
JM
PEBP

SU
B

T H E

I D A P R O
B O O K

T H E

I D A P R O
B O O K

T H E U N O F F I C I A L G U I D E T O T H E

W O R L D ’ S M O S T P O P U L A R D I S A S S E M B L E R

C H R I S E A G L E

2 N D
E D

I T I O
N

“I wholeheartedly recommend The
IDA Pro Book to all IDA Pro users.”

—Ilfak Guilfanov,
creator of IDA Pro

JM
PEBP

SU
B

T H E I D A D E B U G G E R

IDA is most widely known as a disassem-
bler, and it is clearly one of the finest tools

available for performing static analysis of
binaries. Given the sophistication of modern

anti–static analysis techniques, it is not uncommon
to combine static analysis tools and techniques with
dynamic analysis tools and techniques in order to take advantage of the best
of both worlds. Ideally, all of these tools would be integrated into a single pack-
age. Hex-Rays made that move when it introduced a debugger in version 4.5
of IDA and solidified IDA’s role as a general-purpose reverse engineering
tool. With each successive version of IDA, its debugging capabilities have been
improved. In its latest version, IDA is capable of local and remote debugging
on a number of different platforms and supports a number of different pro-
cessors. IDA may also be configured to act as a frontend to Microsoft’s WinDbg
debugger, making it possible to perform Windows kernel debugging.

Over the course of the next few chapters, we will cover the basic features
of IDA’s debugger, using the debugger to assist with obfuscated code analysis
and remote debugging of Windows, Linux, or OS X binaries. While we assume

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

514 Chapter 24

that the reader possesses some familiarity with the use of debuggers, we will
review many of the basic capabilities of debuggers in general as we progress
through the features of IDA’s debugger.

Launching the Debugger

Debuggers are typically used to perform one of two tasks: examining memory
images (core dumps) associated with crashed processes and executing pro-
cesses in a very controlled manner. A typical debugging session begins with
the selection of a process to debug. There are two ways this is generally
accomplished. First, most debuggers are capable of attaching to a running
process (assuming the user has permission to do so). Depending on the
debugger being used, the debugger itself may be able to present a list of
available processes to choose from. Lacking such capability, the user must
determine the ID of the process to which he wishes to attach and then com-
mand the debugger to attach to the specified process. The precise manner
by which a debugger attaches to a process varies from one operating system
to another and is beyond the scope of this book. When attaching to an exist-
ing process, it is not possible to monitor or control the process’s initial startup
sequence, because all of the startup and initialization code will already have
completed before you have a chance to attach to the process.

The manner by which you attach to a process with the IDA debugger
depends on whether a database is currently open or not. When no database
is open, the Debugger�Attach menu is available, as shown in Figure 24-1.

Figure 24-1: Attaching to an arbitrary
process

Available options allow selection of different IDA debuggers (remote
debugging is covered in Chapter 26). Options vary depending on the plat-
form on which you are running IDA. Selecting a local debugger causes IDA
to display a list of running processes to which you may attach. Figure 24-2
shows an example of such a list.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 515

Figure 24-2: Debugger process-selection dialog

Once a process has been selected, the debugger creates a temporary
database by taking a memory snapshot of the running process. In addition
to the memory image of the running process, the temporary database con-
tains sections for all shared libraries loaded by the process, resulting in a sub-
stantially larger and more cluttered database than you may be accustomed
to. One drawback to attaching to a process in this manner is that IDA has less
information available to disassemble the process because IDA’s loader never
processes the corresponding executable file
image and an automated analysis of the binary
is never performed. In fact, once the debugger
has attached to the process, the only instruc-
tions that will be disassembled in the binary are
the instruction referenced by the instruction
pointer and those that flow from it. Attaching
to a process immediately pauses the process,
allowing you the opportunity to set breakpoints
prior to resuming execution of the process.

An alternate way to attach to a running
process is to open the associated executable in
IDA before attempting to attach to the running
process. With a database open, the Debugger
menu takes on an entirely different form, as
shown in Figure 24-3.

If you are not presented with this menu
(or one very like it), then you probably have
not yet specified a debugger to use for the cur-
rently open file type. In such cases, Debugger�
Select Debugger will present a list of suitable
debuggers given the current file type. Figure
24-4 shows a typical debugger selection dialog.

Figure 24-3: Debugger
menu with a database
open

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

516 Chapter 24

Figure 24-4: Debugger selection dialog

You may make your selection the default debugger for the current file
type by checking the box at the bottom of the dialog. The current default
debugger, if any, is noted just above the checkbox. Once you have selected
a debugger, you may change debuggers at any time via the Debug�Switch
Debugger menu.

When Debugger�Attach to Process is selected, IDA’s behavior will vary
depending on the type of file opened in the active database. If the file is an
executable file, IDA will display a list of all processes that have the same name
as the file opened in the database. If IDA can find no process with a match-
ing name, IDA will display a list of every running process and leave it to you
to choose the correct process to attach to. In any case, you may attach to any
of the displayed processes, but IDA has no way to guarantee that the process
was started with same binary image that is loaded in the open IDA database.

IDA behaves differently if the currently open database is a shared library.
On Windows systems, IDA will filter the displayed process list to just those
processes that have the corresponding .dll file loaded. For example, if you
are currently analyzing wininet.dll in IDA, then when you select Debugger�
Attach to Process, you will see only those processes that currently have
wininet.dll loaded. On Linux and OS X systems, IDA does not have this
filtering ability and displays every process to which you have the rights to
attach.

As an alternative to attaching to an existing process, you may opt to launch
a new process under debugger control. With no database open, a new pro-
cess can be launched via Debugger�Run. When a database is open, a new
process can be launched via Debugger�Start Process or Debugger�Run
to Cursor. Using the former causes the new process to execute until it hits a
breakpoint (which you need to have set prior to choosing Debugger�Start
Process) or until you elect to pause the process using Debugger�Pause Pro-
cess. Using Debugger�Run to Cursor automatically sets a breakpoint at the
current cursor location prior to starting the new process. In this case, the new
process will execute until the current cursor location is reached or until an

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 517

earlier breakpoint is hit. If execution never reaches the current cursor loca-
tion (or any other breakpoint), the process will continue to run until it is
forcibly paused or terminated (Debugger�Terminate Process).

