their
respective Procs, not the Procs themselves. They have already been evaluated
before being put into the Array.

The last few lines of the here doc report the data provided by Anya, which
is defined as the constant Array DATA_FROM_ANYA (®). We call the yield_block
method, passing in DATA_FROM_ANYA as the “real” arguments and the value
returned from QUESTIONS[:needs_data], cast from a Proc into a block. Then we
close our here doc and end the SameTimeSamePlace.describe method.

Using Both Him and SameTimeSamePlace in willow_and_anya.rb

The first thing we do in the main running script, willow_and_anya.rb, is require
each lib_file needed. Then we cycle through each class, referred to by the
name episode, and describe that episode (@), implemented in each specific
case, as already discussed.

Running the Script

Let’s look at the output returned by executing ruby -w willow_and_anya.rb.

The Results

In Him,
Willow refers to an "anti-(love spell) spell”.
Anya mentions an "anti-(anti-(love spell) spell) spell”.
Xander mentioning an "anti-(anti-(anti-(love spell) spell) spell) spell”
might have been too much.

In Same Time, Same Place,
Willow asks "Spike's what in the whatment?",
which is the same as "Spike's what in the whatment?"
which is the same as "Spike's what in the whatment?"
which is the same as "Spike's what in the whatment?"
which is the same as "Spike's what in the whatment?"
Anya provides "insane, base", which forms the full question
"Spike's insane in the basement?".

That’s a lot of data about some pretty esoteric programming topics.
Congratulations for sticking with me this far. If you’re genuinely curious
about how this all works, I have some questions for you to ponder.

118 Chapter 6

Chapter

Hacking the Script

How would you duplicate just the successive lambda outputs of Him.describe
using inject? Here’s what I came up with. Maybe you can find a better
alternative.

def Him.describe2(iterations=3)
(1..iterations).to_a.inject(BASE) do |memo,output]|
ANTIDOTE_FOR [memo]
end
end

Another question you may find interesting is why the describe methods
are attached to classes, rather than instances. The reason is that the episode
variable at © represents a class, not an instance. If we wanted to use instance
methods, we would need to create an instance of either Him or SameTimeSamePlace,
rather than just calling the describe method on each class directly.

Recap
What was new in this chapter?

e Creating Procs with lambda

e Using Procs as arguments to methods

¢ Using blocks as arguments to methods, including your own new methods
e Using Procs as first-class functions

e The inspect method

¢ Nesting lambdas within other lambdas

e Proc.new

e The yield method

I have a confession to make. I love object orientation for many program-
ming tasks, but this chapter about Ruby’s functional heritage was the most fun
to write so far. Functional programming has been respected in academia for
decades, and it is starting to get some well-deserved attention from folks in
the computer programming industry and others who are just curious about
what it can do. Now that we know some functional programming techniques,
let’s put them to use and even try to optimize them, which is the subject of
our next chapter.

Functionalism with Blocks and Procs 119

