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P R E F A C E

“The purpose of computing is insight, not numbers.”
—Richard W. Hamming (1915–1998)

When mathematician and computing pioneer Richard 
Hamming penned this maxim in 1962, the era of digital 
computing was still very much in its infancy. There were 
only about 10,000 computers in existence worldwide; 
each one was large and expensive, and each required
teams of engineers for maintenance and operation. Getting results out of 
these mammoth machines was a matter of laboriously inputting long strings 
of numbers, waiting for the machine to perform its calculations, and then 
interpreting the resulting mass of ones and zeros. This tedious and painstak-
ing process prompted Hamming to remind his colleagues that the reams of 
numbers they worked with on a daily basis were only a means to a much higher 
and often non-numerical end: keener insight into the world around them.

In today’s post-Internet age, hundreds of millions of people regularly use 
computers not just to gain insight, but to book airline tickets, to play poker, 
to assemble photo albums, to find companionship, and to do every other sort 
of human activity from the mundane to the sublime. In stark contrast to the 
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way things were 40 years ago, the experience of using a computer to do math 
on large sets of numbers is fairly foreign to many users, who spend only a 
very small fraction of their computer time explicitly performing arithmetic 
operations. In popular operating systems from Microsoft and Apple, a small 
calculator application is tucked away somewhere in a folder and accessed 
only infrequently, if at all, by the majority of users. This small, seldom-used 
calculator application is the perfect metaphor for the modern computer’s 
hidden identity as a shuffler of numbers.

This book is aimed at reintroducing the computer as a calculating device 
that performs layer upon layer of miraculous sleights of hand in order to hide 
from the user the rapid flow of numbers inside the machine. The first few 
chapters introduce basic computing concepts, and subsequent chapters work 
through a series of more advanced explanations, rooted in real-world hard-
ware, that show how instructions, data, and numerical results move through 
the computers people use every day. In the end, Inside the Machine aims to 
give the reader an intermediate to advanced knowledge of how a variety of 
microprocessors function and how they stack up to each other from multiple 
design and performance perspectives. 

Ultimately, I have tried to write the book that I would have wanted to 
read as an undergraduate computer engineering student: a book that puts 
the pieces together in a big-picture sort of way, while still containing enough 
detailed information to offer a firm grasp of the major design principles 
underlying modern microprocessors. It is my hope that Inside the Machine’s 
blend of exposition, history, and architectural “comparative anatomy” will 
accomplish that goal.
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Inside the Machine is an introduction to computers that 
is intended to fill the gap that exists between classic 
but more challenging introductions to computer 
architecture, like John L. Hennessy’s and David A. 
Patterson’s popular textbooks, and the growing mass 
of works that are simply too basic for motivated non-specialist readers. Readers 
with some experience using computers and with even the most minimal 
scripting or programming experience should finish Inside the Machine with a 
thorough and advanced understanding of the high-level organization of 
modern computers. Should they so choose, such readers would then be well 
equipped to tackle more advanced works like the aforementioned classics, 
either on their own or as part of formal curriculum.

The book’s comparative approach, described below, introduces new 
design features by comparing them with earlier features intended to solve 
the same problem(s). Thus, beginning and intermediate readers are 
encouraged to read the chapters in order, because each chapter assumes 
a familiarity with the concepts and processor designs introduced in the 
chapters prior to it. 
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More advanced readers who are already familiar with some of the 
processors covered will find that the individual chapters can stand alone. 
The book’s extensive use of headings and subheadings means that it can 
also be employed as a general reference for the processors described, 
though that is not the purpose for which it was designed.

The first four chapters of Inside the Machine are dedicated to laying the 
conceptual groundwork for later chapters’ studies of real-world micropro-
cessors. These chapters use a simplified example processor, the DLW, to 
illustrate basic and intermediate concepts like the instructions/data distinc-
tion, assembly language programming, superscalar execution, pipelining, 
the programming model, machine language, and so on.

The middle portion of the book consists of detailed studies of two popular 
desktop processor lines: the Pentium line from Intel and the PowerPC line 
from IBM and Motorola. These chapters walk the reader through the chrono-
logical development of each processor line, describing the evolution of the 
microarchitectures and instruction set architectures under discussion. Along 
the way, more advanced concepts like speculative execution, vector processing, 
and instruction set translation are introduced and explored via a discussion 
of one or more real-world processors. 

Throughout the middle part of the book, the overall approach is what 
might be called “comparative anatomy,” in which each new processor’s novel 
features are explained in terms of how they differ from analogous features 
found in predecessors and/or competitors. The comparative part of the book 
culminates in Chapters 7 and 8, which consist of detailed comparisons of 
two starkly different and very important processors: Intel’s Pentium 4 and 
Motorola’s MPC7450 (popularly known as the G4e).

After a brief introduction to 64-bit computing and the 64-bit extensions 
to the popular x86 instruction set architecture in Chapter 9, the microarchi-
tecture of the first mass-market 64-bit processor, the IBM PowerPC 970, is 
treated in Chapter 10. This study of the 970, the majority of which is also 
directly applicable to IBM’s POWER4 mainframe processor, concludes the 
book’s coverage of PowerPC processors.

