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D i s k s  a n D  F i l e s y s t e m s

In Chapter 3, we discussed some of the 
top-level disk devices that the kernel makes 

available. In this chapter, we’ll discuss in 
detail how to work with disks on a Linux system. 

You’ll learn how to partition disks, create and main-
tain the filesystems that go inside disk partitions, and 
work with swap space.

Recall that disk devices have names like /dev/sda, the first SCSI sub-
system disk. This kind of block device represents the entire disk, but there 
are many different components and layers inside a disk. 

Figure 4-1 illustrates the schematic of a typical Linux disk (note that 
the figure is not to scale). As you progress through this chapter, you’ll learn 
where each piece fits in.
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Figure 4-1: Typical Linux disk schematic

Partitions are subdivisions of the whole disk. On Linux, they’re denoted 
with a number after the whole block device, and therefore have device names 
such as /dev/sda1 and /dev/sdb3. The kernel presents each partition as a block 
device, just as it would an entire disk. Partitions are defined on a small area of 
the disk called a partition table.

n O t e  Multiple data partitions were once common on systems with large disks because older 
PCs could boot only from certain parts of the disk. Also, administrators used parti­
tions to reserve a certain amount of space for operating system areas; for example, 
they didn’t want users to be able to fill up the entire system and prevent critical ser­
vices from working. This practice is not unique to Unix; you’ll still find many new 
Windows systems with several partitions on a single disk. In addition, most systems 
have a separate swap partition.

Although the kernel makes it possible for you to access both an entire 
disk and one of its partitions at the same time, you would not normally do 
so, unless you were copying the entire disk.

The next layer after the partition is the filesystem, the database of files 
and directories that you’re accustomed to interacting with in user space. 
We’ll explore filesystems in Section 4.2.

As you can see in Figure 4-1, if you want to access the data in a file, you 
need to get the appropriate partition location from the partition table and 
then search the filesystem database on that partition for the desired file data.

To access data on a disk, the Linux kernel uses the system of layers 
shown in Figure 4-2. The SCSI subsystem and everything else described 
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in Section 3.6 are represented by a single box. (Notice that you can work 
with the disk through the filesystem as well as directly through the disk 
devices. You’ll do both in this chapter.)

To get a handle on how everything fits together, let’s start at the bottom 
with partitions.

Linux Kernel

User Processes

Storage Device

System Calls Device Files (nodes)

Filesystem

Block Device Interface and Partition Mapping

SCSI Subsystem and Other Drivers

Raw (Direct) Device Access

Figure 4-2: Kernel schematic for disk access

4.1 Partitioning Disk Devices
There are many kinds of partition tables. The traditional table is the one 
found inside the Master Boot Record (MBR). A newer standard starting to 
gain traction is the Globally Unique Identifier Partition Table (GPT). 

Here is an overview of the many Linux partitioning tools available:

parted  A text-based tool that supports both MBR and GPT.

gparted  A graphical version of parted.
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fdisk  The traditional text-based Linux disk partitioning tool. fdisk 
does not support GPT.

gdisk  A version of fdisk that supports GPT but not MBR.

Because it supports both MBR and GPT, we’ll use parted in this book. 
However, many people prefer the fdisk interface, and there’s nothing wrong 
with that.

n O t e  Although parted can create and resize filesystems, you shouldn’t use it for file system 
manipulation because you can easily get confused. There is a critical difference between 
partitioning and filesystem manipulation. The partition table defines simple bound­
aries on the disk, whereas a filesystem is a much more involved data system. For this 
reason, we’ll use parted for partitioning but use separate utilities for creating file­
systems (see Section 4.2.2). Even the parted documentation encourages you to create 
filesystems separately. 

