INDEX

Note: Pages numbers followed by f, n, or t indicate figures, notes, and tables, respectively.

Symbols

(hash mark), 13, 15
! (logical NOT) operator, 42

A

Acar, Can Erkin, 173
ACK (acknowledgment) packets
 class-based bandwidth allocation, 139–140
 HFSC algorithm, 124, 126, 142
 priority queues, 132, 137–138
 two-priority configuration, 120–121, 120n1
adaptive.end value, 188
adaptive firewalls, 97–99
adaptive.start value, 188
advbase parameter, 153–154
advskew parameter, 153–154, 158–159
aggressive value, 192
ALTQ (alternate queuing) framework, 9, 133–145, 133n2
 basic concepts, 134
 class-based bandwidth allocation, 139–140
 overview, 135
 queue definition, 139–140
 tying queues into rule set, 140
 handling unwanted traffic, 144–145
 operating system-based queue assignments, 145
 overloading to tiny queues, 144–145
 HFSC algorithm, 140–142
 overview, 135
 queue definition, 140–141
 tying queues into rule set, 141–142
 priority-based queues, 136–145
 match rule for queue assignment, 137–138
 overview, 134–135
 performance improvement, 136–137
 queuing for servers in DMZ, 142–144
 setting up, 135–136
 on FreeBSD, 135–136
 on NetBSD, 136
 on OpenBSD, 135
 transitioning to priority and queuing system, 131–133
anchors, 35–36
 authpf program, 61, 63
 listing current contents of, 92
 loading rules into, 92
 manipulating contents, 92
 relayd daemon, 74
 restructuring rule set with, 91–94
 tagging to help policy routing, 93
ancontrol command, 46n1
antispoof tool, 27, 193–195, 194f
ARP balancing, 151, 157–158
atomic rule set load, 21
authpf program, 59–63, 60
 basic authenticating gateways, 60–62
 public networks, 62–63

B

bandwidth
 actual available, 142–143
 class-based allocation of, 139–140
 overview, 135
 queue definition, 139–140
 tying queues into rule set, 140
 queues for allocation of, 121–122
 DMZ network with traffic shaping, 128–130
 fixed, 123–125
bandwidth, queues for allocation of
(continued)
flexible, 125–128
HFSC algorithm, 123
total usable, 122

Beck, Bob, 115

Berkeley Software Distributions. See BSDs (Berkeley Software
Distributions); FreeBSD; NetBSD; OpenBSD

blacklisting, 101–103, 115
block all rule, 19, 24, 61, 69
block in all rule, 16–17
blocknonip option, 87–88
block-policy option, 186–187
block rule, 13
Brauer, Henning, 5, 133, 177
brconfig command, 87, 89
bridges, 86–91, 86n5, 90f
defined, 86
pros and cons of, 86
rule set, 90–91
setting up
on FreeBSD, 88–89
on NetBSD, 89–90
on OpenBSD, 87–88
brute-force attacks, 96–99
defined, 96
expiring tables using pfctl, 99
overview, 96
setting up adaptive firewalls, 97–99

BSDs (Berkeley Software Distributions), 3–4, 3n3.
See also FreeBSD; NetBSD; OpenBSD

configuration files, 7
Linux versus, 6–7
network interface naming conventions, 6
online resources, 201–203
print resources, 204–205

Bytes In/Out statistics, 23

C

CARP (Common Address Redundancy Protocol), 79
failover, 150–154
kernel options, 150
network interface setup with
ifconfig, 151–154
sysctl values, 151