Chapter 11 covers the organization and functioning of the memory 
hierarchy found in almost all modern computers. 

Inside the Machine’s concluding chapter is given over to an in-depth 
examination of the latest generation of processors from Intel: the Pentium 
M, Core Duo, and Core 2 Duo. This chapter contains the most detailed 
discussion of these processors available online or in print, and it includes 
some new information that has not been publicly released prior to the 
printing of this book. 
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Chapters 1 and 2 described the processor as it is visible 
to the programmer. The register files, the processor 
status word (PSW), the arithmetic logic unit (ALU), 
and other parts of the programming model are all 
there to provide a means for the programmer to 
manipulate the processor and make it do useful work. 
In other words, the programming model is essentially 
a user interface for the CPU. 

Much like the graphical user interfaces on modern computer systems, 
there’s a lot more going on under the hood of a microprocessor than the 
simplicity of the programming model would imply. In Chapter 12, I’ll talk 
about the various ways in which the operating system and processor collab-
orate to fool the user into thinking that he or she is executing multiple pro-
grams at once. There’s a similar sort of trickery that goes on beneath the 
programming model in a modern microprocessor, but it’s intended to fool 

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes



62 Chapter 4

the programmer into thinking that there’s only one thing going on at a time, 
when really there are multiple things happening simultaneously. Let me 
explain.

Back in the days when computer designers could fit relatively few 
transistors on a single piece of silicon, many parts of the programming 
model actually resided on separate chips attached to a single circuit board. 
For instance, one chip contained the ALU, another chip contained the 
control unit, still another chip contained the registers, and so on. Such 
computers were relatively slow, and the fact that they were made of multiple 
chips made them expensive. Each chip had its own manufacturing and 
packaging costs, so the more chips you put on a board, the more expensive 
the overall system was. (Note that this is still true today. The cost of pro-
ducing systems and components can be drastically reduced by packing the 
functionality of multiple chips into a single chip.) 

With the advent of the Intel 4004 in 1971, all of that changed. The 4004 
was the world’s first microprocessor on a chip. Designed to be the brains of 
a calculator manufactured by a now defunct company named Busicom, the 
4004 had 16 four-bit registers, an ALU, and decoding and control logic all 
packed onto a single, 2,300-transistor chip. The 4004 was quite a feat for its 
day, and it paved the way for the PC revolution. However, it wasn’t until Intel 
released the 8080 four years later that the world saw the first true general-
purpose CPU.

During the decades following the 8080, the number of transistors that 
could be packed onto a single chip increased at a stunning pace. As CPU 
designers had more and more transistors to work with when designing new 
chips, they began to think up novel ways for using those transistors to increase 
computing performance on application code. One of the first things that 
occurred to designers was that they could put more than one ALU on a chip 
and have both ALUs working in parallel to process code faster. Since these 
designs could do more than one scalar (or integer, for our purposes) operation 
at once, they were called superscalar computers. The RS6000 from IBM was 
released in 1990 and was the world’s first commercially available superscalar 
CPU. Intel followed in 1993 with the Pentium, which, with its two ALUs, 
brought the x86 world into the superscalar era. 

For illustrative purposes, I’ll now introduce a two-way superscalar version 
of the DLW-1, called the DLW-2 and illustrated in Figure 4-1. The DLW-2 
has two ALUs, so it’s able to execute two arithmetic instructions in parallel 
(hence the term two-way superscalar). These two ALUs share a single register 
file, a situation that in terms of our file clerk analogy would correspond to 
the file clerk sharing his personal filing cabinet with a second file clerk. 

As you can probably guess from looking at Figure 4-1, superscalar 
processing adds a bit of complexity to the DLW-2’s design, because it needs 
new circuitry that enables it to reorder the linear instruction stream so that 
some of the stream’s instructions can execute in parallel. This circuitry has to 
ensure that it’s “safe” to dispatch two instructions in parallel to the two exe-
cution units. But before I go on to discuss some reasons why it might not be 
safe to execute two instructions in parallel, I should define the term I just 
used—dispatch.
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Figure 4-1: The superscalar DLW-2

Notice that in Figure 4-2 I’ve renamed the second pipeline stage decode/
dispatch. This is because attached to the latter part of the decode stage is a 
bit of dispatch circuitry whose job it is to determine whether or not two 
instructions can be executed in parallel, in other words, on the same clock 
cycle. If they can be executed in parallel, the dispatch unit sends one instruc-
tion to the first integer ALU and one to the second integer ALU. If they can’t 
be dispatched in parallel, the dispatch unit sends them in program order to 
the first of the two ALUs. There are a few reasons why the dispatcher might 
decide that two instructions can’t be executed in parallel, and we’ll cover 
those in the following sections.

It’s important to note that even though the processor has multiple ALUs, 
the programming model does not change. The programmer still writes to the 
same interface, even though that interface now represents a fundamentally 
different type of machine than the processor actually is; the interface repre-
sents a sequential execution machine, but the processor is actually a parallel 
execution machine. So even though the superscalar CPU executes instruc-
tions in parallel, the illusion of sequential execution absolutely must be 
maintained for the sake of the programmer. We’ll see some reasons why 
this is so later on, but for now the important thing to remember is that main 
memory still sees one sequential code stream, one data stream, and one 
results stream, even though the code and data streams are carved up inside 
the computer and pushed through the two ALUs in parallel.