Launching a process under debugger control (as opposed to attaching
to an existing process) is the only way to monitor every action the process
takes. With breakpoints set prior to process initiation, it becomes possible
to closely monitor a process’s entire startup sequence. Controlling startup
sequences is particularly important in the case of programs that have been
obfuscated, because you will often want to pause the process immediately
after the de-obfuscation routines complete and before the process begins
its normal operations.

Another advantage to launching a process from an open IDA database is
that IDA performs its initial autoanalysis on the process image before launch-
ing the process. This results in significantly better disassembly quality over
that attained when attaching the debugger to an existing process.

IDA’s debugger is capable of both local and remote debugging. For local
debugging, you can only debug binaries that will run on your platform. There
is no emulation layer that allows binaries from alternate platforms or CPU
types to be executed within IDA’s local debugger. For remote debugging,
IDA ships with a number of debugging servers including implementations
for Windows 32/64, Windows CE/ARM, Mac OS X 32/64, Linux 32/64/
ARM, and Android. The debugging servers are intended to execute along-
side the binary that you intend to debug. Once you have a remote debugging
server running, IDA can communicate with the server to launch or attach
to a target process on the remote machine. For Windows CE ARM devices,
IDA communicates with the remote device using ActiveSync and installs the
debugging server remotely. IDA is also capable of communicating with the
gdbserver1 component of the GNU Debugger2 (gdb) or with programs that
are linked with a suitable gdb remote stub.3 Finally, for remote debugging on
Symbian devices, you must install and configure Metrowerk’s App TRK4 in
order for IDA to communicate with the device over a serial port. In any case,
IDA is capable of acting as a debugger frontend only for processing running
on x86, x64, MIPS, ARM, and PPC processors. Remote debugging is dis-
cussed in Chapter 26.

As with any other debugger, if you intend to use IDA’s debugger to
launch new processes, the original executable file is required to be present
on the debugging host, and the original binary will be executed with the
full privileges of the user running IDA. In other words, it is not sufficient to
have only an IDA database loaded with the binary you wish to debug. This is
extremely important to understand if you intend to use the IDA debugger
for malware analysis. You can easily infect the debugging target machine if
you fail to properly control the malware sample. IDA attempts to warn you of

1. See http://www.sourceware.org/gdb/current/onlinedocs/gdb/Server.html#Server.

2. See http://www.gnu.org/software/gdb/.

3. See http://www.sourceware.org/gdb/current/onlinedocs/gdb/Remote-Stub.html#Remote-Stub.

4. See http://www.tools.ext.nokia.com/agents/index.htm.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

518 Chapter 24

this possibility anytime you select Debugger�Start Process (or Debugger�
Attach to process with an open database) by displaying a debugger warning
message stating the following:

You are going to launch the debugger. Debugging a program
means that its code will be executed on your system.

Be careful with malicious programs, viruses and trojans!

REMARK: if you select ‘No’, the debugger will be automatically
disabled.

Are you sure you want to continue?

Selecting No in response to this warning causes the Debugger menu
to be removed from the IDA menu bar. The Debugger menu will not be
restored until you close the active database.

It is highly recommended that you perform any debugging of malicious
software within a sandbox environment. In contrast, the x86 emulator plug-
in discussed in Chapter 21 neither requires that the original binary be present
nor executes any of the binary’s instructions on the machine performing the
emulation.

Basic Debugger Displays

Regardless of how you happen to launch the debugger, once your process of
interest has been paused under debugger control, IDA enters its debugger
mode (as opposed to normal disassembly mode), and you are presented with
several default displays. The default debugger display is shown in Figure 24-5.

Figure 24-5: IDA debugger display

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 519

If you are accustomed to using other Windows debuggers such as
OllyDbg5 or Immunity Debugger,6 one of your first thoughts might be that
not much information is displayed on the screen. This is primarily a result
of the fact that IDA defaults to a font size that is actually readable. If you find
yourself missing the micro fonts used in other debuggers, you can easily
change things via the Options�Font menu. You may also wish to make use
of saved IDA desktops (Windows�Save Desktop) if you develop a fondness
for a specific layout of your debugger windows.

As shown in the Figure 24-5, the debugger toolbar replaces the dis-
assembly toolbar. A number of standard (from a debugging standpoint)
tools are present, including process control tools and breakpoint manipula-
tion tools.

The IDA View-EIP disassembly window is a default disassembly listing
window when the debugger is active. It also happens to be synchronized with
the current value of the instruction pointer register. If IDA detects that a reg-
ister points to a memory location within the disassembly window, the name
of that register is displayed in the left margin, opposite the address to which
the register points. In Figure 24-5, the location to which EIP points is flagged
in IDA View-EIP (note that EDX also points to the same location in this exam-
ple). By default, IDA highlights breakpoints in red and the next instruction
to be executed (the one to which the instruction pointer points) in blue.
Debugger-related disassemblies are generated via the same disassembly pro-
cess used in standard disassembly mode. Thus, IDA’s debugger offers per-
haps the best disassembly capability to be found in a debugger. Additionally,
if you launched the debugger from an open IDA database, IDA is able to
characterize all of the executable content based on analysis performed prior
to launching the debugger. IDA’s ability to disassemble any library code that
has been loaded by the process will be somewhat more limited because IDA
has not had a chance to analyze the associated .dll file prior to launching the
debugger.

The Stack View window is another standard disassembly view primarily
used to display the data contents of the process’s runtime stack. All registers
that point to stack locations are noted as such in the General Registers
view (such as EBP in this case). Through the use of comments, IDA makes
every attempt to provide context information for each data item on the stack.
When the stack item is a memory address, IDA attempts to resolve the address
to a function location (this helps highlight the location from which a func-
tion was called). When the stack item is a data pointer, a reference to the
associated data item is displayed. The remaining default displays include the
Hex view , which offers a standard hex dump of memory, the Modules
view, which displays a list of modules currently loaded in the process image,
and the Threads view, which displays a list of threads in the current pro-
cess. Double-clicking any listed thread causes the IDA View-EIP disassembly

5. See http://www.ollydbg.de/.

6. See http://www.immunityinc.com/products-immdbg.shtml.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

520 Chapter 24

window to jump to the current instruction within the selected thread and
updates the General Registers view to reflect the current values for registers
within the selected thread.

The General Registers window (also shown in Figure 24-6) displays the
current contents of the CPU’s general-purpose registers. Additional windows
for displaying the contents of the CPU’s segment, floating-point, or MMX
registers may be opened from the Debugger menu.

