
ars technica library

B R I E F C O N T E N T S

Acknowledgments ... xv

Preface .. xvii

Introduction ... xix

Chapter 1: Basic Computing Concepts ... 1

Chapter 2: The Mechanics of Program Execution ... 19

Chapter 3: Pipelined Execution .. 35

Chapter 4: Superscalar Execution .. 61

Chapter 5: The Intel Pentium and Pentium Pro .. 79

Chapter 6: PowerPC Processors: 600 Series, 700 Series, and 7400................................ 111

Chapter 7: Intel’s Pentium 4 vs. Motorola’s G4e: Approaches and Design Philosophies...... 137

Chapter 8: Intel’s Pentium 4 vs. Motorola’s G4e: The Back End 161

Chapter 9: 64-Bit Computing and x86-64 ... 179

Chapter 10: The G5: IBM’s PowerPC 970 .. 193

Chapter 11: Understanding Caching and Performance... 215

Chapter 12: Intel’s Pentium M, Core Duo, and Core 2 Duo ... 235

Bibliography and Suggested Reading ... 271

Index .. 275

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

C O N T E N T S I N D E T A I L

PREFACE xv

ACKNOWLEDGMENTS xvii

INTRODUCTION xix

1
BASIC COMPUTING CONCEPTS 1

The Calculator Model of Computing ... 2
The File-Clerk Model of Computing ... 3

The Stored-Program Computer .. 4
Refining the File-Clerk Model .. 6

The Register File ... 7
RAM: When Registers Alone Won’t Cut It ... 8

The File-Clerk Model Revisited and Expanded ... 9
An Example: Adding Two Numbers ... 10

A Closer Look at the Code Stream: The Program .. 11
General Instruction Types ... 11
The DLW-1’s Basic Architecture and Arithmetic Instruction Format 12

A Closer Look at Memory Accesses: Register vs. Immediate ... 14
Immediate Values .. 14
Register-Relative Addressing ... 16

2
THE MECHANICS OF PROGRAM EXECUTION 19

Opcodes and Machine Language .. 19
Machine Language on the DLW-1 ... 20
Binary Encoding of Arithmetic Instructions .. 21
Binary Encoding of Memory Access Instructions .. 23
Translating an Example Program into Machine Language 25

The Programming Model and the ISA ... 26
The Programming Model .. 26
The Instruction Register and Program Counter ... 26
The Instruction Fetch: Loading the Instruction Register 28
Running a Simple Program: The Fetch-Execute Loop 28

The Clock .. 29
Branch Instructions .. 30

Unconditional Branch .. 30
Conditional Branch ... 30

Excursus: Booting Up .. 34

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

x Contents in Detai l

3
PIPELINED EXECUTION 35

The Lifecycle of an Instruction ... 36
Basic Instruction Flow .. 38
Pipelining Explained ... 40
Applying the Analogy ... 43

A Non-Pipelined Processor ... 43
A Pipelined Processor .. 45
The Speedup from Pipelining .. 48
Program Execution Time and Completion Rate .. 51
The Relationship Between Completion Rate and Program Execution Time 52
Instruction Throughput and Pipeline Stalls ... 53
Instruction Latency and Pipeline Stalls .. 57
Limits to Pipelining ... 58

4
SUPERSCALAR EXECUTION 61
Superscalar Computing and IPC .. 64
Expanding Superscalar Processing with Execution Units .. 65

Basic Number Formats and Computer Arithmetic ... 66
Arithmetic Logic Units .. 67
Memory-Access Units ... 69

Microarchitecture and the ISA .. 69
A Brief History of the ISA ... 71
Moving Complexity from Hardware to Software .. 73

Challenges to Pipelining and Superscalar Design ... 74
Data Hazards ... 74
Structural Hazards ... 76
The Register File ... 77
Control Hazards ... 78

5
THE INTEL PENTIUM AND PENTIUM PRO 79
The Original Pentium .. 80

Caches .. 81
The Pentium’s Pipeline .. 82
The Branch Unit and Branch Prediction .. 85
The Pentium’s Back End .. 87
x86 Overhead on the Pentium .. 91
Summary: The Pentium in Historical Context ... 92

The Intel P6 Microarchitecture: The Pentium Pro .. 93
Decoupling the Front End from the Back End ... 94
The P6 Pipeline ... 100
Branch Prediction on the P6 .. 102
The P6 Back End ... 102
CISC, RISC, and Instruction Set Translation ... 103
The P6 Microarchitecture’s Instruction Decoding Unit 106
The Cost of x86 Legacy Support on the P6 ... 107
Summary: The P6 Microarchitecture in Historical Context 107

Conclusion .. 110

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Contents in Detai l xi

6
POWERPC PROCESSORS: 600 SERIES,
700 SERIES, AND 7400 111

A Brief History of PowerPC .. 112
The PowerPC 601 .. 112

The 601’s Pipeline and Front End .. 113
The 601’s Back End .. 115
Latency and Throughput Revisited .. 117
Summary: The 601 in Historical Context .. 118

The PowerPC 603 and 603e ... 118
The 603e’s Back End ... 119
The 603e’s Front End, Instruction Window, and Branch Prediction 122
Summary: The 603 and 603e in Historical Context 122

The PowerPC 604 .. 123
The 604’s Pipeline and Back End .. 123
The 604’s Front End and Instruction Window ... 126
Summary: The 604 in Historical Context .. 129

The PowerPC 604e .. 129
The PowerPC 750 (aka the G3) ... 129

The 750’s Front End, Instruction Window, and Branch Instruction 130
Summary: The PowerPC 750 in Historical Context 132

The PowerPC 7400 (aka the G4) ... 133
The G4’s Vector Unit ... 135
Summary: The PowerPC G4 in Historical Context .. 135

Conclusion .. 135

7
INTEL’S PENTIUM 4 VS. MOTOROLA’S G4E:
APPROACHES AND DESIGN PHILOSOPHIES 137

The Pentium 4’s Speed Addiction ... 138
The General Approaches and Design Philosophies of the Pentium 4 and G4e 141
An Overview of the G4e’s Architecture and Pipeline ... 144

Stages 1 and 2: Instruction Fetch ... 145
Stage 3: Decode/Dispatch ... 145
Stage 4: Issue ... 146
Stage 5: Execute ... 146
Stages 6 and 7: Complete and Write-Back ... 147

Branch Prediction on the G4e and Pentium 4 ... 147
An Overview of the Pentium 4’s Architecture ... 148

Expanding the Instruction Window .. 149
The Trace Cache ... 149

An Overview of the Pentium 4’s Pipeline ... 155
Stages 1 and 2: Trace Cache Next Instruction Pointer 155
Stages 3 and 4: Trace Cache Fetch ... 155
Stage 5: Drive .. 155
Stages 6 Through 8: Allocate and Rename (ROB) 155
Stage 9: Queue ... 156
Stages 10 Through 12: Schedule .. 156
Stages 13 and 14: Issue ... 157