Main Memory

CPU

ALU1

ALU2
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Figure 4-2: The pipeline of the superscalar DLW-2

If the processor is to execute multiple instructions at once, it must be 
able to fetch and decode multiple instructions at once. A two-way superscalar 
processor like the DLW-2 can fetch two instructions at once from memory on 
each clock cycle, and it can also decode and dispatch two instructions each 
clock cycle. So the DLW-2 fetches instructions from memory in groups of 
two, starting at the memory address that marks the beginning of the current 
program’s code segment and incrementing the program counter to point 
four bytes ahead each time a new instruction is fetched. (Remember, the 
DLW-2’s instructions are two bytes wide.)

As you might guess, fetching and decoding two instructions at a time 
complicates the way the DLW-2 deals with branch instructions. What if the 
first instruction in a fetched pair happens to be a branch instruction that has 
the processor jump directly to another part of memory? In this case, the 
second instruction in the pair has to be discarded. This wastes fetch band-
width and introduces a bubble into the pipeline. There are other issues 
relating to superscalar execution and branch instructions, and I’ll say more 
about them in the section on control hazards.

Superscalar Computing and IPC

Superscalar computing allows a microprocessor to increase the number 
of instructions per clock that it completes beyond one instruction per clock. 
Recall that one instruction per clock was the maximum theoretical instruction 
throughput for a pipelined processor, as described in “Instruction Through-
put” on page 53. Because a superscalar machine can have multiple instructions 

Fetch

Decode/
Dispatch

ALU2

Execute

Write

Front End

Back End

ALU1
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in multiple write stages on each clock cycle, the superscalar machine can 
complete multiple instructions per cycle. If we adapt Chapter 3’s pipeline 
diagrams to take account of superscalar execution, they look like Figure 4-3.

Figure 4-3: Superscalar execution and pipelining combined

In Figure 4-3, two instructions are added to the Completed Instructions
box on each cycle once the pipeline is full. The more ALU pipelines that a 
processor has operating in parallel, the more instructions it can add to that 
box on each cycle. Thus superscalar computing allows you to increase a pro-
cessor’s IPC by adding more hardware. There are some practical limits to how 
many instructions can be executed in parallel, and we’ll discuss those later.

Expanding Superscalar Processing with Execution Units

Most modern processors do more with superscalar execution than just add-
ing a second ALU. Rather, they distribute the work of handling different 
types of instructions among different types of execution units. An execution 
unit is a block of circuitry in the processor’s back end that executes a certain 
category of instruction. For instance, you’ve already met the arithmetic logic 
unit (ALU), an execution unit that performs arithmetic and logical opera-
tions on integers. In this section we’ll take a closer look at the ALU, and 
you’ll learn about some other types of execution units for non-integer arith-
metic operations, memory accesses, and branch instructions.
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Basic Number Formats and Computer Arithmetic

The kinds of numbers on which modern microprocessors operate can be 
divided into two main types: integers (aka fixed-point numbers) and floating-
point numbers. Integers are simply whole numbers of the type with which 
you first learn to count in grade school. An integer can be positive, negative, 
or zero, but it cannot, of course, be a fraction. Integers are also called fixed-
point numbers because an integer’s decimal point does not move. Examples 
of integers are 1, 0, 500, 27, and 42. Arithmetic and logical operations involv-
ing integers are among the simplest and fastest operations that a micropro-
cessor performs. Applications like compilers, databases, and word processors 
make heavy use of integer operations, because the numbers they deal with 
are usually whole numbers.

A floating-point number is a decimal number that represents a fraction. 
Examples of floating-point numbers are 56.5, 901.688, and 41.9999. As you 
can see from these three numbers, the decimal point “floats” around and 
isn’t fixed in once place, hence the name. The number of places behind the 
decimal point determines a floating-point number’s accuracy, so floating-
point numbers are often approximations of fractional values. Arithmetic and 
logical operations performed on floating-point numbers are more complex 
and, hence, slower than their integer counterparts. Because floating-point 
numbers are approximations of fractional values, and the real world is kind 
of approximate and fractional, floating-point arithmetic is commonly found 
in real world–oriented applications like simulations, games, and signal-
processing applications. 

Both integer and floating-point numbers can themselves be divided into 
one of two types: scalars and vectors. Scalars are values that have only one 
numerical component, and they’re best understood in contrast with vectors.
Briefly, a vector is a multicomponent value, most often seen as an ordered 
sequence or array of numbers. (Vectors are covered in detail in “The Vector 
Execution Units” on page 168.) Here are some examples of different types 
of vectors and scalars:

Returning to the code/data distinction, we can say that the data 
stream consists of four types of numbers: scalar integers, scalar floating-
point numbers, vector integers, and vector floating-point numbers. (Note 
that even memory addresses fall into one of these four categories—scalar 
integers.) The code stream, then, consists of instructions that operate on 
all four types of numbers.