Figure 24-6: The General Registers display

Within the General Registers window, register contents are displayed to
the right of the associated register name followed by a description of each
register’s content. The CPU flag bits are displayed down the rightmost col-
umn. Right-clicking a register value or flag bit provides access to a Modify
menu item, which allows you to change the contents of any register or CPU
flag. Menu options offer quick access to zero a value, toggle a value, incre-
ment a value, or decrement a value. Toggling values is particularly useful for
changing CPU flag bits. Right-clicking any register value also provides access
to the Open Register Window menu item. Selecting Open Register Window
causes IDA to open a new disassembly window centered at the memory loca-
tion held in the selected register. If you ever find that you have inadvertently
closed either IDA View-EIP or IDA View-ESP, use the Open Register Window
command on the appropriate register to reopen the lost window. If a register
appears to point to a valid memory location, then the right-angle arrow con-
trol to the right of that register’s value will be active and highlighted in black.
Clicking an active arrow opens a new disassembly view centered on the corre-
sponding memory location.

The Modules window displays a list of all executable files and shared
libraries loaded into the process memory space. Double-clicking any module
named in the list opens a list of symbols exported by that module. Figure 24-7
shows an example of the contents of kernel32.dll. The symbol list provides an
easy way to track down functions within loaded libraries if you wish to set
breakpoints on entry to those functions.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 521

Figure 24-7: The Modules window with associated module
contents

Additional debugger displays are accessible using various debugger
menu selections. Displays pertaining to debugger operations will be discussed
in the following section, “Process Control.” Along with the debugger-specific
displays, all traditional IDA subviews, such as Functions and Segments, remain
available via the Views�Open Subviews command.

Process Control

Perhaps the most important feature of any debugger is the ability to closely
control—and modify, if desired—the behavior of the process being debugged.
To that end, most debuggers offer commands that allow one or more instruc-
tions to be executed before returning control to the debugger. Such com-
mands are often used in conjunction with breakpoints that allow the user to
specify that execution should be interrupted when a designated instruction
is reached or when a specific condition is met.

Basic execution of a process under debugger control is accomplished
through the use of various Step, Continue, and Run commands. Because
they are used so frequently, it is helpful to become familiar with the toolbar
buttons and hotkey sequences associated with these commands. Figure 24-8
shows the toolbar buttons associated with execution of a process.

Figure 24-8: Debugger process control tools

The behavior of each of these commands is described in the following list:

Continue Resumes execution of a paused process. Execution continues
until a breakpoint is hit, the user pauses or terminates execution, or the
process terminates on its own.

Continue
F9

Terminate
CTRL-F2

Step Over
F8

Run to Cursor
F9

Pause Step Into
F7

Run Until Return
CTRL-F7

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

522 Chapter 24

Pause Pauses a running process.

Terminate Terminates a running process.

Step Into Executes the next instruction only. If the next instruction is a
function call, breaks on the first instruction of the target function. Hence
the name Step Into, since execution steps into any function being called.

Step Over Executes the next instruction only. If the next instruction is
a function call, treats the call as a single instruction, breaking once the
function returns. Hence the name Step Over, since stepping proceeds
over functions rather than through them as with Step Into. Execution
may be interrupted prior to completion of the function call if a break-
point is encountered. Step Over is very useful as a time-saver when the
behavior of a function is well known and uninteresting.

Run Until Return Resumes execution of the current function and does
not stop until that function returns (or a breakpoint is encountered).
This operation is useful when you have seen enough of a function and
you wish to get out of it or when you inadvertently step into a function
that you meant to step over.

Run to Cursor Resumes execution of the process and stops when exe-
cution reaches the current cursor location (or a breakpoint is hit). This
feature is useful for running through large blocks of code without the
need to set a permanent breakpoint at each location where you wish to
pause. Beware that the program may not pause if the cursor location is
bypassed or otherwise never reached.

In addition to toolbar and hotkey access, all of the execution control
commands are accessible via the Debugger menu. Regardless of whether a
process pauses after a single step or hitting a breakpoint, each time the pro-
cess pauses, all debugger-related displays are updated to reflect the state of
the process (CPU registers, flags, memory contents) at the time the process
was paused.

Breakpoints
Breakpoints are a debugger feature that goes hand in hand with process exe-
cution and interruption (pausing). Breakpoints are set as a means of inter-
rupting program execution at very specific locations within the program. In
a sense a breakpoint is a more permanent extension of the Run to Cursor
concept in that once a breakpoint is set at a given address, execution will
always be interrupted when execution reaches that location, regardless of
whether the cursor remains positioned on that location or not. However,
while there is only one cursor to which execution can run, it is possible to
set many breakpoints all over a program, the arrival at any one of which will

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 523

interrupt execution of the program. Breakpoints are set in IDA by navigating
to the location at which you want execution to pause and using the F2 hotkey
(or right-clicking and selecting Add Breakpoint). Addresses at which break-
points have been set are highlighted with a red (by default) band across the
entire disassembly line. A breakpoint may be removed by pressing F2 a sec-
ond time to toggle the breakpoint off. A complete list of breakpoints cur-
rently set within a program may be viewed via Debugger�Breakpoints�
Breakpoint List.

By default, IDA utilizes software breakpoints, which are implemented by
replacing the opcode byte at the breakpoint address with a software break-
point instruction. For x86 binaries, this is the int 3 instruction, which uses
opcode value 0xCC. Under normal circumstances, when a software breakpoint
instruction is executed, the operating system transfers control to any debugger
that may be monitoring the interrupted process. As discussed in Chapter 21,
obfuscated code may take advantage of the behavior of software breakpoints
in an attempt to hinder normal operation of any attached debugger.

As an alternative to software breakpoints, some CPUs (such as the x86,
actually 386, and later) offer support for hardware-assisted breakpoints. Hard-
ware breakpoints are typically configured through the use of dedicated CPU
registers. For x86 CPUs, these registers are called DR0–7 (debug registers 0
through 7). A maximum of four hardware breakpoints can be specified using
x86 registers DR0–3. The remaining x86 debug registers are used to specify
additional constraints on each breakpoint. When a hardware breakpoint is
enabled, there is no need to substitute a special instruction into the program
being debugged. Instead, the CPU itself decides whether execution should
be interrupted or not based on values contained within the debug registers.