load balancing, 157
load-balancing mode, 158
setting up, 158–160
overview, 147–148
carpdev option, 150, 152
cbq (class-based) queues, 132–135
definition, 139–140
tyling into rule set, 140
cloneable interfaces, 55n4, 167
command succeeded message, 77
Common Address Redundancy Protocol. See CARP
complicated networks, 65–94
bridges, 86–91
FreeBSD setup, 88–89
NetBSD setup, 89–90
OpenBSD setup, 87–88
rule set, 90–91
interface groups, 84–85
NAT, 79–84
DMZ, 80–81
load balancing with redirection, 81
single NATed network, 81–84
nonroutable IPv4 addresses, 91–94
establishing global rules, 91
restructuring rule set with
anchors, 91–94
packet tagging, 85–86
routable IPv4 addresses, 66–79, 67f
DMZ, 70–71, 70f
load balancing with redirection,
72–73
load balancing with relayd,
73–79
macros, 66–67
configuration files
FreeBSD, 7, 14–15
NetBSD, 15–16
OpenBSD, 7, 13
tools for managing, 7–8, 11
connection refused message, 18
content filtering, 100, 105, 107
Core Force project, 5n7
Core Security, 5n7

D

DDoS (distributed denial-of-service)
attacks, 187, 187n1
debugging, 197–199. See also logging
debug option, 190–191
troubleshooting-friendly networks, 37–38
debug option, 52, 190–191
deep packet inspection, 2
demilitarized zone (DMZ). See DMZ
demotion counter, 79, 153
denial-of-service (DoS) attacks, 91, 168, 193n2
de Raadt, Theo, 4n4
dhc1ient command, 56–57, 59
dhcpd program, 54
distributed denial-of-service (DDoS) attacks, 187, 187n1
divert(4) sockets, 2
divert-to component, 36
Dixon, Jason, 10
dmesg command, 48–49, 209
DMZ (demilitarized zone)
NAT, 80–81
queuing for servers in, 142–144
routable IPv4 addresses, 70–71, 70f
testing rule set, 195–196, 195f
with traffic shaping, 128–130, 128f
DNS, 22, 34n4, 66, 68
documentation, 8
domain name lookups, 163–164, 166, 169
domain name resolution, 18, 20
domain names, 34
DoS (denial-of-service) attacks, 91, 168, 193n2
DragonFly BSD, 3n3, 5–6, 12
dropped packets, 128
drop value, 186

E
echo requests/replies, 38–41, 53, 69, 82, 90, 92
Engen, Vegard, 62n5
expiretable tool, 99n4

F
failover, 148–156
CARP, 79, 150
kernel options, 150
network interface setup with ifconfig, 151–154
sysctl values, 151
load balancing versus, 158
pfsync protocol, 154–155
rule set, 155–156
false positives, 102, 106, 110, 115
FIFO (first in, first out), 120, 132–134, 137
file servers
NAT, 79
routable IPv4 addresses, 66–67
file transfer protocol. See FTP
firewalls, 3. See also bridges
adaptive, 97–99
simple gateways, 25–27
first in, first out (FIFO), 120, 132–134, 137
flags S/SA keep state rule, 21
floating state policy, 187
Floeter, Reyk, 183
flowd collector daemon, 177–182
flowd-reader program, 178–181
flow-tools program, 177
flush global state-tracking option, 97
fragment reassembly options, 192–193
frag value, 188
FreeBSD, 3n3, 5
configuration files, 7
online resources, 204
pfSense, 8
setting up ALTQ framework on, 135–136
setting up bridges, 88–89
setting up PF on, 13–15
spamd spam-deferral daemon, 101, 105
wireless interface configuration, 50
wireless network setup, 58–59
WPA access points, 52–53
FreeBSD Handbook, 14
from keyword, 33
FTP (file transfer protocol), 35–37, 53–54
fetching list data via, 102
ftp-proxy with diversion or redirection, 36–37
history of, 35, 35n5
security challenges, 35
variations on ftp-proxy setup, 37
ftp-proxy command, 13
enabling, 36
redirection, 36–37
reverse mode, 36–37
ftpproxy_flags variable, 36–37
FTPS, 35n6
fw_update script, 48

G
grep program, 113, 178
greypxp value, 107
greylisting, 104–108
 compensating for unusual situations, 113–114
defined, 104
keeping lists in sync, 112–113
online resources, 205–206
in practice, 107–108
setting up, 104–105, 107
greytrapping, 109–111, 115
 adding to list, 111–112
 deleting from list, 112