Integer Floating-Point

Scalar 14
500

37

1.01
15.234
0.0023

Vector {5, 7, 9, 8}
{1,003, 42, 97, 86, 97}
{234, 7, 6, 1, 3, 10, 11}

{0.99, 1.1, 3.31}
{50.01, 0.002, 1.4, 1.4}
{5.6, 22.3, 44.444, 76.01, 9.9}
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The kinds of operations that can be performed on the four types of 
numbers fall into two main categories: arithmetic operations and logical 
operations. When I first introduced arithmetic operations in Chapter 1, 
I lumped them together with logical operations for the sake of convenience. 
At this point, though, it’s useful to distinguish the two types of operations 
from one another: 

Arithmetic operations are operations like addition, subtraction, 
multiplication, and division, all of which can be performed on any 
type of number. 

Logical operations are Boolean operations like AND, OR, NOT, and 
XOR, along with bit shifts and rotates. Such operations are performed 
on scalar and vector integers, as well as on the contents of special-
purpose registers like the processor status word (PSW). 

The types of operations performed on these types of numbers can be 
broken down as illustrated in Figure 4-4.

Figure 4-4: Number formats and operation types

As you make your way through the rest of the book, you may want to 
refer back to this section occasionally. Different microprocessors divide these 
operations among different execution units in a variety of ways, and things 
can easily get confusing. 

Arithmetic Logic Units

On early microprocessors, as on the DLW-1 and DLW-2, all integer arithmetic 
and logical operations were handled by the ALU. Floating-point operations 
were executed by a companion chip, commonly called an arithmetic coprocessor,
that was attached to the motherboard and designed to work in conjunction 
with the microprocessor. Eventually, floating-point capabilities were inte-
grated onto the CPU as a separate execution unit alongside the ALU. 
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Consider the Intel Pentium processor depicted in Figure 4-5, which 
contains two integer ALUs and a floating-point ALU, along with some 
other units that we’ll describe shortly.

Figure 4-5: The Intel Pentium

This diagram is a variation on Figure 4-2, with the execute stage replaced 
by labeled white boxes (SIU, CIU, FPU, BU, etc.) that designate the type of 
execution unit that’s modifying the code stream during the execution phase. 
Notice also that the figure contains a slight shift in terminology that I should 
clarify before we move on. 

Until now, I’ve been using the term ALU as synonymous with integer 
execution unit. After the previous section, however, we know that a micro-
processor does arithmetic and logical operations on more than just integer 
data, so we have to be more precise in our terminology. From now on, ALU
is a general term for any execution unit that performs arithmetic and logical 
operations on any type of data. More specific labels will be used to identify 
the ALUs that handle specific types of instructions and numerical data. For 
instance, an integer execution unit (IU) is an ALU that executes integer arith-
metic and logical instructions, a floating-point execution unit (FPU) is an ALU 
that executes floating-point arithmetic and logical instructions, and so on. 
Figure 4-5 shows that the Pentium has two IUs—a simple integer unit (SIU) 
and a complex integer unit (CIU)—and a single FPU. 

Execution units can be organized logically into functional blocks for 
ease of reference, so the two integer execution units can be referred 
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to collectively as the Pentium’s integer unit. The Pentium’s floating-point unit
consists of only a single FPU, but some processors have more than one FPU; 
likewise with the load-store unit (LSU). The floating-point unit can consist 
of two FPUs—FPU1 and FPU2—and the load-store unit can consist of LSU1 
and LSU2. In both cases, we’ll often refer to “the FPU” or “the LSU” when we 
mean all of the execution units in that functional block, taken as a group.

Many modern microprocessors also feature vector execution units, which 
perform arithmetic and logical operations on vectors. I won’t describe vector 
computing in detail here, however, because that discussion belongs in another 
chapter. 

Memory-Access Units

In almost all of the processors that we’ll cover in later chapters, you’ll see a pair 
of execution units that execute memory-access instructions: the load-store unit 
and the branch execution unit. The load-store unit (LSU) is responsible for the 
execution of load and store instructions, as well as for address generation. As 
mentioned in Chapter 1, LSUs have small, stripped-down integer addition 
hardware that can quickly perform the addition required to compute an 
address.

The branch execution unit (BEU) is responsible for executing conditional 
and unconditional branch instructions. The BEU of the DLW series reads 
the processor status word as described in Chapter 1 and decides whether 
or not to replace the program counter with the branch target. The BEU 
also often has its own address generation unit for performing quick address 
calculations as needed. We’ll talk more about the branch units of real-world 
processors later on.

Microarchitecture and the ISA

In the preceding discussion of superscalar execution, I made a number of 
references to the discrepancy between the linear-execution, single-ALU 
programming model that the programmer sees and what the superscalar 
processor’s hardware actually does. It’s now time to flesh out that distinction 
between the programming model and the actual hardware by introducing 
some concepts and vocabulary that will allow us to talk with more precision 
about the divisions between the apparent and the actual in computer 
architecture.

Chapter 1 introduced the concept of the programming model as an 
abstract representation of the microprocessor that exposes to the programmer 
the microprocessor’s functionality. The DLW-1’s programming model con-
sisted of a single, integer-only ALU, four general-purpose registers, a program 
counter, an instruction register, a processor status word, and a control unit. 
The DLW-1’s instruction set consisted of a few instructions for working with 
different parts of the programming model: arithmetic instructions (e.g., add
and sub) for the ALU and general-purpose registers (GPRs), load and store
instructions for manipulating the control unit and filling the GPRs with data, 
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and branch instructions for checking the PSW and changing the PC. We can 
call this programmer-centric combination of programming model and 
instruction set an instruction set architecture (ISA).