4.1.1 Viewing a Partition Table
You can view your system’s partition table with parted -l. Here is sample out-
put from two disk devices with two different kinds of partition tables:

# parted -l
Model: ATA WDC WD3200AAJS-2 (scsi)
Disk /dev/sda: 320GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number  Start   End    Size    Type      File system     Flags
 1      1049kB  316GB  316GB   primary   ext4            boot
 2      316GB   320GB  4235MB  extended
 5      316GB   320GB  4235MB  logical   linux-swap(v1)

Model: FLASH Drive UT_USB20 (scsi)
Disk /dev/sdf: 4041MB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number  Start   End     Size    File system  Name        Flags
 1      17.4kB  1000MB  1000MB               myfirst
 2      1000MB  4040MB  3040MB               mysecond

The first device, /dev/sda, uses the traditional MBR partition table 
(called “msdos” by parted), and the second contains a GPT table. Notice 
that there are different parameters for each partition table, because the 
tables themselves are different. In particular, there is no Name column for 
the MBR table because names don’t exist under that scheme. (I arbitrarily 
chose the names myfirst and mysecond in the GPT table.) 

The MBR table in this example contains primary, extended, and logical 
partitions. A primary partition is a normal subdivision of the disk; partition 1 
is such a partition. The basic MBR has a limit of four primary partitions, so 
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if you want more than four, you designate one partition as an extended parti­
tion. Next, you subdivide the extended partition into logical partitions that 
the operating system can use as it would any other partition. In this exam-
ple, partition 2 is an extended partition that contains logical partition 5. 

n O t e  The filesystem that parted lists is not necessarily the system ID field defined in most 
MBR entries. The MBR system ID is just a number; for example, 83 is a Linux parti­
tion and 82 is Linux swap. Therefore, parted attempts to determine a filesystem on its 
own. If you absolutely must know the system ID for an MBR, use fdisk -l.

Initial Kernel Read

When initially reading the MBR table, the Linux kernel produces the fol-
lowing debugging output (remember that you can view this with dmesg):

 sda: sda1 sda2 < sda5 >

The sda2 < sda5 > output indicates that /dev/sda2 is an extended parti-
tion containing one logical partition, /dev/sda5. You’ll normally ignore 
extended partitions because you’ll typically want to access only the logical 
partitions inside.

4.1.2 Changing Partition Tables
Viewing partition tables is a relatively simple and harmless operation. 
Altering partition tables is also relatively easy, but there are risks involved 
in making this kind of change to the disk. Keep the following in mind:

•	 Changing the partition table makes it quite difficult to recover any data 
on partitions that you delete because it changes the initial point of 
reference for a filesystem. Make sure that you have a backup if the disk 
you’re partitioning contains critical data.

•	 Ensure that no partitions on your target disk are currently in use. This 
is a concern because most Linux distributions automatically mount 
any detected filesystem. (See Section 4.2.3 for more on mounting and 
unmounting.)

When you’re ready, choose your partitioning program. If you’d like 
to use parted, you can use the command-line parted utility or a graphical 
interface such as gparted; for an fdisk-style interface, use gdisk if you’re using 
GPT partitioning. These utilities all have online help and are easy to learn. 
(Try using them on a flash device or something similar if you don’t have any 
spare disks.)

That said, there is a major difference in the way that fdisk and parted 
work. With fdisk, you design your new partition table before making the 
actual changes to the disk; fdisk only makes the changes as you exit the 
program. But with parted, partitions are created, modified, and removed as 
you issue the commands. You don’t get the chance to review the partition table 
before you change it.



70   Chapter 4

These differences are also important to understanding how these two 
utilities interact with the kernel. Both fdisk and parted modify the partitions 
entirely in user space; there is no need to provide kernel support for rewrit-
ing a partition table because user space can read and modify all of a block 
device. 

Eventually, though, the kernel must read the partition table in order 
to present the partitions as block devices. The fdisk utility uses a relatively 
simple method: After modifying the partition table, fdisk issues a single 
system call on the disk to tell the kernel that it should reread the partition 
table. The kernel then generates debugging output that you can view with 
dmesg. For example, if you create two partitions on /dev/sdf, you’ll see this:

sdf: sdf1 sdf2

In comparison, the parted tools do not use this disk-wide system call. 
Instead, they signal the kernel when individual partitions are altered. After 
processing a single partition change, the kernel does not produce the pre-
ceding debugging output. 