Once a breakpoint has been set, it is possible to modify various aspects of
its behavior. Beyond simply interrupting the process, debuggers often sup-
port the concept of conditional breakpoints, which allow users to specify a con-
dition that must be satisfied before the breakpoint is actually honored. When
such a breakpoint is reached and the associated condition is not satisfied, the
debugger automatically resumes execution of the program. The general idea
is that the condition is expected to be satisfied at some point in the future,
resulting in interruption of the program only when the condition you are
interested in has been satisfied.

The IDA debugger supports both conditional and hardware breakpoints.
In order to modify the default (unconditional, software-based) behavior of
a breakpoint, you must edit a breakpoint after it has been set. In order to
access the breakpoint-editing dialog, you must right-click an existing break-
point and select Edit Breakpoint. Figure 24-9 shows the resulting Breakpoint
Settings dialog.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

524 Chapter 24

Figure 24-9: The Breakpoint Settings dialog

The Location box indicates the address of the breakpoint being edited,
while the Enabled checkbox indicates whether the breakpoint is currently
active or not. A breakpoint that is disabled is not honored regardless of any
condition that may be associated with the breakpoint. The Hardware check-
box is used to request that the breakpoint be implemented in hardware
rather than software.

WARNING A word of caution concerning hardware breakpoints: Though the x86 only supports
four hardware breakpoints at any given time, as of this writing (IDA version 6.1), IDA
will happily allow you to designate more than four hardware breakpoints. However,
only four of them will be honored. Any additional hardware breakpoints will be
ignored.

When specifying a hardware breakpoint, you must use the Hardware
breakpoint mode radio buttons to specify whether the breakpoint behavior
is to break on execute, break on write, or break on read/write. The latter
two categories (break on write and break on read/write) allow you to create
breakpoints that trigger when a specific memory location (usually a data
location) is accessed, regardless of what instruction happens to be executing
at the time the access takes place. This is very useful if you are more inter-
ested in when your program accesses a piece of data than where the data is
accessed from.

In addition to specifying a mode for your hardware breakpoint, you must
specify a size. For execute breakpoints the size must be 1 byte. For write or
read/write breakpoints, the size may be set to 1, 2, or 4 bytes. When the size
is set to 2 bytes, the breakpoint’s address must be word aligned (a multiple
of 2 bytes). Similarly, for 4-byte breakpoints, the breakpoint address must be
double-word aligned (a multiple of 4 bytes). A hardware breakpoint’s size is
combined with its address to form a range of bytes over which the breakpoint
may be triggered. An example may help to explain. Consider a 4-byte write

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 525

breakpoint set at address 0804C834h. This breakpoint will be triggered by a
1-byte write to 0804C837h, a 2-byte write to 0804C836h, and a 4-byte write to
0804C832h, among others. In each of these cases, at least 1 byte in the range
0804C834h0804C837h is written. More information on the behavior of x86 hard-
ware breakpoints can be found in the Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B: System Programming Guide, Part 2.7

Conditional breakpoints are created by providing an expression in the
Breakpoint Settings dialog’s Condition field. Conditional breakpoints are a
debugger feature, not an instruction set or CPU feature. When a breakpoint
is triggered, it is the debugger’s job to evaluate any associated conditional
expression and determine whether the program should be paused (the con-
dition is met) or whether execution should simply continue (the condition is
not met). Therefore, conditions may be specified for both software and hard-
ware breakpoints.

IDA breakpoint conditions are specified using IDC (not Python) expres-
sions. Expressions that evaluate to non-zero are considered true, satisfying
the breakpoint condition and triggering the breakpoint. Expressions that
evaluate to zero are considered false, failing to satisfy the breakpoint condi-
tion and failing to trigger the associated breakpoint. In order to assist in the
creation of breakpoint expressions, IDA makes special register variables avail-
able within IDC (again, not Python) to provide direct access to register con-
tents in breakpoint expressions. These variables are named after the registers
themselves and include EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFL, AX, BX, CX, DX, SI,
DI, BP, SP, AL, AH, BL, BH, CL, CH, DL, and DH. These register variables are accessible
only when the debugger is active.

Unfortunately, no variables exist that allow direct access to the proc-
essor flag bits. In order to access individual CPU flags, you need to call the
GetRegValue function to obtain the value of the desired flag bit, such as CF.
If you need a reminder regarding valid register and flag names, refer to the
labels along the left and right edges of the General Registers window. A few
example breakpoint expressions are shown here:

EAX == 100 // break if eax holds the value 100
ESI > EDI // break if esi is greater than edi
Dword(EBP-20) == 10 // Read current stack frame (var_20) and compare to 10
GetRegValue("ZF") // break if zero flag is set
EAX = 1 // Set EAX to 1, this also evaluates to true (non-zero)
EIP = 0x0804186C // Change EIP, perhaps to bypass code

Two things to note about breakpoint expressions are the fact that IDC
functions may be called to access process information (as long as the func-
tion returns a value) and the fact that assignment can be used as a means of
modifying register values at specific locations during process execution. Ilfak
himself demonstrated this technique as an example of overriding a function
return value.8

7. See http://www.intel.com/products/processor/manuals/.

8. See http://www.hexblog.com/2005/11/simple_trick_to_hide_ida_debug.html and http://www
.hexblog.com/2005/11/stealth_plugin_1.html.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

526 Chapter 24

The last breakpoint options that can be configured in the Breakpoint
Settings dialog are grouped into the Actions box on the right side of the dia-
log. The Break checkbox specifies whether program execution should actually
be paused (assuming any associated condition is true) when the breakpoint
is reached. It may seem unusual to create a breakpoint that doesn’t break,
but this is actually a useful feature if all you want to do is modify a specific
memory or register value each time an instruction is reached without requir-
ing the program to be paused at the same time. Selecting the Trace check-
box causes a trace event to be logged each time the breakpoint is hit.

Tracing
Tracing offers a means of logging specific events that occur while a process is
executing. Trace events are logged to a fixed-size trace buffer and may option-
ally be logged to a trace file. Two styles of tracing are available: instruction
tracing and function tracing. When instruction tracing is enabled (Debugger�
Tracing�Instruction Tracing), IDA records the address, the instruction, and
the values of any registers (other than EIP) that were changed by the instruc-
tion. Instruction tracing can slow down a debugged process considerably,
because the debugger must single-step the process in order to monitor and
record all register values. Function tracing (Debugger�Tracing�Function
Tracing) is a subset of instruction tracing in which only function calls (and
optionally returns) are logged. No register values are logged for function
trace events.