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

xii Contents in Detai l

Stages 15 and 16: Register Files .. 158
Stage 17: Execute ... 158
Stage 18: Flags ... 158
Stage 19: Branch Check ... 158
Stage 20: Drive ... 158
Stages 21 and Onward: Complete and Commit ... 158

The Pentium 4’s Instruction Window ... 159

8
INTEL’S PENTIUM 4 VS. MOTOROLA’S G4E:
THE BACK END 161

Some Remarks About Operand Formats .. 161
The Integer Execution Units .. 163

The G4e’s IUs: Making the Common Case Fast ... 163
The Pentium 4’s IUs: Make the Common Case Twice as Fast 164

The Floating-Point Units (FPUs) .. 165
The G4e’s FPU .. 166
The Pentium 4’s FPU ... 167
Concluding Remarks on the G4e’s and Pentium 4’s FPUs 168

The Vector Execution Units .. 168
A Brief Overview of Vector Computing .. 168
Vectors Revisited: The AltiVec Instruction Set ... 169
AltiVec Vector Operations .. 170
The G4e’s VU: SIMD Done Right .. 173
Intel’s MMX .. 174
SSE and SSE2 .. 175
The Pentium 4’s Vector Unit: Alphabet Soup Done Quickly 176
Increasing Floating-Point Performance with SSE2 .. 177

Conclusions ... 177

9
64-BIT COMPUTING AND X86-64 179

Intel’s IA-64 and AMD’s x86-64 ... 180
Why 64 Bits? .. 181
What Is 64-Bit Computing? .. 181
Current 64-Bit Applications .. 183

Dynamic Range .. 183
The Benefits of Increased Dynamic Range, or,

How the Existing 64-Bit Computing Market Uses 64-Bit Integers 184
Virtual Address Space vs. Physical Address Space 185
The Benefits of a 64-Bit Address .. 186

The 64-Bit Alternative: x86-64 ... 187
Extended Registers .. 187
More Registers .. 188
Switching Modes .. 189
Out with the Old ... 192

Conclusion .. 192

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Contents in Detai l xiii

10
THE G5: IBM’S POWERPC 970 193

Overview: Design Philosophy .. 194
Caches and Front End .. 194
Branch Prediction ... 195
The Trade-Off: Decode, Cracking, and Group Formation .. 196

The 970’s Dispatch Rules ... 198
Predecoding and Group Dispatch ... 199
Some Preliminary Conclusions on the 970’s Group Dispatch Scheme 199

The PowerPC 970’s Back End .. 200
Integer Unit, Condition Register Unit, and Branch Unit 201
The Integer Units Are Not Fully Symmetric ... 201
Integer Unit Latencies and Throughput ... 202
The CRU .. 202
Preliminary Conclusions About the 970’s Integer Performance 203

Load-Store Units .. 203
Front-Side Bus ... 204
The Floating-Point Units ... 205
Vector Computing on the PowerPC 970 .. 206
Floating-Point Issue Queues ... 209

Integer and Load-Store Issue Queues ... 210
BU and CRU Issue Queues ... 210
Vector Issue Queues .. 211

The Performance Implications of the 970’s Group Dispatch Scheme 211
Conclusions ... 213

11
UNDERSTANDING CACHING AND PERFORMANCE 215

Caching Basics .. 215
The Level 1 Cache ... 217
The Level 2 Cache ... 218
Example: A Byte’s Brief Journey Through the Memory Hierarchy 218
Cache Misses ... 219

Locality of Reference ... 220
Spatial Locality of Data .. 220
Spatial Locality of Code ... 221
Temporal Locality of Code and Data ... 222
Locality: Conclusions ... 222

Cache Organization: Blocks and Block Frames .. 223
Tag RAM .. 224
Fully Associative Mapping ... 224
Direct Mapping .. 225
N-Way Set Associative Mapping ... 226

Four-Way Set Associative Mapping ... 226
Two-Way Set Associative Mapping ... 228
Two-Way vs. Direct-Mapped .. 229
Two-Way vs. Four-Way ... 229
Associativity: Conclusions .. 229

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

xiv Contents in Detai l

Temporal and Spatial Locality Revisited: Replacement/Eviction Policies and
Block Sizes ... 230

Types of Replacement/Eviction Policies .. 230
Block Sizes ... 231

Write Policies: Write-Through vs. Write-Back ... 232
Conclusions ... 233

12
INTEL’S PENTIUM M, CORE DUO, AND CORE 2 DUO 235
Code Names and Brand Names .. 236
The Rise of Power-Efficient Computing ... 237
Power Density .. 237

Dynamic Power Density .. 237
Static Power Density ... 238

The Pentium M ... 239
The Fetch Phase .. 239
The Decode Phase: Micro-ops Fusion ... 240
Branch Prediction .. 244
The Stack Execution Unit .. 246
Pipeline and Back End ... 246
Summary: The Pentium M in Historical Context ... 246

Core Duo/Solo .. 247
Intel’s Line Goes Multi-Core .. 247
Core Duo’s Improvements ... 251
Summary: Core Duo in Historical Context ... 254

Core 2 Duo ... 254
The Fetch Phase .. 256
The Decode Phase ... 257
Core’s Pipeline ... 258

Core’s Back End .. 258
Vector Processing Improvements .. 262
Memory Disambiguation: The Results Stream Version of

Speculative Execution .. 264
Summary: Core 2 Duo in Historical Context .. 270

BIBLIOGRAPHY AND SUGGESTED READING 271
General .. 271
PowerPC ISA and Extensions ... 271
PowerPC 600 Series Processors ... 271
PowerPC G3 and G4 Series Processors .. 272
IBM PowerPC 970 and POWER ... 272
x86 ISA and Extensions .. 273
Pentium and P6 Family .. 273
Pentium 4 .. 274
Pentium M, Core, and Core 2 .. 274
Online Resources ... 274

INDEX 275

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

P R E F A C E

“The purpose of computing is insight, not numbers.”
—Richard W. Hamming (1915–1998)

When mathematician and computing pioneer Richard
Hamming penned this maxim in 1962, the era of digital
computing was still very much in its infancy. There were
only about 10,000 computers in existence worldwide;
each one was large and expensive, and each required
teams of engineers for maintenance and operation. Getting results out of
these mammoth machines was a matter of laboriously inputting long strings
of numbers, waiting for the machine to perform its calculations, and then
interpreting the resulting mass of ones and zeros. This tedious and painstak-
ing process prompted Hamming to remind his colleagues that the reams of
numbers they worked with on a daily basis were only a means to a much higher
and often non-numerical end: keener insight into the world around them.