The DLW-1’s ISA was a straightforward reflection of its hardware, which 
consisted of a single ALU, four GPRs, a PC, a PSW, and a control unit. In 
contrast, the successor to the DLW-1, the DLW-2, contained a second ALU 
that was invisible to the programmer and accessible only to the DLW-2’s 
decode/dispatch logic. The DLW-2’s decode/dispatch logic would examine 
pairs of integer arithmetic instructions to determine if they could safely be 
executed in parallel (and hence out of sequential program order). If they 
could, it would send them off to the two integer ALUs to be executed simul-
taneously. Now, the DLW-2 has the same instruction set architecture as the 
DLW-1—the instruction set and programming model remain unchanged—
but the DLW-2’s hardware implementation of that ISA is significantly different 
in that the DLW-2 is superscalar. 

A particular processor’s hardware implementation of an ISA is generally 
referred to as that processor’s microarchitecture. We might call the ISA intro-
duced with the DLW-1 the DLW ISA. Each successive iteration of our hypo-
thetical DLW line of computers—the DLW-1 and DLW-2—implements the 
DLW ISA using a different microarchitecture. The DLW-1 has only one ALU, 
while the DLW-2 is a two-way superscalar implementation of the DLW-ISA.

Intel’s x86 hardware followed the same sort of evolution, with each 
successive generation becoming more complex while the ISA stayed largely 
unchanged. Regarding the Pentium’s inclusion of floating-point hardware, 
you might be wondering how the programmer was able to use the floating-
point hardware (i.e., the FPU plus a floating-point register file) if the original 
x86 ISA didn’t include any floating-point operations or specify any floating-
point registers. The Pentium’s designers had to make the following changes 
to the ISA to accommodate the new functionality:

First, they had to modify the programming model by adding an FPU and 
floating-point–specific registers. 

Second, they had to extend the instruction set by adding a new group of 
floating-point arithmetic instructions. 

These types of ISA extensions are fairly common in the computing world. 
Intel extended the original x86 instruction set to include the x87 floating-
point extensions. The x87 included an FPU and a stack-based floating-point 
register file, but we’ll talk in more detail about the x87’s stack-based archi-
tecture in the next chapter. Intel later extended x86 again with the introduc-
tion of a vector-processing instruction set called MMX (multimedia extensions),
and again with the introduction of the SSE (streaming SIMD extensions) and 
SSE2 instruction sets. (SIMD stands for single instruction, multiple data and is 
another way of describing vector computing. We’ll cover this in more detail 
in “The Vector Execution Units” on page 168.) Similarly, Apple, Motorola, 
and IBM added a set of vector extensions to the PowerPC ISA in the form of 
AltiVec, as the extensions are called by Motorola, or VMX, as they’re called 
by IBM.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes



Superscalar Execut ion 71

A Brief History of the ISA

Back in the early days of computing, computer makers like IBM didn’t build 
a whole line of software-compatible computer systems and aim each system 
at a different price/performance point. Instead, each of a manufacturer’s 
systems was like each of today’s game consoles, at least from a programmer’s 
perspective—programmers wrote directly to the machine’s unique hardware, 
with the result that a program written for one machine would run neither on 
competing machines nor on other machines from a different product line 
put out by the manufacturer’s own company. Just like a Nintendo 64 will run 
neither PlayStation games nor older SNES games, programs written for one 
circa-1960 machine wouldn’t run on any machine but that one particular 
product from that one particular manufacturer. The programming model 
was different for each machine, and the code was fitted directly to the hard-
ware like a key fits a lock (see Figure 4-6 below). 

Figure 4-6: Software was custom-fitted 
to each generation of hardware

The problems this situation posed are obvious. Every time a new machine 
came out, software developers had to start from scratch. You couldn’t reuse 
programs, and programmers had to learn the intricacies of each new piece 
of hardware in order to code for it. This cost quite a bit of time and money, 
making software development a very expensive undertaking. This situation 
presented computer system designers with the following problem: How do 
you expose (make available) the functionality of a range of related hardware 
systems in a way that allows software to be easily developed for and ported 
between those systems? IBM solved this problem in the 1960s with the launch 
of the IBM System/360, which ushered in the era of modern computer 
architecture. The System/360 introduced the concept of the ISA as a layer 
of abstraction—or an interface, if you will—separated from a particular 
processor’s microarchitecture (see Figure 4-7). This means that the infor-
mation the programmer needed to know to program the machine was 
abstracted from the actual hardware implementation of that machine. 
Once the design and specification of the instruction set, or the set of 
instructions available to a programmer for writing programs, was separated 
from the low-level details of a particular machine’s design, programs written 
for a particular ISA could run on any machine that implemented that ISA. 

Thus the ISA provided a standardized way to expose the features of a 
system’s hardware that allowed manufacturers to innovate and fine-tune that 
hardware for performance without worrying about breaking the existing 
software base. You could release a first-generation product with a particular 
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ISA, and then work on speeding up the implementation of that same ISA for 
the second-generation product, which would be backward-compatible with 
the first generation. We take all this for granted now, but before the IBM 
System/360, binary compatibility between different machines of different 
generations didn’t exist.