H
Hail Mary Cloud sequence of brute-force attempts, 98, 98n2
hardware, 5, 207–210
 helping hardware support efforts, 210
 issues facing hardware support developers, 209
 pool memory, 190
 selecting, 208–209
 selecting for wireless networks, 48
Harris, Evan, 104
Hartmeier, Daniel, 4–5, 132, 136
hash mark (#), 13, 15
HFSC (Hierarchical Fair Service Curve) algorithm, 123,
 125–126, 134–135, 140–142
queue definition, 140–141
transitioning from ALTQ to priority and queuing system, 132–133
 tying queues into rule set, 141–142
high-latency value, 192
hostapd command, 52–53
host command, 18, 22, 34
hostnames, 34
HTTP, 68, 75, 77–79, 99
 fetching list data via, 102
 NetFlow data collection, 181
HTTPS, 77, 79
IBM Christmas Tree EXEC worm, 2n1
ICMP, 37–41, 41n7, 124, 140
 bandwidth allocation, 124
 letting pass unconditionally, 38
 letting pass while stopping probes from elsewhere, 39
 path MTU discovery, 40–41
ICMP6, 38
 letting pass unconditionally, 38
 letting pass while stopping probes from elsewhere, 39
 path MTU discovery, 41
if-bound policy, 187–188
if_bridge module, 88
ifconfig command, 46n1, 59, 109, 148
 bridge setup, 87–89
 interface groups, 84–85
 logging, 167, 176
 MTU, 40
redundancy and resource availability, 150–155,
 158–160
 running status of interfaces, 30
 wireless networks, 49–53, 56–59
ifstated interface state daemon, 157
ILOVEYOU worm, 2n1
inserts statistic, 23
interface groups, 84–85
Interface Stats statistics, 23
interval value, 188
IP-based load balancing, 157–158
IPFilter subsystem, 4–5, 4n4, 4n5, 8–9
IPsec
 filtering on encapsulation interfaces, 55, 55n4
 state synchronization, 155
 with UDP key exchange, 55
IPv4, 23–24
 network address translation, 28–29, 54
 nonroutable addresses, 91–94
 establishing global rules, 91
 restructuring rule set with anchors, 91–94
 packet forwarding, 30
 routable addresses, 31–32, 66–79
 DMZ, 70–71
 load balancing with relayd, 73–79
load balancing with redirection, 72–73
wireless networks, 49–50, 54, 58
IPv6, 24, 30, 37–38, 41, 67, 71, 73, 75, 81
NAT versus, 28–29
release of, 28
wireless networks, 49–50, 54, 56–59

K
KAME project, 28, 28n3
keep state flags S/SA rule, 17n3
keep state rules, 16–17, 17n3, 21, 26,
26n1, 41, 68, 188
kernel memory, 189–190
Knight, Joel, 183

L
labels, 169–171
leaf queues, 126–127
limit option, 189
linkshare value, 140–141
Linux
BSD versus, 6–7
network interface naming
conventions, 6
porting PF to Linux machines, 7
lists
defined, 18
usefulness of, 20
load balancing
CARP for, 157
load-balancing mode, 158
setting up, 158–160
redirection for
NAT, 81
routable IPv4 addresses, 72–73
with relayd daemon, 73–79
synproxy state option, 68
log (all) clause, 165–166
logger option, 169
logging, 161
all packets, 165–166
basic concepts, 162–164
graphing traffic with pfstat,
173–175
legal implications of, 166
monitoring with pftop, 173
monitoring with systat, 171–173

NetFlow data collection, 176–182
flowd collector daemon, 177–182
pfflowd tool, 182
setting up sensor, 176–177
packet path through rule set,
164–165
to several pflog interfaces, 167
SNMP tools and MIBs, 182–183
to syslog, 167–169
tracking statistics for each rule with
labels, 169–171
logical NOT (!) operator, 42
log keyword, 162, 167
log (matches) clause, 164–165