In today’s post-Internet age, hundreds of millions of people regularly use
computers not just to gain insight, but to book airline tickets, to play poker,
to assemble photo albums, to find companionship, and to do every other sort
of human activity from the mundane to the sublime. In stark contrast to the

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

xvi Preface

way things were 40 years ago, the experience of using a computer to do math
on large sets of numbers is fairly foreign to many users, who spend only a
very small fraction of their computer time explicitly performing arithmetic
operations. In popular operating systems from Microsoft and Apple, a small
calculator application is tucked away somewhere in a folder and accessed
only infrequently, if at all, by the majority of users. This small, seldom-used
calculator application is the perfect metaphor for the modern computer’s
hidden identity as a shuffler of numbers.

This book is aimed at reintroducing the computer as a calculating device
that performs layer upon layer of miraculous sleights of hand in order to hide
from the user the rapid flow of numbers inside the machine. The first few
chapters introduce basic computing concepts, and subsequent chapters work
through a series of more advanced explanations, rooted in real-world hard-
ware, that show how instructions, data, and numerical results move through
the computers people use every day. In the end, Inside the Machine aims to
give the reader an intermediate to advanced knowledge of how a variety of
microprocessors function and how they stack up to each other from multiple
design and performance perspectives.

Ultimately, I have tried to write the book that I would have wanted to
read as an undergraduate computer engineering student: a book that puts
the pieces together in a big-picture sort of way, while still containing enough
detailed information to offer a firm grasp of the major design principles
underlying modern microprocessors. It is my hope that Inside the Machine’s
blend of exposition, history, and architectural “comparative anatomy” will
accomplish that goal.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

I N T R O D U C T I O N

Inside the Machine is an introduction to computers that
is intended to fill the gap that exists between classic
but more challenging introductions to computer
architecture, like John L. Hennessy’s and David A.
Patterson’s popular textbooks, and the growing mass
of works that are simply too basic for motivated non-specialist readers. Readers
with some experience using computers and with even the most minimal
scripting or programming experience should finish Inside the Machine with a
thorough and advanced understanding of the high-level organization of
modern computers. Should they so choose, such readers would then be well
equipped to tackle more advanced works like the aforementioned classics,
either on their own or as part of formal curriculum.

The book’s comparative approach, described below, introduces new
design features by comparing them with earlier features intended to solve
the same problem(s). Thus, beginning and intermediate readers are
encouraged to read the chapters in order, because each chapter assumes
a familiarity with the concepts and processor designs introduced in the
chapters prior to it.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

xx In t roduct ion

More advanced readers who are already familiar with some of the
processors covered will find that the individual chapters can stand alone.
The book’s extensive use of headings and subheadings means that it can
also be employed as a general reference for the processors described,
though that is not the purpose for which it was designed.

The first four chapters of Inside the Machine are dedicated to laying the
conceptual groundwork for later chapters’ studies of real-world micropro-
cessors. These chapters use a simplified example processor, the DLW, to
illustrate basic and intermediate concepts like the instructions/data distinc-
tion, assembly language programming, superscalar execution, pipelining,
the programming model, machine language, and so on.

The middle portion of the book consists of detailed studies of two popular
desktop processor lines: the Pentium line from Intel and the PowerPC line
from IBM and Motorola. These chapters walk the reader through the chrono-
logical development of each processor line, describing the evolution of the
microarchitectures and instruction set architectures under discussion. Along
the way, more advanced concepts like speculative execution, vector processing,
and instruction set translation are introduced and explored via a discussion
of one or more real-world processors.

Throughout the middle part of the book, the overall approach is what
might be called “comparative anatomy,” in which each new processor’s novel
features are explained in terms of how they differ from analogous features
found in predecessors and/or competitors. The comparative part of the book
culminates in Chapters 7 and 8, which consist of detailed comparisons of
two starkly different and very important processors: Intel’s Pentium 4 and
Motorola’s MPC7450 (popularly known as the G4e).

After a brief introduction to 64-bit computing and the 64-bit extensions
to the popular x86 instruction set architecture in Chapter 9, the microarchi-
tecture of the first mass-market 64-bit processor, the IBM PowerPC 970, is
treated in Chapter 10. This study of the 970, the majority of which is also
directly applicable to IBM’s POWER4 mainframe processor, concludes the
book’s coverage of PowerPC processors.

Chapter 11 covers the organization and functioning of the memory
hierarchy found in almost all modern computers.

Inside the Machine’s concluding chapter is given over to an in-depth
examination of the latest generation of processors from Intel: the Pentium
M, Core Duo, and Core 2 Duo. This chapter contains the most detailed
discussion of these processors available online or in print, and it includes
some new information that has not been publicly released prior to the
printing of this book.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

S U P E R S C A L A R E X E C U T I O N

Chapters 1 and 2 described the processor as it is visible
to the programmer. The register files, the processor
status word (PSW), the arithmetic logic unit (ALU),
and other parts of the programming model are all
there to provide a means for the programmer to
manipulate the processor and make it do useful work.
In other words, the programming model is essentially
a user interface for the CPU.

Much like the graphical user interfaces on modern computer systems,
there’s a lot more going on under the hood of a microprocessor than the
simplicity of the programming model would imply. In Chapter 12, I’ll talk
about the various ways in which the operating system and processor collab-
orate to fool the user into thinking that he or she is executing multiple pro-
grams at once. There’s a similar sort of trickery that goes on beneath the
programming model in a modern microprocessor, but it’s intended to fool

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

62 Chapter 4

the programmer into thinking that there’s only one thing going on at a time,
when really there are multiple things happening simultaneously. Let me
explain.

Back in the days when computer designers could fit relatively few
transistors on a single piece of silicon, many parts of the programming
model actually resided on separate chips attached to a single circuit board.
For instance, one chip contained the ALU, another chip contained the
control unit, still another chip contained the registers, and so on. Such
computers were relatively slow, and the fact that they were made of multiple
chips made them expensive. Each chip had its own manufacturing and
packaging costs, so the more chips you put on a board, the more expensive
the overall system was. (Note that this is still true today. The cost of pro-
ducing systems and components can be drastically reduced by packing the
functionality of multiple chips into a single chip.)

With the advent of the Intel 4004 in 1971, all of that changed. The 4004
was the world’s first microprocessor on a chip. Designed to be the brains of
a calculator manufactured by a now defunct company named Busicom, the
4004 had 16 four-bit registers, an ALU, and decoding and control logic all
packed onto a single, 2,300-transistor chip. The 4004 was quite a feat for its
day, and it paved the way for the PC revolution. However, it wasn’t until Intel
released the 8080 four years later that the world saw the first true general-
purpose CPU.