Figure 4-7: The ISA sits between the software and the hardware, providing a 
consistent interface to the software across hardware generations.

The blue layer in Figure 4-7 simply represents the ISA as an abstract 
model of a machine for which a programmer writes programs. As mentioned 
earlier, the technical innovation that made this abstract layer possible was 
something called the microcode engine. A microcode engine is sort of like a 
CPU within a CPU. It consists of a tiny bit of storage, the microcode ROM,
which holds microcode programs, and an execution unit that executes those 
programs. The job of each of these microcode programs is to translate a 
particular instruction into a series of commands that controls the internal 
parts of the chip. When a System/360 instruction is executed, the microcode 
unit reads the instruction in, accesses the portion of the microcode ROM 
where that instruction’s corresponding microcode program is located, and 
then produces a sequence of machine instructions, in the processor’s internal 
instruction format, that orchestrates the dance of memory accesses and func-
tional unit activations that actually does the number crunching (or whatever 
else) the architectural instruction has commanded the machine to do.

By decoding instructions this way, all programs are effectively running 
in emulation. This means that the ISA represents a sort of idealized model, 
emulated by the underlying hardware, on the basis of which programmers 
can design applications. This emulation means that between iterations of a 
product line, a vendor can change the way their CPU executes a program, 
and all they have to do is rewrite the microcode program each time so the 
programmer will never have to be aware of the hardware differences because 
the ISA hasn’t changed a bit. Microcode engines still show up in modern 
CPUs. AMD’s Athlon processor uses one for the part of its decoding path that 
decodes the larger x86 instructions, as do Intel’s Pentium III and Pentium 4. 

The key to understanding Figure 4-7 is that the blue layer represents a 
layer of abstraction that hides the complexity of the underlying hardware 
from the programmer. The blue layer is not a hardware layer (that’s the 
gray one) and it’s not a software layer (that’s the peach one), but it’s a 
conceptual layer. Think of it like a user interface that hides the complexity 
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of an operating system from the user. All the user needs to know to use the 
machine is how to close windows, launch programs, find files, and so on. The 
UI (and by this I mean the WIMP conceptual paradigm—windows, icons, 
menus, pointer—not the software that implements the UI) exposes the 
machine’s power and functionality to the user in a way that he or she can 
understand and use. And whether that UI appears on a PDA or on a desktop 
machine, the user still knows how to use it to control the machine. 

The main drawback to using microcode to implement an ISA is that 
the microcode engine was, in the beginning, slower than direct decoding. 
(Modern microcode engines are about 99 percent as fast as direct execution.) 
However, the ability to separate ISA design from microarchitectural imple-
mentation was so significant for the development of modern computing that 
the small speed hit incurred was well worth it. 

The advent of the reduced instruction set computing (RISC) movement in the 
1970s saw a couple of changes to the scheme described previously. First and 
foremost, RISC was all about throwing stuff overboard in the name of speed. 
So the first thing to go was the microcode engine. Microcode had allowed ISA 
designers to get elaborate with instruction sets, adding in all sorts of complex 
and specialized instructions that were intended to make programmers’ lives 
easier but that were in reality rarely used. More instructions meant that you 
needed more microcode ROM, which in turn meant larger CPU die sizes, 
higher power consumption, and so on. Since RISC was more about less, the 
microcode engine got the ax. RISC reduced the number of instructions in 
the instruction set and reduced the size and complexity of each individual 
instruction so that this smaller, faster, and more lightweight instruction set 
could be more easily implemented directly in hardware, without a bulky 
microcode engine. 

While RISC designs went back to the old method of direct execution of 
instructions, they kept the concept of the ISA intact. Computer architects 
had by this time learned the immense value of not breaking backward com-
patibility with old software, and they weren’t about to go back to the bad old 
days of marrying software to a single product. So the ISA stayed, but in a 
stripped-down, much simplified form that enabled designers to implement 
directly in hardware the same lightweight ISA over a variety of different 
hardware types. 

NOTE Because the older, non-RISC ISAs featured richer, more complex instruction sets, they 
were labeled complex instruction set computing (CISC) ISAs in order to distin-
guish them from the new RISC ISAs. The x86 ISA is the most popular example of a 
CISC ISA, while PowerPC, MIPS, and Arm are all examples of popular RISC ISAs.

Moving Complexity from Hardware to Software
RISC machines were able to get rid of the microcode engine and still retain 
the benefits of the ISA by moving complexity from hardware to software. 
Where the microcode engine made CISC programming easier by providing 
programmers with a rich variety of complex instructions, RISC programmers 
depended on high-level languages, like C, and on compilers to ease the 
burden of writing code for RISC ISAs’ restricted instruction sets. 
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Because a RISC ISA’s instruction set is more limited, it’s harder to write 
long programs in assembly language for a RISC processor. (Imagine trying to 
write a novel while restricting yourself to a fifth grade vocabulary, and you’ll 
get the idea.) A RISC assembly language programmer may have to use many 
instructions to achieve the same result that a CISC assembly language pro-
grammer can get with one or two instructions. The advent of high-level 
languages (HLLs), like C, and the increasing sophistication of compiler 
technology combined to effectively eliminate this programmer-unfriendly 
aspect of RISC computing. 