M
MAC addresses
bridges, 87
filtering, 46–47, 46n2, 60
IP-based load balancing, 157–158
Mac OS X, 3n3
macros
defined, 18–19
defining, 18–19
defining local network, 29
expanding into separate rules,
20–21
usefulness of, 19–20
mail servers
NAT, 79
routable IPv4 addresses, 66–69
mail-in/mail-out labels, 170
management information bases
(MIBs), 182–183
man pages, 9
match rules, 31–32
debugging, 198
load balancing, 73–74, 79, 83
logging, 164–165
packet normalization, 193–194
spam, 103
tags, 85
traffic shaping, 119, 121–122, 124–
126, 130, 132, 134, 137–138,
141–142
wireless networks, 54
max-src-conn-rate state-tracking
option, 97
max-src-conn state-tracking option, 97
max state-tracking option, 98
McBride, Ryan, 5
mekitasdigoat passphrase, 154, 154n2
MIBs (management information bases), 182–183
Miller, Damien, 178, 182
Morris worm, 2n1

N
NAT (network address translation), 31, 71, 73, 79–84, 165
IPv6 versus, 28–29
release of, 28
wireless networks, 54–55, 61
nat rule, 32
nat-to keyword, 31–32, 54, 81, 83–84, 138, 164–165
neighbradv (neighbor advertisements), 41
neighbrsol (neighbor solicitations), 41
NetBSD, 3n3, 5
bridge setup, 89–90
configuring wireless interface, 50
online resources, 204
setting up ALTQ framework on, 136
setting up PF on, 15–16
spamd spam-deferral daemon, 101
NetFlow, 176–182
collectors
choosing, 178
defined, 176
data collection with pfflowd, 182
flowd collector daemon, 177–182
flow-tools program, 177
nfdump program, 177
sensors
defined, 176
setting up, 176–177
net-snmp package, 183
network address translation (NAT), 31, 71, 73, 79–84, 165
IPv6 versus, 28–29
release of, 28
wireless networks, 54–55, 61
nfdump tool, 177
nixspam blacklist, 115
nohup command, 168
no-sync option, 156
NTP, 33
nwid parameter, 49, 56
nwkey parameter, 50, 56

O
oldqueue keyword, 133
OpenBSD
approach to security, 2, 2n2
bridge setup, 87–88
configuration files, 7
configuring wireless interface, 50
history of, 3–5
purchasing, 205–206
setting up ALTQ framework on, 135
setting up PF on, 12–13, 12n1
wireless network setup, 56–57
WPA access points, 51–52
operating system-based queue assignments
ALTQ framework, 145
priority and queuing system, 131
optimization option, 192
overload option, 97–99
ALTQ framework, 144–145
priority and queuing system, 130–131