Three types of individual trace events are also available: write traces,
read/write traces, and execution traces. As their names imply, each allows
logging of a trace event when a specific action occurs at a designated address.
Each of these individual traces is implemented using nonbreaking breakpoints
with the trace option set. Write and read/write traces are implemented using
hardware breakpoints and thus fall under the same restrictions mentioned
previously for hardware breakpoints, the most significant being that no more
than four hardware-assisted breakpoints or traces may be active at any given
time. By default, execution traces are implemented using software break-
points, and thus there is no limit on the number of execution traces that can
be set within a program.

Figure 24-10 shows the Tracing Options (Debugger�Tracing�Tracing
Options) dialog used to configure the debugger’s tracing operations.

Options specified here apply to function and instruction tracing only.
These options have no effect on individual trace events. The Trace buffer
size option specifies the maximum number of trace events that may be dis-
played at any given time. For a given buffer size n, only the n most recent
trace events are displayed. Naming a log file causes all trace events to be
appended to the named file. A file dialog is not offered when specifying a
log file, so you must specify the complete path to the log file yourself. An IDC
expression may be entered as a stop condition. The condition is evaluated
prior to tracing through each instruction. If the condition evaluates to true,
execution is immediately paused. The effect of this expression is to act as a
conditional breakpoint that is not tied to any specific location.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 527

Figure 24-10: The Tracing Options dialog

The Mark consecutive traced events with same IP option, when checked,
causes consecutive trace events originating from the same instruction (IP
here means Instruction Pointer) to be flagged with an equal sign. An example
in which consecutive events can originate at the same instruction address
occurs when the REP9 prefix is used in x86 programs. In order for an instruc-
tion trace to show each repetition at the same instruction address, the Log
if same IP option must also be selected. Without this option selected, an
instruction prefixed with REP is listed only once each time it is encountered.
The following listing shows a partial instruction trace using the default trace
settings:

 Thread Address Instruction Result
 ------ ------- ----------- ------

 00000150 .text:sub_401320+17 rep movsb ECX=00000000 ESI=0022FE2C EDI=0022FCF4
 00000150 .text:sub_401320+19 pop esi ESI=00000000 ESP=0022FCE4

Note that the movsb instruction is listed only once.
In the following listing, Log if same IP has been selected, resulting in

each iteration of the rep loop being logged:

Thread Address Instruction Result
------ ------- ----------- ------
000012AC .text:sub_401320+17 rep movsb ECX=0000000B ESI=0022FE21 EDI=0022FCE9 EFL=00010206 RF=1
000012AC .text:sub_401320+17 rep movsb ECX=0000000A ESI=0022FE22 EDI=0022FCEA
000012AC .text:sub_401320+17 rep movsb ECX=00000009 ESI=0022FE23 EDI=0022FCEB
000012AC .text:sub_401320+17 rep movsb ECX=00000008 ESI=0022FE24 EDI=0022FCEC
000012AC .text:sub_401320+17 rep movsb ECX=00000007 ESI=0022FE25 EDI=0022FCED
000012AC .text:sub_401320+17 rep movsb ECX=00000006 ESI=0022FE26 EDI=0022FCEE
000012AC .text:sub_401320+17 rep movsb ECX=00000005 ESI=0022FE27 EDI=0022FCEF
000012AC .text:sub_401320+17 rep movsb ECX=00000004 ESI=0022FE28 EDI=0022FCF0
000012AC .text:sub_401320+17 rep movsb ECX=00000003 ESI=0022FE29 EDI=0022FCF1

9. The REP prefix is an instruction modifier that causes certain x86 string instructions such as
movs and scas to be repeated based on a count contained in the ECX register.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

528 Chapter 24

000012AC .text:sub_401320+17 rep movsb ECX=00000002 ESI=0022FE2A EDI=0022FCF2
000012AC .text:sub_401320+17 rep movsb ECX=00000001 ESI=0022FE2B EDI=0022FCF3
000012AC .text:sub_401320+17 rep movsb ECX=00000000 ESI=0022FE2C EDI=0022FCF4 EFL=00000206 RF=0
000012AC .text:sub_401320+19 pop esi ESI=00000000 ESP=0022FCE4

Finally, in the following listing, the Mark consecutive traced events with
same IP option has been enabled, resulting in special markings that high-
light the fact that the instruction pointer has not changed from one instruc-
tion to the next:

Thread Address Instruction Result
------ ------- ----------- ------
000017AC .text:sub_401320+17 rep movsb ECX=0000000B ESI=0022FE21 EDI=0022FCE9 EFL=00010206 RF=1
= = = ECX=0000000A ESI=0022FE22 EDI=0022FCEA
= = = ECX=00000009 ESI=0022FE23 EDI=0022FCEB
= = = ECX=00000008 ESI=0022FE24 EDI=0022FCEC
= = = ECX=00000007 ESI=0022FE25 EDI=0022FCED
= = = ECX=00000006 ESI=0022FE26 EDI=0022FCEE
= = = ECX=00000005 ESI=0022FE27 EDI=0022FCEF
= = = ECX=00000004 ESI=0022FE28 EDI=0022FCF0
= = = ECX=00000003 ESI=0022FE29 EDI=0022FCF1
= = = ECX=00000002 ESI=0022FE2A EDI=0022FCF2
= = = ECX=00000001 ESI=0022FE2B EDI=0022FCF3
= = = ECX=00000000 ESI=0022FE2C EDI=0022FCF4 EFL=00000206 RF=0
000017AC .text:sub_401320+19 pop esi ESI=00000000 ESP=0022FCE4

The last two options we will mention concerning tracing are Trace over
debugger segments and Trace over library functions. When Trace over debug-
ger segments is selected, instruction and function call tracing is temporarily
disabled anytime execution proceeds to a program segment outside any of
the file segments originally loaded into IDA. The most common example of
this is a call to a shared library function. Selecting Trace over library func-
tions temporarily disables function and instruction tracing anytime execu-
tion enters a function that IDA has identified as a library function (perhaps
via FLIRT signature matching). Library functions linked into a binary should
not be confused with library functions that a binary accesses via a shared library
file such as a DLL. Both of these options are enabled by default, resulting in
better performance while tracing (because the debugger does not need to
step into library code) as well as a substantial reduction in the number of
trace events generated, since instruction traces through library code can
rapidly fill the trace buffer.