During the decades following the 8080, the number of transistors that
could be packed onto a single chip increased at a stunning pace. As CPU
designers had more and more transistors to work with when designing new
chips, they began to think up novel ways for using those transistors to increase
computing performance on application code. One of the first things that
occurred to designers was that they could put more than one ALU on a chip
and have both ALUs working in parallel to process code faster. Since these
designs could do more than one scalar (or integer, for our purposes) operation
at once, they were called superscalar computers. The RS6000 from IBM was
released in 1990 and was the world’s first commercially available superscalar
CPU. Intel followed in 1993 with the Pentium, which, with its two ALUs,
brought the x86 world into the superscalar era.

For illustrative purposes, I’ll now introduce a two-way superscalar version
of the DLW-1, called the DLW-2 and illustrated in Figure 4-1. The DLW-2
has two ALUs, so it’s able to execute two arithmetic instructions in parallel
(hence the term two-way superscalar). These two ALUs share a single register
file, a situation that in terms of our file clerk analogy would correspond to
the file clerk sharing his personal filing cabinet with a second file clerk.

As you can probably guess from looking at Figure 4-1, superscalar
processing adds a bit of complexity to the DLW-2’s design, because it needs
new circuitry that enables it to reorder the linear instruction stream so that
some of the stream’s instructions can execute in parallel. This circuitry has to
ensure that it’s “safe” to dispatch two instructions in parallel to the two exe-
cution units. But before I go on to discuss some reasons why it might not be
safe to execute two instructions in parallel, I should define the term I just
used—dispatch.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Superscalar Execut ion 63

Figure 4-1: The superscalar DLW-2

Notice that in Figure 4-2 I’ve renamed the second pipeline stage decode/
dispatch. This is because attached to the latter part of the decode stage is a
bit of dispatch circuitry whose job it is to determine whether or not two
instructions can be executed in parallel, in other words, on the same clock
cycle. If they can be executed in parallel, the dispatch unit sends one instruc-
tion to the first integer ALU and one to the second integer ALU. If they can’t
be dispatched in parallel, the dispatch unit sends them in program order to
the first of the two ALUs. There are a few reasons why the dispatcher might
decide that two instructions can’t be executed in parallel, and we’ll cover
those in the following sections.

It’s important to note that even though the processor has multiple ALUs,
the programming model does not change. The programmer still writes to the
same interface, even though that interface now represents a fundamentally
different type of machine than the processor actually is; the interface repre-
sents a sequential execution machine, but the processor is actually a parallel
execution machine. So even though the superscalar CPU executes instruc-
tions in parallel, the illusion of sequential execution absolutely must be
maintained for the sake of the programmer. We’ll see some reasons why
this is so later on, but for now the important thing to remember is that main
memory still sees one sequential code stream, one data stream, and one
results stream, even though the code and data streams are carved up inside
the computer and pushed through the two ALUs in parallel.

Main Memory

CPU

ALU1

ALU2

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

64 Chapter 4

Figure 4-2: The pipeline of the superscalar DLW-2

If the processor is to execute multiple instructions at once, it must be
able to fetch and decode multiple instructions at once. A two-way superscalar
processor like the DLW-2 can fetch two instructions at once from memory on
each clock cycle, and it can also decode and dispatch two instructions each
clock cycle. So the DLW-2 fetches instructions from memory in groups of
two, starting at the memory address that marks the beginning of the current
program’s code segment and incrementing the program counter to point
four bytes ahead each time a new instruction is fetched. (Remember, the
DLW-2’s instructions are two bytes wide.)

As you might guess, fetching and decoding two instructions at a time
complicates the way the DLW-2 deals with branch instructions. What if the
first instruction in a fetched pair happens to be a branch instruction that has
the processor jump directly to another part of memory? In this case, the
second instruction in the pair has to be discarded. This wastes fetch band-
width and introduces a bubble into the pipeline. There are other issues
relating to superscalar execution and branch instructions, and I’ll say more
about them in the section on control hazards.

Superscalar Computing and IPC

Superscalar computing allows a microprocessor to increase the number
of instructions per clock that it completes beyond one instruction per clock.
Recall that one instruction per clock was the maximum theoretical instruction
throughput for a pipelined processor, as described in “Instruction Through-
put” on page 53. Because a superscalar machine can have multiple instructions

Fetch

Decode/
Dispatch

ALU2

Execute

Write

Front End

Back End

ALU1

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Superscalar Execut ion 65

in multiple write stages on each clock cycle, the superscalar machine can
complete multiple instructions per cycle. If we adapt Chapter 3’s pipeline
diagrams to take account of superscalar execution, they look like Figure 4-3.

Figure 4-3: Superscalar execution and pipelining combined

In Figure 4-3, two instructions are added to the Completed Instructions
box on each cycle once the pipeline is full. The more ALU pipelines that a
processor has operating in parallel, the more instructions it can add to that
box on each cycle. Thus superscalar computing allows you to increase a pro-
cessor’s IPC by adding more hardware. There are some practical limits to how
many instructions can be executed in parallel, and we’ll discuss those later.

Expanding Superscalar Processing with Execution Units

Most modern processors do more with superscalar execution than just add-
ing a second ALU. Rather, they distribute the work of handling different
types of instructions among different types of execution units. An execution
unit is a block of circuitry in the processor’s back end that executes a certain
category of instruction. For instance, you’ve already met the arithmetic logic
unit (ALU), an execution unit that performs arithmetic and logical opera-
tions on integers. In this section we’ll take a closer look at the ALU, and
you’ll learn about some other types of execution units for non-integer arith-
metic operations, memory accesses, and branch instructions.

Completed
Instructions

Stored
Instructions

CPU
Fetch

Decode

Execute

Write

1ns 2ns 3ns 4ns 5ns 6ns 7ns

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

66 Chapter 4

Basic Number Formats and Computer Arithmetic

The kinds of numbers on which modern microprocessors operate can be
divided into two main types: integers (aka fixed-point numbers) and floating-
point numbers. Integers are simply whole numbers of the type with which
you first learn to count in grade school. An integer can be positive, negative,
or zero, but it cannot, of course, be a fraction. Integers are also called fixed-
point numbers because an integer’s decimal point does not move. Examples
of integers are 1, 0, 500, 27, and 42. Arithmetic and logical operations involv-
ing integers are among the simplest and fastest operations that a micropro-
cessor performs. Applications like compilers, databases, and word processors
make heavy use of integer operations, because the numbers they deal with
are usually whole numbers.

A floating-point number is a decimal number that represents a fraction.
Examples of floating-point numbers are 56.5, 901.688, and 41.9999. As you
can see from these three numbers, the decimal point “floats” around and
isn’t fixed in once place, hence the name. The number of places behind the
decimal point determines a floating-point number’s accuracy, so floating-
point numbers are often approximations of fractional values. Arithmetic and
logical operations performed on floating-point numbers are more complex
and, hence, slower than their integer counterparts. Because floating-point
numbers are approximations of fractional values, and the real world is kind
of approximate and fractional, floating-point arithmetic is commonly found
in real world–oriented applications like simulations, games, and signal-
processing applications.