P
packet-filtering gateways, 25
FTP, 35–37
ftp-proxy with diversion or redirection, 36–37
variations on ftp-proxy setup, 37
simple, 25–34, 26f
defining local network, 29
in/out rules, 26–27
NAT versus IPv6, 28–29
setting up, 29–33
testing rule set, 34
tables, 42–43
troubleshooting-friendly networks, 37–41
letting ICMP pass, 38–39
path MTU discovery, 40–41
traceroute command, 40
Packet Filter subsystem. See PF (Packet Filter) subsystem
packet forwarding, 30
Packets In/Out statistics, 23
packet tagging, 85–86
pass all rule, 15, 22
pass in rule, 26, 33
pass out rule, 16–17, 27
passtime value, 107
path MTU (maximum transmission
 unit) discovery, 38, 40–41
pf_rules= setting, 13
PF (Packet Filter) subsystem, 1–2
displaying system information,
 22–24
history of, 4–5
ipfilter configuration
 compatibility, 4n5, 8–9
migrating from other systems, 6–9
copying across ipfilter
 configuration to OpenBSD,
 8–9
Linux versus BSD, 6–7
porting to Linux machines, 7
rule syntax changes, 9
tools for configuration file
 management, 7–8
tools for converting network
 setups, 8
performance improvements, 5
purpose and function of, 3
rule set configuration
 simple, 16–18
 stricter, 18–22
setting up, 12–16
 on FreeBSD, 13–15
 on NetBSD, 15–16
 on OpenBSD, 12–13
wireless access point rule set, 53–54
pfctl command-line administration
 tool, 11–12
debug level, 191
disabling PF, 12, 197
displaying system information,
 22–23, 189
displaying verbose output, 20–21
enabling PF, 12, 13
expiring table entries, 99
fetching periodic data, 170
flushing existing rules, 22
list current contents of anchors, 92
load rules into anchors, 92
manipulating anchor contents, 92
memory pool information, 190
parsing rules without loading, 21
traffic tracking totals on per-rule
 basis, 169–170
viewing rule numbers and debug
 information, 197–198
pflogd tool, 182
pflogd logging daemon, 162
 logging to several interfaces, 167
 logging to syslog, 168
pflow(4) interface, 176–182
data collecting, reporting, and
 analysis, 177–182
 setting up sensor, 176–177
pfSense, 8
pfstat command, 173–175, 175f
pfsync protocol, 154–155
pfstop command
 traffic monitoring, 173, 173n1
ping6 command, 39
ping command, 39
ping of death bug, 38
PPP, 31
PPP over Ethernet (PPPoE), 31
prio keyword, 119–121
priority and queuing system, 118–131
 handling unwanted traffic, 130–131
 operating system-based queue
 assignments, 131
 overloading to tiny queues,
 130–131
 queues for bandwidth allocation,
 121–130
 DMZ network with traffic
 shaping, 128–130
 fixed, 123–125
 flexible, 125–128
 HFSC algorithm, 123
 setting traffic priorities, 119–121
 assigning two priorities,
 120–121
 prio priority scheme, 119–120
 transitioning from ALTQ to,
 131–133
prioq (priority) queues, 131–132,
 134–138
 match rule for queue assignment,
 137–138
 performance improvement,
 136–137
proactive defense, 95–115
spam, 100–114
 blacklisting, 100–103
 compensating for unusual
 situations, 113–114
 content filtering, 100
 detecting out-of-order
 MX use, 113
proactive defense, spam (continued)
greylisting, 104–108
greytrapping, 109–111
list management with spamdb, 111–113
tips for fighting, 115
updating whitelists, 108–109
SSH brute-force attacks, 96–99
defined, 96
expiring tables using pfctl, 99
overview, 96
setting up adaptive firewalls, 97–99

Q
qlimit value, 125–126, 141
 queues. See also priority and queuing system
for bandwidth allocation, 121–122
DMZ network with traffic shaping, 128–130
fixed, 123–125
flexible, 125–128
HFSC algorithm, 123
handling unwanted traffic
overloading to tiny queues, 130–131
queue assignments based on operating system fingerprint, 131
queue-scheduler algorithms (disciplines), 134–135
class-based bandwidth allocation, 132–133, 135
queue definition, 139–140
tyling queues into rule set, 140
HFSC algorithm, 123, 125–126, 132–135
queue definition, 140–141
tyling queues into rule set, 141–142
priority-based queues, 131–132, 134–138
match rule for queue assignment, 137–138
performance improvement, 136–137
quick rules, 33, 192, 198