Stack Traces
A stack trace is a display of the current call stack, or sequence of function calls
that have been made in order for execution to reach a particular location
within a binary. Figure 24-11 shows a sample stack trace generated using the
Debugger�Stack Trace command.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 529

Figure 24-11: A sample stack trace

The top line in a stack trace lists the name of the function currently exe-
cuting. The second line indicates the function that called the current func-
tion and the address from which that call was made. Successive lines indicate
the point from which each function was called. A debugger is able to create a
stack trace display by walking the stack and parsing each stack frame that it
encounters, and it typically relies on the contents of the frame pointer regis-
ter (EBP for x86) to locate the base of each stack frame. When a stack frame
is located, the debugger can extract a pointer to the next stack frame (the
saved frame pointer) as well as the saved return address, which is used to
locate the call instruction used to invoke the current function. IDA’s debug-
ger cannot trace through stack frames that do not utilize EBP as a frame
pointer. At the function (rather than individual instruction) level, stack
traces are useful for answering the question, “How did I get here?” or, more
correctly, “What sequence of function calls led to this particular location?”

Watches
While debugging a process, you may wish to constantly monitor the value
contained in one or more variables. Rather than requiring you to navigate
to the desired memory locations each time the process is paused, many debug-
gers allow you to specify lists of memory locations whose values should be dis-
played each time the process is stopped in the debugger. Such lists are called
watch lists, because they allow you to watch as the contents of designated
memory locations change during program execution. Watch lists are simply
a navigational convenience; they do not cause execution to pause like a
breakpoint.

Because they are focused on data, watch points (addresses designated
to be watched) are most commonly set in the stack, heap, or data sections
of a binary. Watches are set in the IDA debugger by right-clicking a memory
item of interest and selecting Add Watch. Determining exactly which address
to set a watch on may require some thought. Determining the address of a
global variable is somewhat less challenging than determining the address
of a local variable because global variables are allocated and assigned fixed
addresses at compile time. Local variables, on the other hand, don’t exist
until runtime, and even then they exist only once the function in which they
are declared has been called. With the debugger active, once you have
stepped into a function, IDA is capable of reporting the addresses of local
variables within that function. Figure 24-12 shows the result of mousing over
a local variable named arg_0 (actually a parameter passed into the function).

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

530 Chapter 24

Figure 24-12: Debugger resolution of a local variable address

Double-clicking a local variable within an active function causes IDA to
jump the main IDA View window to the address of that local variable. Having
arrived at the variable’s address, you may then add a watch on that address
using the Add Watch context-sensitive menu option, though you will need
to manually enter the address into the Watch Address dialog. If, instead,
you take the time to name the memory location, IDA will automatically add
a watch if you apply the same menu option to the name rather than the
address.

You can access a list of all watches currently in effect via Debugger�
Watches�Watch List. You can delete individual watches by highlighting the
desired watch in the watch list and pressing DELETE.

Automating Debugger Tasks

In Chapters 15 through 19, we covered the basics of IDA scripting and the
IDA SDK and demonstrated the usefulness of these capabilities during static
analysis of binaries. Launching a process and working in the more dynamic
environment of a debugger doesn’t make scripting and plug-ins any less
useful. Interesting uses for the automation provided by scripts and plug-ins
include analyzing runtime data available while a process is being debugged,
implementing complex breakpoint conditions, and implementing measures
to subvert anti-debugging techniques.

Scripting Debugger Actions
All of the IDA scripting capabilities discussed in Chapter 15 continue to be
accessible when you are using the IDA debugger. Scripts may be launched
from the File menu, associated with hotkeys, and invoked from the IDA
scripting command line. In addition, user-created IDC functions may be ref-
erenced from breakpoint conditions and tracing termination expressions.

Basic scripting functions offer the capability to set, modify, and enumer-
ate breakpoints and the ability to read and write register and memory values.
Memory access is provided by the DbgByte, PatchDbgByte, DbgWord, PatchDbgWord,
DbgDword, and PatchDbgDword functions (analogous to the Byte, Word, Dword, and
PatchXXX functions described in Chapter 15). Register and breakpoint manip-
ulation is made possible by the following functions (please see the IDA help
file for a complete list).

long GetRegValue(string reg)

Returns the value of the named register, such as EAX, as discussed previ-
ously. In IDC only, register values may also be easily accessed by using
the desired register’s name as a variable within an IDC expression.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 531

bool SetRegValue(number val, string name)

Sets the value of the named register, such as EAX. If you are using IDC,
register values may also be modified directly by using the desired register
name on the left side of an assignment statement.

bool AddBpt(long addr)

Adds a software breakpoint at the indicated address.

bool AddBptEx(long addr, long size, long type)

Adds a breakpoint of the specified size and type at the indicated address.
Type should be one of the BPT_xxx constants described in idc.idc or the
IDA help file.

bool DelBpt(long addr)

Deletes a breakpoint at the specified address.

long GetBptQty()

Returns the number of breakpoints set within a program.

long GetBptEA(long bpt_num)

Returns the address at which the indicated breakpoint is set.

long/string GetBptAttr(long addr, number attr)

Returns an attribute associated with the breakpoint at the indicated
address. The return value may be a number or a string depending on
which attribute value has been requested. Attributes are specified using
one of the BPTATTR_xxx values described in idc.idc or the IDA help file.

bool SetBptAttr(long addr, number attr, long value)

Sets the specified attribute of the specified breakpoint to the specified
value. Do not use this function to set breakpoint condition expressions
(use SetBptCnd instead).

bool SetBptCnd(long addr, string cond)

Sets the breakpoint condition to the provided conditional expression,
which must be a valid IDC expression.

long CheckBpt(long addr)

Gets the breakpoint status at the specified address. Return values indi-
cate whether there is no breakpoint, the breakpoint is disabled, the
breakpoint is enabled, or the breakpoint is active. An active breakpoint
is a breakpoint that is enabled while the debugger is also active.