Both integer and floating-point numbers can themselves be divided into
one of two types: scalars and vectors. Scalars are values that have only one
numerical component, and they’re best understood in contrast with vectors.
Briefly, a vector is a multicomponent value, most often seen as an ordered
sequence or array of numbers. (Vectors are covered in detail in “The Vector
Execution Units” on page 168.) Here are some examples of different types
of vectors and scalars:

Returning to the code/data distinction, we can say that the data
stream consists of four types of numbers: scalar integers, scalar floating-
point numbers, vector integers, and vector floating-point numbers. (Note
that even memory addresses fall into one of these four categories—scalar
integers.) The code stream, then, consists of instructions that operate on
all four types of numbers.

Integer Floating-Point

Scalar 14
500

37

1.01
15.234
0.0023

Vector {5, 7, 9, 8}
{1,003, 42, 97, 86, 97}
{234, 7, 6, 1, 3, 10, 11}

{0.99, 1.1, 3.31}
{50.01, 0.002, 1.4, 1.4}
{5.6, 22.3, 44.444, 76.01, 9.9}

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Superscalar Execut ion 67

The kinds of operations that can be performed on the four types of
numbers fall into two main categories: arithmetic operations and logical
operations. When I first introduced arithmetic operations in Chapter 1,
I lumped them together with logical operations for the sake of convenience.
At this point, though, it’s useful to distinguish the two types of operations
from one another:

Arithmetic operations are operations like addition, subtraction,
multiplication, and division, all of which can be performed on any
type of number.

Logical operations are Boolean operations like AND, OR, NOT, and
XOR, along with bit shifts and rotates. Such operations are performed
on scalar and vector integers, as well as on the contents of special-
purpose registers like the processor status word (PSW).

The types of operations performed on these types of numbers can be
broken down as illustrated in Figure 4-4.

Figure 4-4: Number formats and operation types

As you make your way through the rest of the book, you may want to
refer back to this section occasionally. Different microprocessors divide these
operations among different execution units in a variety of ways, and things
can easily get confusing.

Arithmetic Logic Units

On early microprocessors, as on the DLW-1 and DLW-2, all integer arithmetic
and logical operations were handled by the ALU. Floating-point operations
were executed by a companion chip, commonly called an arithmetic coprocessor,
that was attached to the motherboard and designed to work in conjunction
with the microprocessor. Eventually, floating-point capabilities were inte-
grated onto the CPU as a separate execution unit alongside the ALU.

Arithmetic Operations

Logic Operations

Vector
Operations

Scalar
Operations

Integer

Floating-
Point

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

68 Chapter 4

Consider the Intel Pentium processor depicted in Figure 4-5, which
contains two integer ALUs and a floating-point ALU, along with some
other units that we’ll describe shortly.

Figure 4-5: The Intel Pentium

This diagram is a variation on Figure 4-2, with the execute stage replaced
by labeled white boxes (SIU, CIU, FPU, BU, etc.) that designate the type of
execution unit that’s modifying the code stream during the execution phase.
Notice also that the figure contains a slight shift in terminology that I should
clarify before we move on.

Until now, I’ve been using the term ALU as synonymous with integer
execution unit. After the previous section, however, we know that a micro-
processor does arithmetic and logical operations on more than just integer
data, so we have to be more precise in our terminology. From now on, ALU
is a general term for any execution unit that performs arithmetic and logical
operations on any type of data. More specific labels will be used to identify
the ALUs that handle specific types of instructions and numerical data. For
instance, an integer execution unit (IU) is an ALU that executes integer arith-
metic and logical instructions, a floating-point execution unit (FPU) is an ALU
that executes floating-point arithmetic and logical instructions, and so on.
Figure 4-5 shows that the Pentium has two IUs—a simple integer unit (SIU)
and a complex integer unit (CIU)—and a single FPU.

Execution units can be organized logically into functional blocks for
ease of reference, so the two integer execution units can be referred

Write

Back End

Front End

Branch
Unit

Floating-
Point
Unit

FPU

BU

CIU (U)SIU (V)

Decode

Instruction Fetch

Control Unit

Integer Unit

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Superscalar Execut ion 69

to collectively as the Pentium’s integer unit. The Pentium’s floating-point unit
consists of only a single FPU, but some processors have more than one FPU;
likewise with the load-store unit (LSU). The floating-point unit can consist
of two FPUs—FPU1 and FPU2—and the load-store unit can consist of LSU1
and LSU2. In both cases, we’ll often refer to “the FPU” or “the LSU” when we
mean all of the execution units in that functional block, taken as a group.

Many modern microprocessors also feature vector execution units, which
perform arithmetic and logical operations on vectors. I won’t describe vector
computing in detail here, however, because that discussion belongs in another
chapter.

Memory-Access Units

In almost all of the processors that we’ll cover in later chapters, you’ll see a pair
of execution units that execute memory-access instructions: the load-store unit
and the branch execution unit. The load-store unit (LSU) is responsible for the
execution of load and store instructions, as well as for address generation. As
mentioned in Chapter 1, LSUs have small, stripped-down integer addition
hardware that can quickly perform the addition required to compute an
address.

The branch execution unit (BEU) is responsible for executing conditional
and unconditional branch instructions. The BEU of the DLW series reads
the processor status word as described in Chapter 1 and decides whether
or not to replace the program counter with the branch target. The BEU
also often has its own address generation unit for performing quick address
calculations as needed. We’ll talk more about the branch units of real-world
processors later on.

Microarchitecture and the ISA

In the preceding discussion of superscalar execution, I made a number of
references to the discrepancy between the linear-execution, single-ALU
programming model that the programmer sees and what the superscalar
processor’s hardware actually does. It’s now time to flesh out that distinction
between the programming model and the actual hardware by introducing
some concepts and vocabulary that will allow us to talk with more precision
about the divisions between the apparent and the actual in computer
architecture.

Chapter 1 introduced the concept of the programming model as an
abstract representation of the microprocessor that exposes to the programmer
the microprocessor’s functionality. The DLW-1’s programming model con-
sisted of a single, integer-only ALU, four general-purpose registers, a program
counter, an instruction register, a processor status word, and a control unit.
The DLW-1’s instruction set consisted of a few instructions for working with
different parts of the programming model: arithmetic instructions (e.g., add
and sub) for the ALU and general-purpose registers (GPRs), load and store
instructions for manipulating the control unit and filling the GPRs with data,

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

70 Chapter 4

and branch instructions for checking the PSW and changing the PC. We can
call this programmer-centric combination of programming model and
instruction set an instruction set architecture (ISA).