R
random early detection (RED), 137
random option, 72–73
rc script, 13–15, 30
rdr-anchor anchor, 74
rdr-to keyword, 36, 75, 80, 83, 103, 164
realtime value, 141
reassemble option, 192–193
RED (random early detection), 137
redirection
FTP, 36
for load balancing
NAT, 81
routable IPv4 addresses, 72–73
public networks, 62–63
with relayd daemon, 73–75
redundancy and resource availability, 147–160
failover
CARP, 150–154
pfsync protocol, 154–155
rule set, 155–156
load balancing, 157–160
CARP in load-balancing mode, 158
setting up CARP, 158–160
redundant pair of gateways, 148–150, 149f
Reed, Darren, 4
relayctl administration program, 76–77
relayd daemon, 73–79, 73n2
CARP, 79
checking configuration before starting, 76
checking interval, 75
HTTP, 77–78
SSL, 78
relays, 73–75
removals statistic, 23
return value, 186
round-robin option, 72
routeradv (router advertisements), 41
routersol (router solicitations), 41
rtadvd daemon, 54
rtsol command, 56, 58
ruleset-optimization option, 191
rule sets
atomic rule set load, 21
bridges, 90–91
defined, 11
evaluation of, 17
queues for bandwidth allocation
fixed, 124–125
flexible, 126–128
restructuring with anchors, 91–94
simple, 16–18
overview, 16–18
testing, 18
stricter, 18–22
checking rules, 21–22
overview, 19–20
reloading and looking for errors, 20–21
testing, 22
using domain names and hostnames in, 34
wireless access point, 53–54
writing to default deny, 18n4

sample configurations, 203–204
satellite value, 192
SCP, 35, 124, 139–140
scrub keyword
fragment reassembly options, 192–193
packet normalization, 193
Secure Shell. See SSH
self keyword, 32
Sender Policy Framework (SPF) records, 114, 114n7
set skip on lo rule, 13, 15–16
SFTP, 35
Simple Network Management Protocol (SNMP), 182–183, 182n5
skip option, 187
SNMP (Simple Network Management Protocol), 182–183, 182n5
Solaris, 8–9
spam, 100–114
blacklisting, 100–103, 101–103
content filtering, 100
detecting out-of-order MX use, 113
greylisting compensating for unusual situations, 113–114
defined, 104
function of, 106
in practice, 107–108
setting up, 104–105, 107

greytrapping, 109–111
list management, 111–113
keeping greylists in sync, 112–113
updating lists, 111–112
logging, 103
stuttering, 100–101
tarpitting, 100–101
tips for fighting, 115
updating whitelists, 108–109
SpamAssassin, 100
spamdb tool
adding/deleting whitelist entries, 111
greylisting, 104, 111–113
keeping lists in sync, 112–113
updating lists, 111–112
greytrapping, 110–112
adding to list, 111–112
deleting from list, 112
spamd spam-deferral daemon, 13, 100–114
blacklisting, setting up, 101–103
detecting out-of-order MX use, 113
greylisting, 104–108
compensating for unusual situations, 113–114
defined, 104
function of, 106
in practice, 107–108
setting up, 104–105, 107
greytrapping, 109–111
list management with spamdb, 111–113
keeping greylists in sync, 112–113
updating lists, 111–112
logging, 103
online resources, 205–206
updating whitelist, 108–109
spamlogd whitelist updater, 108–109, 167
SPF (Sender Policy Framework) records, 114, 114n7
spoofing, 194–195, 194f
SSH (Secure Shell), 33, 48, 156
authpf program, 60
bandwidth allocation, 124, 139
brute-force attacks, 96–99
defined, 96
expiring tables using pfctl, 99
overview, 96
setting up adaptive firewalls, 97–99
SSH (Secure Shell) (continued)
traffic prioritizing, 119
VPNs, 55
SSL encryption, 48, 78
state defaults, 177, 188
state-defaults option, 188
state-policy option, 187–188
state tables, 22–23, 182, 187–189
defined, 17
logging, 171, 174, 175f, 176
synchronizing, 154–155
State Table statistics, 23
state-tracking options, 97
sticky-address option, 72–73, 75
stuttering, 100–101
sudo command, 12, 14–16
symon utility, 175
sync listeners, 112
sync targets, 112
SYN-flood attacks, 68
synproxy state option, 68
sysctl command, 88, 158
setting up CARP, 151
turning on packet forwarding, 30
syslogd logging daemon, 167–169
systat command
redundancy and resource
availability, 155, 160
traffic monitoring views, 171–173,
173n1
traffic shaping, 127, 138, 142
system information, displaying, 22–24