There are a few ways to see the partition changes:

•	 Use udevadm to watch the kernel event changes. For example, udevadm 
monitor --kernel will show the old partition devices being removed and 
the new ones being added.

•	 Check /proc/partitions for full partition information.

•	 Check /sys/block/device/ for altered partition system interfaces or /dev 
for altered partition devices.

If you absolutely must be sure that you have modified a partition table, 
you can perform the old-style system call that fdisk uses by using the blockdev 
command. For example, to force the kernel to reload the partition table on 
/dev/sdf, run this:

# blockdev --rereadpt /dev/sdf

At this point, you have all you need to know about partitioning disks. 
However, if you’re interested in learning a few more details about disks, 
read on. Otherwise, skip ahead to Section 4.2 to learn about putting a file-
system on the disk.

4.1.3 Disk and Partition Geometry
Any device with moving parts introduces complexity into a software system 
because there are physical elements that resist abstraction. A hard disk is no 
exception; even though you can think of a hard disk as a block device with 
random access to any block, there are serious performance consequences 
if you aren’t careful about how you lay out data on the disk. Consider the 
physical properties of the simple single-platter disk illustrated in Figure 4-3.
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The disk consists of a spinning platter on a spindle, with a head attached 
to a moving arm that can sweep across the radius of the disk. As the disk 
spins underneath the head, the head reads data. When the arm is in one 
position, the head can only read data from a fixed circle. This circle is called 
a cylinder because larger disks have more than one platter, all stacked and 
spinning around the same spindle. Each platter can have one or two heads, 
for the top and/or bottom of the platter, and all heads are attached to the 
same arm and move in concert. Because the arm moves, there are many 
cylinders on the disk, from small ones around the center to large ones 
around the periphery of the disk. Finally, you can divide a cylinder into 
slices called sectors. This way of thinking about the disk geometry is called 
CHS, for cylinder­head­sector.

Cylinder

Spindle

Head

Arm

Platter

Figure 4-3: Top-down view of a hard disk

n O t e  A track is a part of a cylinder that a single head accesses, so in Figure 4­3, a cylinder 
is also a track. You probably don’t need to worry about tracks.

The kernel and the various partitioning programs can tell you what a 
disk reports as its number of cylinders (and sectors, which are slices of cylin-
ders). However, on a modern hard disk, the reported values are fiction! The tra-
ditional addressing scheme that uses CHS doesn’t scale with modern disk 
hardware, nor does it account for the fact that you can put more data into 
outer cylinders than inner cylinders. Disk hardware supports Logical Block 
Addressing (LBA) to simply address a location on the disk by a block number, 
but remnants of CHS remain. For example, the MBR partition table con-
tains CHS information as well as LBA equivalents, and some boot loaders 
are still dumb enough to believe the CHS values (don’t worry—most Linux 
boot loaders use the LBA values).

Nevertheless, the idea of cylinders has been important to partition-
ing because cylinders are ideal boundaries for partitions. Reading a data 
stream from a cylinder is very fast because the head can continuously pick 
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up data as the disk spins. A partition arranged as a set of adjacent cylinders 
also allows for fast continuous data access because the head doesn’t need to 
move very far between cylinders.

Some partitioning programs complain if you don’t place your parti-
tions precisely on cylinder boundaries. Ignore this; there’s little you can do 
because the reported CHS values of modern disks simply aren’t true. The 
disk’s LBA scheme ensures that your partitions are where they’re supposed 
to be.

4.1.4 Solid-State Disks (SSDs)
Storage devices with no moving parts, such as solid­state disks (SSDs), are rad-
ically different from spinning disks in terms of their access characteristics. 
For these, random access is not a problem because there’s no head to sweep 
across a platter, but certain factors affect performance. 

One of the most significant factors affecting the performance of SSDs is 
partition alignment. When you read data from an SSD, you read it in chunks—
typically 4096 bytes at a time—and the read must begin at a multiple of that 
same size. So if your partition and its data do not lie on a 4096-byte bound-
ary, you may have to do two reads instead of one for small, common opera-
tions, such as reading the contents of a directory.