The DLW-1’s ISA was a straightforward reflection of its hardware, which
consisted of a single ALU, four GPRs, a PC, a PSW, and a control unit. In
contrast, the successor to the DLW-1, the DLW-2, contained a second ALU
that was invisible to the programmer and accessible only to the DLW-2’s
decode/dispatch logic. The DLW-2’s decode/dispatch logic would examine
pairs of integer arithmetic instructions to determine if they could safely be
executed in parallel (and hence out of sequential program order). If they
could, it would send them off to the two integer ALUs to be executed simul-
taneously. Now, the DLW-2 has the same instruction set architecture as the
DLW-1—the instruction set and programming model remain unchanged—
but the DLW-2’s hardware implementation of that ISA is significantly different
in that the DLW-2 is superscalar.

A particular processor’s hardware implementation of an ISA is generally
referred to as that processor’s microarchitecture. We might call the ISA intro-
duced with the DLW-1 the DLW ISA. Each successive iteration of our hypo-
thetical DLW line of computers—the DLW-1 and DLW-2—implements the
DLW ISA using a different microarchitecture. The DLW-1 has only one ALU,
while the DLW-2 is a two-way superscalar implementation of the DLW-ISA.

Intel’s x86 hardware followed the same sort of evolution, with each
successive generation becoming more complex while the ISA stayed largely
unchanged. Regarding the Pentium’s inclusion of floating-point hardware,
you might be wondering how the programmer was able to use the floating-
point hardware (i.e., the FPU plus a floating-point register file) if the original
x86 ISA didn’t include any floating-point operations or specify any floating-
point registers. The Pentium’s designers had to make the following changes
to the ISA to accommodate the new functionality:

First, they had to modify the programming model by adding an FPU and
floating-point–specific registers.

Second, they had to extend the instruction set by adding a new group of
floating-point arithmetic instructions.

These types of ISA extensions are fairly common in the computing world.
Intel extended the original x86 instruction set to include the x87 floating-
point extensions. The x87 included an FPU and a stack-based floating-point
register file, but we’ll talk in more detail about the x87’s stack-based archi-
tecture in the next chapter. Intel later extended x86 again with the introduc-
tion of a vector-processing instruction set called MMX (multimedia extensions),
and again with the introduction of the SSE (streaming SIMD extensions) and
SSE2 instruction sets. (SIMD stands for single instruction, multiple data and is
another way of describing vector computing. We’ll cover this in more detail
in “The Vector Execution Units” on page 168.) Similarly, Apple, Motorola,
and IBM added a set of vector extensions to the PowerPC ISA in the form of
AltiVec, as the extensions are called by Motorola, or VMX, as they’re called
by IBM.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Superscalar Execut ion 71

A Brief History of the ISA

Back in the early days of computing, computer makers like IBM didn’t build
a whole line of software-compatible computer systems and aim each system
at a different price/performance point. Instead, each of a manufacturer’s
systems was like each of today’s game consoles, at least from a programmer’s
perspective—programmers wrote directly to the machine’s unique hardware,
with the result that a program written for one machine would run neither on
competing machines nor on other machines from a different product line
put out by the manufacturer’s own company. Just like a Nintendo 64 will run
neither PlayStation games nor older SNES games, programs written for one
circa-1960 machine wouldn’t run on any machine but that one particular
product from that one particular manufacturer. The programming model
was different for each machine, and the code was fitted directly to the hard-
ware like a key fits a lock (see Figure 4-6 below).

Figure 4-6: Software was custom-fitted
to each generation of hardware

The problems this situation posed are obvious. Every time a new machine
came out, software developers had to start from scratch. You couldn’t reuse
programs, and programmers had to learn the intricacies of each new piece
of hardware in order to code for it. This cost quite a bit of time and money,
making software development a very expensive undertaking. This situation
presented computer system designers with the following problem: How do
you expose (make available) the functionality of a range of related hardware
systems in a way that allows software to be easily developed for and ported
between those systems? IBM solved this problem in the 1960s with the launch
of the IBM System/360, which ushered in the era of modern computer
architecture. The System/360 introduced the concept of the ISA as a layer
of abstraction—or an interface, if you will—separated from a particular
processor’s microarchitecture (see Figure 4-7). This means that the infor-
mation the programmer needed to know to program the machine was
abstracted from the actual hardware implementation of that machine.
Once the design and specification of the instruction set, or the set of
instructions available to a programmer for writing programs, was separated
from the low-level details of a particular machine’s design, programs written
for a particular ISA could run on any machine that implemented that ISA.

Thus the ISA provided a standardized way to expose the features of a
system’s hardware that allowed manufacturers to innovate and fine-tune that
hardware for performance without worrying about breaking the existing
software base. You could release a first-generation product with a particular

Software

Hardware

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

72 Chapter 4

ISA, and then work on speeding up the implementation of that same ISA for
the second-generation product, which would be backward-compatible with
the first generation. We take all this for granted now, but before the IBM
System/360, binary compatibility between different machines of different
generations didn’t exist.

Figure 4-7: The ISA sits between the software and the hardware, providing a
consistent interface to the software across hardware generations.

The blue layer in Figure 4-7 simply represents the ISA as an abstract
model of a machine for which a programmer writes programs. As mentioned
earlier, the technical innovation that made this abstract layer possible was
something called the microcode engine. A microcode engine is sort of like a
CPU within a CPU. It consists of a tiny bit of storage, the microcode ROM,
which holds microcode programs, and an execution unit that executes those
programs. The job of each of these microcode programs is to translate a
particular instruction into a series of commands that controls the internal
parts of the chip. When a System/360 instruction is executed, the microcode
unit reads the instruction in, accesses the portion of the microcode ROM
where that instruction’s corresponding microcode program is located, and
then produces a sequence of machine instructions, in the processor’s internal
instruction format, that orchestrates the dance of memory accesses and func-
tional unit activations that actually does the number crunching (or whatever
else) the architectural instruction has commanded the machine to do.

By decoding instructions this way, all programs are effectively running
in emulation. This means that the ISA represents a sort of idealized model,
emulated by the underlying hardware, on the basis of which programmers
can design applications. This emulation means that between iterations of a
product line, a vendor can change the way their CPU executes a program,
and all they have to do is rewrite the microcode program each time so the
programmer will never have to be aware of the hardware differences because
the ISA hasn’t changed a bit. Microcode engines still show up in modern
CPUs. AMD’s Athlon processor uses one for the part of its decoding path that
decodes the larger x86 instructions, as do Intel’s Pentium III and Pentium 4.