The ISA was and is still the optimal solution to the problem of easily and 
consistently exposing hardware functionality to programmers so that soft-
ware can be used across a wide range of machines. The greatest testament 
to the power and flexibility of the ISA is the longevity and ubiquity of the 
world’s most popular and successful ISA: the x86 ISA. Programs written for 
the Intel 8086, a chip released in 1978, can run with relatively little modifi-
cation on the latest Pentium 4. However, on a microarchitectural level, the 
8086 and the Pentium 4 are as different as the Ford Model T and the Ford 
Mustang Cobra.

Challenges to Pipelining and Superscalar Design

I noted previously that there are conditions under which two arithmetic 
instructions cannot be “safely” dispatched in parallel for simultaneous exe-
cution by the DLW-2’s two ALUs. Such conditions are called hazards, and 
they can all be placed in one of three categories: 

Data hazards

Structural hazards

Control hazards

Because pipelining is a form of parallel execution, these three types of 
hazards can also hinder pipelined execution, causing bubbles to occur in 
the pipeline. In the following three sections, I’ll discuss each of these types 
of hazards. I won’t go into a huge amount of detail about the tricks that 
computer architects use to eliminate them or alleviate their affects, because 
we’ll discuss those when we look at specific microprocessors in the next few 
chapters. 

Data Hazards

The best way to explain what a data hazard is to illustrate one. Consider 
Program 4-1:

Program 4-1: A data hazard

Line # Code Comments

1 add A, B, C Add the numbers in registers A and B and store the result in C.

2 add C, D, D Add the numbers in registers C and D and store the result in D.
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Because the second instruction in Program 4-1 depends on the out-
come of the first instruction, the two instructions cannot be executed 
simultaneously. Rather, the add in line 1 must finish first, so that the result 
is available in C for the add in line 2.

Data hazards are a problem for both superscalar and pipelined execution. 
If Program 4-1 is run on a superscalar processor with two integer ALUs, the 
two add instructions cannot be executed simultaneously by the two ALUs. 
Rather, the ALU executing the add in line 1 has to finish first, and then the 
other ALU can execute the add in line 2. Similarly, if Program 4-1 is run on a 
pipelined processor, the second add has to wait until the first add completes 
the write stage before it can enter the execute phase. Thus the dispatch 
circuitry has to recognize the add in line 2’s dependence on the add in line 1,
and keep the add in line 2 from entering the execute stage until the add in line 
1’s result is available in register C.

Most pipelined processors can do a trick called forwarding that’s aimed at 
alleviating the effects of this problem. With forwarding, the processor takes 
the result of the first add from the ALU’s output port and feeds it directly 
back into the ALU’s input port, bypassing the register-file write stage. Thus 
the second add has to wait for the first add to finish only the execute stage, and 
not the execute and write stages, before it’s able to move into the execute 
stage itself.

Register renaming is a trick that helps overcome data hazards on superscalar 
machines. Since any given machine’s programming model often specifies 
fewer registers than can be implemented in hardware, a given microprocessor 
implementation often has more registers than the number specified in the 
programming model. To get an idea of how this group of additional registers 
is used, take a look at Figure 4-8.

In Figure 4-8, the DLW-2’s programmer thinks that he or she is using a 
single ALU with four architectural general-purpose registers—A, B, C, and D—
attached to it, because four registers and one ALU are all that the DLW 
architecture’s programming model specifies. However, the actual superscalar 
DLW-2 hardware has two ALUs and 16 microarchitectural GPRs implemented 
in hardware. Thus the DLW-2’s register rename logic can map the four archi-
tectural registers to the available microarchitectural registers in such a way as 
to prevent false register name conflicts.

In Figure 4-8, an instruction that’s being executed by IU1 might think 
that it’s the only instruction executing and that it’s using registers A, B, and C,
but it’s actually using rename registers 2, 5, and 10. Likewise, a second instruc-
tion executing simultaneously with the first instruction but in IU2 might also 
think that it’s the only instruction executing and that it has a monopoly on 
the register file, but in reality, it’s using registers 3, 7, 12, and 16. Once both 
IUs have finished executing their respective instructions, the DLW-2’s write-
back logic takes care of transferring the contents of the rename registers back 
to the four architectural registers in the proper order so that the program’s 
state can be changed.
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Figure 4-8: Register renaming

Let’s take a quick look at a false register name conflict in Program 4-2.

Program 4-2: A false register name conflict

In Program 4-2, there is no data dependency, and both add instructions 
can take place simultaneously except for one problem: the first add reads the 
contents of A for its input, while the second add writes a new value into A as its 
output. Therefore, the first add’s read absolutely must take place before the 
second add’s write. Register renaming solves this register name conflict by 
allowing the second add to write its output to a temporary register; after both 
adds have executed in parallel, the result of the second add is written from 
that temporary register into the architectural register A after the first add has 
finished executing and written back its own results.

Structural Hazards
Program 4-3 contains a short code example that shows superscalar execution 
in action. Assuming the programming model presented for the DLW-2, 
consider the following snippet of code.