T

tables. See also state tables
brute-force attacks, 97, 99
expiring table entries, 99
loading, 42
manipulating contents of, 42–43
naming, 42
“probation”, 99
tagged keyword, 85, 87
tags, 85–86
tarpitting, 100–101
TCP
ALTQ priority queues, 137
NetFlow data collection, 176,
179, 181
ports, 35
protocol handler definitions, 78
strict rule sets, 21–22
tcpdump program, 198
two-priority configuration, 120
UDP versus, 20
tcpdump program, 162–163, 166, 168,
198–199
TCP/IP, 3
ALTQ, 134
bridges, 86
FTP, 35n5
NetFlow data collection, 176
network interface configuration, 24
packet filtering, 31
redundancy and resource
availability, 154
total usable bandwidth, 122
troubleshooting-friendly networks,
37, 40
wireless networks, 46, 49, 56–57, 62
testing, 195–196, 196t
timeout option, 188–189
to keyword, 26–27
traceroute6 command, 39
traceroute command, 39
traffic shaping, 117–145
ALTQ framework, 117–118, 133–145
basic ALTQ concepts, 134
class-based bandwidth
allocation, 139–140
handling unwanted traffic,
144–145
HFSC algorithm, 140–142
priority-based queues, 136–145
queue-scheduler algorithms,
134–135
queuing for servers in DMZ,
142–144
setting up, 135–136
priority and queuing system,
118–131
handling unwanted traffic,
130–131
queues for bandwidth
allocation, 121–130
setting traffic priorities,
119–121
transitioning from ALTQ to,
131–133
trojans (trojan horses), 2
troubleshooting-friendly networks, 37–41
letting ICMP pass unconditionally, 38
while stopping probes from elsewhere, 39
path MTU discovery, 40–41
ping command, 39
trace route command, 40
two-priority configuration, 120–121, 132

U
UDP, 21, 33, 40, 61, 168
IPsec with UDP key exchange, 55
NetFlow data collection, 176–177, 179
TCP versus, 20
up parameter, 49, 56
upper limit value, 141
user_ip macro, 62

V
verbose output
flowd-reader program, 178–179, 181
pfctl administration tool, 20–21
spamd spam-deferral daemon, 102, 107
vhid (virtual host ID) parameter, 152
virtual local area networks (VLANs), 70f
virtual private networks (VPNs), 55
Virtual Router Redundancy Protocol (VRRP), 148, 152
viruses, defined, 2
VLANs (virtual local area networks), 70f
VoIP (Voice over Internet Protocol), 119–120
VPNs (virtual private networks), 55
VRRP (Virtual Router Redundancy Protocol), 148, 152

W
web servers
NAT, 79
routable IPv4 addresses, 66–67, 72, 74–75, 77
WEP (Wired Equivalent Privacy), 47, 59
white exp value, 107
whitelists, 101–102, 105
adding/deleting entries, 111
keeping updated, 108–109
wicontrol command, 46n1
Wi-Fi Protected Access. See WPA
Wired Equivalent Privacy (WEP), 47, 59
wireless networks, 45–63, 205
guarding with authpf, 59–63
basic authenticating gateways, 60–62
public networks, 62–63
privacy mechanisms
MAC address filtering, 46–47
WEP, 47
WPA, 47–48
selecting hardware for, 48
setting up, 48–59
access point PF rule set, 53–54
access points with three or more interfaces, 54–55
client side, 55
configuring interface, 49–51
FreeBSD setup, 58–59
FreeBSD WPA access points, 52–53
initializing card, 48–49
OpenBSD setup, 56–57
OpenBSD WPA access points, 51–52
VPNs, 55
worms, 2, 2n1
WPA (Wi-Fi Protected Access), 47–48, 59
FreeBSD access points, 52–53
OpenBSD access points, 51–52
wpakey parameter, 56