The key to understanding Figure 4-7 is that the blue layer represents a
layer of abstraction that hides the complexity of the underlying hardware
from the programmer. The blue layer is not a hardware layer (that’s the
gray one) and it’s not a software layer (that’s the peach one), but it’s a
conceptual layer. Think of it like a user interface that hides the complexity

2nd-Generation Hardware

Instruction Set
Architecture

Software

1st-Generation Hardware

Instruction Set
Architecture

Software

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Superscalar Execut ion 73

of an operating system from the user. All the user needs to know to use the
machine is how to close windows, launch programs, find files, and so on. The
UI (and by this I mean the WIMP conceptual paradigm—windows, icons,
menus, pointer—not the software that implements the UI) exposes the
machine’s power and functionality to the user in a way that he or she can
understand and use. And whether that UI appears on a PDA or on a desktop
machine, the user still knows how to use it to control the machine.

The main drawback to using microcode to implement an ISA is that
the microcode engine was, in the beginning, slower than direct decoding.
(Modern microcode engines are about 99 percent as fast as direct execution.)
However, the ability to separate ISA design from microarchitectural imple-
mentation was so significant for the development of modern computing that
the small speed hit incurred was well worth it.

The advent of the reduced instruction set computing (RISC) movement in the
1970s saw a couple of changes to the scheme described previously. First and
foremost, RISC was all about throwing stuff overboard in the name of speed.
So the first thing to go was the microcode engine. Microcode had allowed ISA
designers to get elaborate with instruction sets, adding in all sorts of complex
and specialized instructions that were intended to make programmers’ lives
easier but that were in reality rarely used. More instructions meant that you
needed more microcode ROM, which in turn meant larger CPU die sizes,
higher power consumption, and so on. Since RISC was more about less, the
microcode engine got the ax. RISC reduced the number of instructions in
the instruction set and reduced the size and complexity of each individual
instruction so that this smaller, faster, and more lightweight instruction set
could be more easily implemented directly in hardware, without a bulky
microcode engine.

While RISC designs went back to the old method of direct execution of
instructions, they kept the concept of the ISA intact. Computer architects
had by this time learned the immense value of not breaking backward com-
patibility with old software, and they weren’t about to go back to the bad old
days of marrying software to a single product. So the ISA stayed, but in a
stripped-down, much simplified form that enabled designers to implement
directly in hardware the same lightweight ISA over a variety of different
hardware types.

NOTE Because the older, non-RISC ISAs featured richer, more complex instruction sets, they
were labeled complex instruction set computing (CISC) ISAs in order to distin-
guish them from the new RISC ISAs. The x86 ISA is the most popular example of a
CISC ISA, while PowerPC, MIPS, and Arm are all examples of popular RISC ISAs.

Moving Complexity from Hardware to Software
RISC machines were able to get rid of the microcode engine and still retain
the benefits of the ISA by moving complexity from hardware to software.
Where the microcode engine made CISC programming easier by providing
programmers with a rich variety of complex instructions, RISC programmers
depended on high-level languages, like C, and on compilers to ease the
burden of writing code for RISC ISAs’ restricted instruction sets.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

74 Chapter 4

Because a RISC ISA’s instruction set is more limited, it’s harder to write
long programs in assembly language for a RISC processor. (Imagine trying to
write a novel while restricting yourself to a fifth grade vocabulary, and you’ll
get the idea.) A RISC assembly language programmer may have to use many
instructions to achieve the same result that a CISC assembly language pro-
grammer can get with one or two instructions. The advent of high-level
languages (HLLs), like C, and the increasing sophistication of compiler
technology combined to effectively eliminate this programmer-unfriendly
aspect of RISC computing.

The ISA was and is still the optimal solution to the problem of easily and
consistently exposing hardware functionality to programmers so that soft-
ware can be used across a wide range of machines. The greatest testament
to the power and flexibility of the ISA is the longevity and ubiquity of the
world’s most popular and successful ISA: the x86 ISA. Programs written for
the Intel 8086, a chip released in 1978, can run with relatively little modifi-
cation on the latest Pentium 4. However, on a microarchitectural level, the
8086 and the Pentium 4 are as different as the Ford Model T and the Ford
Mustang Cobra.

Challenges to Pipelining and Superscalar Design

I noted previously that there are conditions under which two arithmetic
instructions cannot be “safely” dispatched in parallel for simultaneous exe-
cution by the DLW-2’s two ALUs. Such conditions are called hazards, and
they can all be placed in one of three categories:

Data hazards

Structural hazards

Control hazards

Because pipelining is a form of parallel execution, these three types of
hazards can also hinder pipelined execution, causing bubbles to occur in
the pipeline. In the following three sections, I’ll discuss each of these types
of hazards. I won’t go into a huge amount of detail about the tricks that
computer architects use to eliminate them or alleviate their affects, because
we’ll discuss those when we look at specific microprocessors in the next few
chapters.

Data Hazards

The best way to explain what a data hazard is to illustrate one. Consider
Program 4-1:

Program 4-1: A data hazard

Line # Code Comments

1 add A, B, C Add the numbers in registers A and B and store the result in C.

2 add C, D, D Add the numbers in registers C and D and store the result in D.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Superscalar Execut ion 75

Because the second instruction in Program 4-1 depends on the out-
come of the first instruction, the two instructions cannot be executed
simultaneously. Rather, the add in line 1 must finish first, so that the result
is available in C for the add in line 2.

Data hazards are a problem for both superscalar and pipelined execution.
If Program 4-1 is run on a superscalar processor with two integer ALUs, the
two add instructions cannot be executed simultaneously by the two ALUs.
Rather, the ALU executing the add in line 1 has to finish first, and then the
other ALU can execute the add in line 2. Similarly, if Program 4-1 is run on a
pipelined processor, the second add has to wait until the first add completes
the write stage before it can enter the execute phase. Thus the dispatch
circuitry has to recognize the add in line 2’s dependence on the add in line 1,
and keep the add in line 2 from entering the execute stage until the add in line
1’s result is available in register C.

Most pipelined processors can do a trick called forwarding that’s aimed at
alleviating the effects of this problem. With forwarding, the processor takes
the result of the first add from the ALU’s output port and feeds it directly
back into the ALU’s input port, bypassing the register-file write stage. Thus
the second add has to wait for the first add to finish only the execute stage, and
not the execute and write stages, before it’s able to move into the execute
stage itself.

Register renaming is a trick that helps overcome data hazards on superscalar
machines. Since any given machine’s programming model often specifies
fewer registers than can be implemented in hardware, a given microprocessor
implementation often has more registers than the number specified in the
programming model. To get an idea of how this group of additional registers
is used, take a look at Figure 4-8.