Line # Code Comments

1 add A, B, C Add the numbers in registers A and B and store the result in C.

2 add D, B, A Add the numbers in registers A and D and store the result in A.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

A
B
C
D

ALU Registers

Rename Buffer

A
B
C
D

IU1 Registers

A
B
C
D

IU2 Registers

Programming Model
(Architecture)

Hardware Implementation
(Microarchitecture)
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Program 4-3: A structural hazard

At first glance, there appears to be nothing wrong with Program 4-3. 
There’s no data hazard, because the two instructions don’t depend on each 
other. So it should be possible to execute them in parallel. However, this 
example presumes that both ALUs share the same group of four registers. 
But in order for the DLW-2’s register file to accommodate multiple ALUs 
accessing it at once, it needs to be different from the DLW-1’s register file in 
one important way: it must be able to accommodate two simultaneous writes. 
Otherwise, executing Program 4-3’s two instructions in parallel would trigger 
what’s called a structural hazard, where the processor doesn’t have enough 
resources to execute both instructions at once. 

The Register File 

In a superscalar design with multiple ALUs, it would take an enormous 
number of wires to connect each register directly to each ALU. This problem 
gets worse as the number of registers and ALUs increases. Hence, in super-
scalar designs with a large number of registers, a CPU’s registers are grouped 
together into a special unit called a register file. This unit is a memory array, 
much like the array of cells that makes up a computer’s main memory, and 
it’s accessed through a special interface that allows the ALU to read from or 
write to specific registers. This interface consists of a data bus and two types 
of ports: the read ports and the write ports. In order to read a value from a 
single register in the register file, the ALU accesses the register file’s read 
port and requests that the data from a specific register be placed on the 
special internal data bus that the register file shares with the ALU. Likewise, 
writing to the register file is done through the file’s write port.

A single read port allows the ALU to access a single register at a time, so 
in order for an ALU to read from two registers simultaneously (as in the case 
of a three-operand add instruction), the register file must have two read ports. 
Likewise, a write port allows the ALU to write to only one register at a time, 
so a single ALU needs a single write port in order to be able to write the results 
of an operation back to a register. Therefore, the register file needs two read 
ports and one write port for each ALU. So for the two-ALU superscalar design, 
the register file needs a total of four read ports and two write ports. 

It so happens that the amount of die space that the register file takes up 
increases approximately with the square of the number of ports, so there is a 
practical limit on the number of ports that a given register file can support. 
This is one of the reasons why modern CPUs use separate register files to 
store integer, floating-point, and vector numbers. Since each type of math 
(integer, floating-point, and vector) uses a different type of execution unit, 
attaching multiple integer, floating-point, and vector execution units to a 
single register file would result in quite a large file. 

Line # Code Comments

15 add A, B, B Add the numbers in registers A and B and store the result in B.

16 add C, D, D Add the numbers in registers C and D and store the result in D.
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There’s also another reason for using multiple register files to accom-
modate different types of execution units. As the size of the register file 
increases, so does the amount of time it takes to access it. You might recall 
from “The File-Clerk Model Revisited and Expanded” on page 9 that we 
assume that register reads and writes happen instantaneously. If a register 
file gets too large and the register file access latency gets too high, this can 
slow down register accesses to the point where such access takes up a notice-
able amount of time. So instead of using one massive register file for each 
type of numerical data, computer architects use two or three register files 
connected to a few different types of execution units. 

Incidentally, if you’ll recall “Opcodes and Machine Language” on 
page 19, the DLW-1 used a series of binary numbers to designate which of 
the four registers an instruction was accessing. Well, in the case of a register 
file read, these numbers are fed into the register file’s interface in order to 
specify which of the registers should place its data on the data bus. Taking 
our two-bit register designations as an example, a port on our four-register 
file would have two lines that would be held at either high or low voltages 
(depending on whether the bit placed on each line was a 1 or a 0), and these 
lines would tell the file which of its registers should have its data placed on 
the data bus. 

Control Hazards

Control hazards, also known as branch hazards, are hazards that arise when the 
processor arrives at a conditional branch and has to decide which instruction 
to fetch next. In more primitive processors, the pipeline stalls while the 
branch condition is evaluated and the branch target is calculated. This stall 
inserts a few cycles of bubbles into the pipeline, depending on how long it 
takes the processor to identify and locate the branch target instruction. 

Modern processors use a technique called branch prediction to get around 
these branch-related stalls. We’ll discuss branch prediction in more detail in 
the next chapter.

Another potential problem associated with branches lies in the fact that 
once the branch condition is evaluated and the address of the next instruc-
tion is loaded into the program counter, it then takes a number of cycles to 
actually fetch the next instruction from storage. This instruction load latency is 
added to the branch condition evaluation latency discussed earlier in this 
section. Depending on where the next instruction is located—such as in a 
nearby cache, in main memory, or on a hard disk—it can take anywhere from 
a few cycles to thousands of cycles to fetch the instruction. The cycles that the 
processor spends waiting on that instruction to show up are dead, wasted 
cycles that show up as bubbles in the processor’s pipeline and kill performance. 
Computer architects use instruction caching to alleviate the effects of load 
latency, and we’ll talk more about this technique in the next chapter.
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