The following script demonstrates how to install a custom IDC breakpoint-
handling function at the current cursor location:

#include <idc.idc>
/*
 * The following should return 1 to break, and 0 to continue execution.
 */
static my_breakpoint_condition() {
 return AskYN(1, "my_breakpoint_condition activated, break now?") == 1;
}

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

532 Chapter 24

/*
 * This function is required to register my_breakpoint_condition
 * as a breakpoint conditional expression
 */
static main() {
 auto addr;
 addr = ScreenEA();
 AddBpt(addr);
 SetBptCnd(addr, "my_breakpoint_condition()");
}

The complexity of my_breakpoint_condition is entirely up to you. In this
example, each time the breakpoint is hit, a dialog will be displayed asking the
user if she would like to continue execution of the process or pause at the
current location. The value returned by my_breakpoint_condition is used by
the debugger to determine whether the breakpoint should be honored or
ignored.

Programmatic control of the debugger is possible from both the SDK
and through the use of scripts. Within the SDK, IDA utilizes an event-driven
model and provides callback notifications to plug-ins when specific debugger
events occur. Unfortunately, IDA’s scripting capabilities don’t facilitate the
use of an event-driven paradigm within scripts. As a result, Hex-Rays intro-
duced a number of scripting functions that allow for synchronous control of
the debugger from within scripts. The basic approach required to drive the
debugger using a script is to initiate a debugger action and then wait for the
corresponding debugger event code. Keep in mind that a call to a synchro-
nous debugger function (which is all you can do in a script) blocks all other
IDA operations until the call completes. The following list details several of
the debugging extensions available for scripts:

long GetDebuggerEvent(long wait_evt, long timeout)

Waits for a debugger event (as specified by wait_evt) to take place within
the specified number of seconds (–1 waits forever). Returns an event type
code that indicates the type of event that was received. Specify wait_evt
using a combination of one or more WFNE_xxx (WFNE stands for Wait For
Next Event) flags. Possible return values are documented in the IDA
help file.

bool RunTo(long addr)
Runs the process until the specified location is reached or until a break-
point is hit.

bool StepInto()

Steps the process one instruction, stepping into any function calls.

bool StepOver()

Steps the process one instruction, stepping over any function calls. This
call may terminate early if a breakpoint is hit.

bool StepUntilRet()

Runs until the current function call returns or until a breakpoint is hit.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 533

bool EnableTracing(long trace_level, long enable)

Enables (or disables) the generation of trace events. The trace_level
parameter should be set to one of the TRACE_xxx constants defined in
idc.idc.

long GetEventXXX()
A number of functions are available for retrieving information related to
the current debug event. Some of these functions are valid only for spe-
cific event types. You should test the return value of GetDebuggerEvent in
order to make sure that a particular GetEventXXX function is valid.

GetDebuggerEvent must be called after each function that causes the pro-
cess to execute in order to retrieve the debugger’s event code. Failure to do
so may prevent follow-up attempts to step or run the process. For example,
the following code fragment will step the debugger only one time because
GetDebuggerEvent does not get called to clear the last event type in between
invocations of StepOver.

StepOver();
StepOver(); //this and all subsequent calls will fail
StepOver();
StepOver();

The proper way to perform an execution action is to follow up each call
with a call to GetDebuggerEvent, as shown in the following example:

StepOver();
GetDebuggerEvent(WFNE_SUSP, -1);
StepOver();
GetDebuggerEvent(WFNE_SUSP, -1);
StepOver();
GetDebuggerEvent(WFNE_SUSP, -1);
StepOver();
GetDebuggerEvent(WFNE_SUSP, -1);

The calls to GetDebuggerEvent allow execution to continue even if you
choose to ignore the return value from GetDebuggerEvent. The event type
WFNE_SUSP indicates that we wish to wait for an event that results in suspension
of the debugged process, such as an exception or a breakpoint. You may
have noticed that there is no function that simply resumes execution of a sus-
pended process.10 However, it is possible to achieve the same effect by using
the WFNE_CONT flag in a call to GetDebuggerEvent, as shown here:

GetDebuggerEvent(WFNE_SUSP | WFNE_CONT, -1);

This particular call waits for the next available suspend event after first
resuming execution by continuing the process from the current instruction.

10. In reality, there is a macro named ResumeProcess that is defined as
GetDebuggerEvent(WFNE_CONT|WFNE_NOWAIT, 0).

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

534 Chapter 24

Additional functions are provided for automatically launching the
debugger and attaching to running processes. See IDA’s help file for more
information on these functions.

An example of a simple debugger script for collecting statistics on the
addresses of each executed instruction (provided the debugger is enabled)
is shown here:

static main() {
 auto ca, code, addr, count, idx;

 ca = GetArrayId("stats");
 if (ca != -1) {
 DeleteArray(ca);
 }
 ca = CreateArray("stats");

 EnableTracing(TRACE_STEP, 1);
 for (code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1); code > 0;
 code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1)) {

 addr = GetEventEa();
 count = GetArrayElement(AR_LONG, ca, addr) + 1;
 SetArrayLong(ca, addr, count);
 }
 EnableTracing(TRACE_STEP, 0);

 for (idx = GetFirstIndex(AR_LONG, ca);
 idx != BADADDR;
 idx = GetNextIndex(AR_LONG, ca, idx)) {
 count = GetArrayElement(AR_LONG, ca, idx);
 Message("%x: %d\n", idx, count);
 }

 DeleteArray(ca);
}

The script begins by testing for the presence of a global array named
stats. If one is found, the array is removed and re-created so that we can start
with an empty array. Next , single-step tracing is enabled before entering a
loop to drive the single-stepping process. Each time a debug event is gen-
erated, the address of the associated event is retrieved , the current count
for the associated address is retrieved from the global array and incremented

, and the array is updated with the new count . Note that the instruction
pointer is used as the index into the sparse global array, which saves time look-
ing up the address in some other form of data structure. Once the process
completes, a second loop is used to retrieve and print all values from array
locations that have valid values. In this case, the only array indexes that will
have valid values represent addresses from which instructions were fetched.
The script finishes off by deleting the global array that was used to gather
the statistics. Example output from this script is shown here:

401028: 1
40102b: 1
40102e: 2

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 535

401031: 2
401034: 2
401036: 1
40103b: 1

A slight alteration of the preceding example can be used to gather statis-
tics on what types of instructions are executed during the lifetime of a pro-
cess. The following example shows the modifications required in the first
loop to gather instruction-type data rather than address data:

 for (code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1); code > 0;
 code = GetDebuggerEvent(WFNE_ANY | WFNE_CONT, -1)) {
 addr = GetEventEa();

 mnem = GetMnem(addr);
 count = GetHashLong(ht, mnem) + 1;
 SetHashLong(ht, mnem, count);
 }