In Figure 4-8, the DLW-2’s programmer thinks that he or she is using a
single ALU with four architectural general-purpose registers—A, B, C, and D—
attached to it, because four registers and one ALU are all that the DLW
architecture’s programming model specifies. However, the actual superscalar
DLW-2 hardware has two ALUs and 16 microarchitectural GPRs implemented
in hardware. Thus the DLW-2’s register rename logic can map the four archi-
tectural registers to the available microarchitectural registers in such a way as
to prevent false register name conflicts.

In Figure 4-8, an instruction that’s being executed by IU1 might think
that it’s the only instruction executing and that it’s using registers A, B, and C,
but it’s actually using rename registers 2, 5, and 10. Likewise, a second instruc-
tion executing simultaneously with the first instruction but in IU2 might also
think that it’s the only instruction executing and that it has a monopoly on
the register file, but in reality, it’s using registers 3, 7, 12, and 16. Once both
IUs have finished executing their respective instructions, the DLW-2’s write-
back logic takes care of transferring the contents of the rename registers back
to the four architectural registers in the proper order so that the program’s
state can be changed.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

76 Chapter 4

Figure 4-8: Register renaming

Let’s take a quick look at a false register name conflict in Program 4-2.

Program 4-2: A false register name conflict

In Program 4-2, there is no data dependency, and both add instructions
can take place simultaneously except for one problem: the first add reads the
contents of A for its input, while the second add writes a new value into A as its
output. Therefore, the first add’s read absolutely must take place before the
second add’s write. Register renaming solves this register name conflict by
allowing the second add to write its output to a temporary register; after both
adds have executed in parallel, the result of the second add is written from
that temporary register into the architectural register A after the first add has
finished executing and written back its own results.

Structural Hazards
Program 4-3 contains a short code example that shows superscalar execution
in action. Assuming the programming model presented for the DLW-2,
consider the following snippet of code.

Line # Code Comments

1 add A, B, C Add the numbers in registers A and B and store the result in C.

2 add D, B, A Add the numbers in registers A and D and store the result in A.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

A
B
C
D

ALU Registers

Rename Buffer

A
B
C
D

IU1 Registers

A
B
C
D

IU2 Registers

Programming Model
(Architecture)

Hardware Implementation
(Microarchitecture)

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

Superscalar Execut ion 77

Program 4-3: A structural hazard

At first glance, there appears to be nothing wrong with Program 4-3.
There’s no data hazard, because the two instructions don’t depend on each
other. So it should be possible to execute them in parallel. However, this
example presumes that both ALUs share the same group of four registers.
But in order for the DLW-2’s register file to accommodate multiple ALUs
accessing it at once, it needs to be different from the DLW-1’s register file in
one important way: it must be able to accommodate two simultaneous writes.
Otherwise, executing Program 4-3’s two instructions in parallel would trigger
what’s called a structural hazard, where the processor doesn’t have enough
resources to execute both instructions at once.

The Register File

In a superscalar design with multiple ALUs, it would take an enormous
number of wires to connect each register directly to each ALU. This problem
gets worse as the number of registers and ALUs increases. Hence, in super-
scalar designs with a large number of registers, a CPU’s registers are grouped
together into a special unit called a register file. This unit is a memory array,
much like the array of cells that makes up a computer’s main memory, and
it’s accessed through a special interface that allows the ALU to read from or
write to specific registers. This interface consists of a data bus and two types
of ports: the read ports and the write ports. In order to read a value from a
single register in the register file, the ALU accesses the register file’s read
port and requests that the data from a specific register be placed on the
special internal data bus that the register file shares with the ALU. Likewise,
writing to the register file is done through the file’s write port.

A single read port allows the ALU to access a single register at a time, so
in order for an ALU to read from two registers simultaneously (as in the case
of a three-operand add instruction), the register file must have two read ports.
Likewise, a write port allows the ALU to write to only one register at a time,
so a single ALU needs a single write port in order to be able to write the results
of an operation back to a register. Therefore, the register file needs two read
ports and one write port for each ALU. So for the two-ALU superscalar design,
the register file needs a total of four read ports and two write ports.

It so happens that the amount of die space that the register file takes up
increases approximately with the square of the number of ports, so there is a
practical limit on the number of ports that a given register file can support.
This is one of the reasons why modern CPUs use separate register files to
store integer, floating-point, and vector numbers. Since each type of math
(integer, floating-point, and vector) uses a different type of execution unit,
attaching multiple integer, floating-point, and vector execution units to a
single register file would result in quite a large file.

Line # Code Comments

15 add A, B, B Add the numbers in registers A and B and store the result in B.

16 add C, D, D Add the numbers in registers C and D and store the result in D.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

78 Chapter 4

There’s also another reason for using multiple register files to accom-
modate different types of execution units. As the size of the register file
increases, so does the amount of time it takes to access it. You might recall
from “The File-Clerk Model Revisited and Expanded” on page 9 that we
assume that register reads and writes happen instantaneously. If a register
file gets too large and the register file access latency gets too high, this can
slow down register accesses to the point where such access takes up a notice-
able amount of time. So instead of using one massive register file for each
type of numerical data, computer architects use two or three register files
connected to a few different types of execution units.

Incidentally, if you’ll recall “Opcodes and Machine Language” on
page 19, the DLW-1 used a series of binary numbers to designate which of
the four registers an instruction was accessing. Well, in the case of a register
file read, these numbers are fed into the register file’s interface in order to
specify which of the registers should place its data on the data bus. Taking
our two-bit register designations as an example, a port on our four-register
file would have two lines that would be held at either high or low voltages
(depending on whether the bit placed on each line was a 1 or a 0), and these
lines would tell the file which of its registers should have its data placed on
the data bus.

Control Hazards

Control hazards, also known as branch hazards, are hazards that arise when the
processor arrives at a conditional branch and has to decide which instruction
to fetch next. In more primitive processors, the pipeline stalls while the
branch condition is evaluated and the branch target is calculated. This stall
inserts a few cycles of bubbles into the pipeline, depending on how long it
takes the processor to identify and locate the branch target instruction.

Modern processors use a technique called branch prediction to get around
these branch-related stalls. We’ll discuss branch prediction in more detail in
the next chapter.

Another potential problem associated with branches lies in the fact that
once the branch condition is evaluated and the address of the next instruc-
tion is loaded into the program counter, it then takes a number of cycles to
actually fetch the next instruction from storage. This instruction load latency is
added to the branch condition evaluation latency discussed earlier in this
section. Depending on where the next instruction is located—such as in a
nearby cache, in main memory, or on a hard disk—it can take anywhere from
a few cycles to thousands of cycles to fetch the instruction. The cycles that the
processor spends waiting on that instruction to show up are dead, wasted
cycles that show up as bubbles in the processor’s pipeline and kill performance.
Computer architects use instruction caching to alleviate the effects of load
latency, and we’ll talk more about this technique in the next chapter.

From Inside the Machine
No Starch Press, Copyright © 2006 by Jon M. Stokes