Rather than attempting to classify individual opcodes, we choose to
group instructions by mnemonics . Because mnemonics are strings, we
make use of the hash-table feature of global arrays to retrieve the current
count associated with a given mnemonic and save the updated count
back into the correct hash table entry. Sample output from this modified
script is shown here:

add: 18
and: 2
call: 46
cmp: 16
dec: 1
imul: 2
jge: 2
jmp: 5
jnz: 7
js: 1
jz: 5
lea: 4
mov: 56
pop: 25
push: 59
retn: 19
sar: 2
setnz: 3
test: 3
xor: 7

In Chapter 25 we will revisit the use of debugger-interaction capabilities
as a means to assist in de-obfuscating binaries.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

536 Chapter 24

Automating Debugger Actions with IDA Plug-ins
In Chapter 16 you learned that IDA’s SDK offers significant power for devel-
oping a variety of compiled extensions that can be integrated into IDA and
that have complete access to the IDA API. The IDA API offers a superset of
all the capabilities available in IDC, and the debugging extensions are no
exception. Debugger extensions to the API are declared in <SDKDIR>/
dbg.hpp and include C++ counterparts to all of the IDC functions discussed
thus far, along with a complete asynchronous debugger interface capability.

For asynchronous interaction, plug-ins gain access to debugger notifica-
tions by hooking the HT_DBG notification type (see loader.hpp). Debugger noti-
fications are declared in the dbg_notification_t enum found in dbg.hpp.

Within the debugger API, commands for interacting with the debugger
are typically defined in pairs, with one function used for synchronous inter-
action (as with scripts) and the second function used for asynchronous inter-
action. Generically, the synchronous form of a function is named COMMAND(),
and its asynchronous counterpart is named request_COMMAND(). The request_XXX
versions are used to queue debugger actions for later processing. Once you
finish queuing asynchronous requests, you must invoke the run_requests func-
tion to initiate processing of your request queue. As your requests are pro-
cessed, debugger notifications will be delivered to any callback functions that
you may have registered via hook_to_notification_point.

Using asynchronous notifications, we can develop an asynchronous ver-
sion of the address-counting script from the previous section. The first task is
to make sure that we hook and unhook debugger notifications. We will do
this in the plug-in’s init and term methods, as shown here:

//A netnode to gather stats into
 netnode stats("$ stats", 0, true);

int idaapi init(void) {
 hook_to_notification_point(HT_DBG, dbg_hook, NULL);
 return PLUGIN_KEEP;
}

void idaapi term(void) {
 unhook_from_notification_point(HT_DBG, dbg_hook, NULL);
}

Note that we have also elected to declare a global netnode , which we
will use to collect statistics. Next we consider what we want the plug-in to do
when it is activated via its assigned hotkey. Our example plug-in run function
is shown here:

void idaapi run(int arg) {
 stats.altdel(); //clear any existing stats

 request_enable_step_trace();
 request_step_until_ret();
 run_requests();
}

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

The IDA Debugger 537

Since we are using asynchronous techniques in this example, we must
first submit a request to enable step tracing and then submit a request to
resume execution of the process being debugged. For the sake of simplicity,
we will gather statistics on the current function only, so we will issue a request
to run until the current function returns . With our requests properly
queued, we kick things off by invoking run_requests to process the current
request queue .

All that remains is to process the notifications that we expect to receive
by creating our HT_DBG callback function. A simple callback that processes
only two messages is shown here:

int idaapi dbg_hook(void *user_data, int notification_code, va_list va) {
 switch (notification_code) {
 case dbg_trace: //notification arguments are detailed in dbg.hpp
 va_arg(va, thid_t);
 ea_t ea = va_arg(va, ea_t);
 //increment the count for this address
 stats.altset(ea, stats.altval(ea) + 1);
 return 0;
 case dbg_step_until_ret:
 //print results
 for (nodeidx_t i = stats.alt1st(); i != BADNODE; i = stats.altnxt(i)) {
 msg("%x: %d\n", i, stats.altval(i));

}
 //delete the netnode and stop tracing

 stats.kill();
 request_disable_step_trace();
 run_requests();
 break;
 }
}

The dbg_trace notification will be received for each instruction that
executes until we turn tracing off. When a trace notification is received, the
address of the trace point is retrieved from the args list and then used to
update the appropriate netnode array index . The dbg_step_until_ret notifi-
cation is sent once the process hits the return statement to leave the func-
tion in which we started. This notification is our signal that we should stop
tracing and print any statistics we have gathered. A loop is used to iterate
through all valid index values of the stats netnode before destroying the net-
node and requesting that step tracing be disabled . Since this example
uses asynchronous commands, the request to disable tracing is added to the
queue, which means we have to issue run_requests in order for the queue to
be processed. An important warning about synchronous versus asynchronous
interaction with the debugger is that you should never call the synchronous
version of a function while actively processing an asynchronous notification
message.

Synchronous interaction with the debugger using the SDK is done in
a manner very similar to scripting the debugger. As with many of the SDK
functions we have seen in previous chapters, the names of debugger-related

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

538 Chapter 24

functions typically do not match the names of related scripting functions, so
you may need to spend some time combing through dbg.hpp in order to find
the functions you are looking for. The biggest disparity in names between
scripting and the SDK is the SDK’s version of GetDebuggerEvent, which is called
wait_for_next_event in the SDK. The other major difference between script
functions and the SDK is that variables corresponding to the CPU registers
are not automatically declared for you within the SDK. In order to access the
values of CPU registers from the SDK, you must use the get_reg_val and
set_reg_val functions to read and write registers, respectively.

Summary

IDA may not have the largest share of the debugger market, but its debugger
is powerful and integrates seamlessly with the disassembly side of IDA. While
the debugger’s user interface, like that of any debugger, requires some initial
getting used to, it offers all of the fundamental features that users require in a
basic debugger. Strong points include scripting and plug-in capabilities along
with the familiar user interface of IDA’s disassembly displays and the power of
its analysis capabilities. Together the unified disassembler/debugger combi-
nation provides a solid tool for performing static analysis, dynamic analysis,
or a combination of both.

The IDA Pro Book, 2nd Edition
© 2011 by Chris Eagle