Many partitioning utilities (parted and gparted, for example) include 
functionality to put newly created partitions at the proper offsets from the 
beginning of the disks, so you may never need to worry about improper 
partition alignment. However, if you’re curious about where your partitions 
begin and just want to make sure that they begin on a boundary, you can 
easily find this information by looking in /sys/block. Here’s an example for 
a partition /dev/sdf2 :

$ cat /sys/block/sdf/sdf2/start
1953126

This partition starts at 1,953,126 bytes from the beginning of the disk. 
Because this number is not divisible by 4,096, the partition would not be 
attaining optimal performance if it were on SSD.

4.2 Filesystems
The last link between the kernel and user space for disks is typically the file­
system; this is what you’re accustomed to interacting with when you run com-
mands such as ls and cd. As previously mentioned, the filesystem is a form 
of database; it supplies the structure to transform a simple block device 
into the sophisticated hierarchy of files and subdirectories that users can 
understand.

At one time, filesystems resided on disks and other physical media used 
exclusively for data storage. However, the tree-like directory structure and 
I/O interface of filesystems are quite versatile, so filesystems now perform a 
variety of tasks, such as the system interfaces that you see in /sys and /proc. 
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Filesystems are also traditionally implemented in the kernel, but the innova-
tion of 9P from Plan 9 (http://plan9.bell­labs.com/sys/doc/9.html) has inspired 
the development of user-space filesystems. The File System in User Space (FUSE) 
feature allows user-space filesystems in Linux.

The Virtual File System (VFS) abstraction layer completes the filesystem 
implementation. Much as the SCSI subsystem standardizes communication 
between different device types and kernel control commands, VFS ensures 
that all filesystem implementations support a standard interface so that 
user-space applications access files and directories in the same manner. VFS 
support has enabled Linux to support an extraordinarily large number of 
filesystems.

4.2.1 Filesystem Types
Linux filesystem support includes native designs optimized for Linux, 
foreign types such as the Windows FAT family, universal filesystems like 
ISO 9660, and many others. The following list includes the most common 
types of filesystems for data storage. The type names as recognized by 
Linux are in parentheses next to the filesystem names. 

•	 The Fourth Extended filesystem (ext4) is the current iteration of a line of 
filesystems native to Linux. The Second Extended filesystem (ext2) was a 
longtime default for Linux systems inspired by traditional Unix file-
systems such as the Unix File System (UFS) and the Fast File System 
(FFS). The Third Extended filesystem (ext3) added a journal feature (a 
small cache outside the normal filesystem data structure) to enhance 
data integrity and hasten booting. The ext4 filesystem is an incremental 
improvement with support for larger files than ext2 or ext3 support and 
a greater number of subdirectories.

There is a certain amount of backward compatibility in the extended 
filesystem series. For example, you can mount ext2 and ext3 filesystems 
as each other, and you can mount ext2 and ext3 filesystems as ext4, but 
you cannot mount ext4 as ext2 or ext3.

•	 ISO 9660 (iso9660) is a CD-ROM standard. Most CD-ROMs use some 
variety of the ISO 9660 standard. 

•	 FAT filesystems (msdos, vfat, umsdos) pertain to Microsoft systems. The 
simple msdos type supports the very primitive monocase variety in 
MS-DOS systems. For most modern Windows filesystems, you should 
use the vfat filesystem in order to get full access from Linux. The rarely 
used umsdos filesystem is peculiar to Linux. It supports Unix features 
such as symbolic links on top of an MS-DOS filesystem.

•	 HFS+ (hfsplus) is an Apple standard used on most Macintosh systems.

Although the Extended filesystem series has been perfectly acceptable 
to most casual users, many advances have been made in filesystem technol-
ogy that even ext4 cannot utilize due to the backward compatibility require-
ment. The advances are primarily in scalability enhancements pertaining 
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to very large numbers of files, large files, and similar scenarios. New Linux 
filesystems, such as Btrfs, are under development and may be poised to 
replace the Extended series.

4.2.2 Creating a Filesystem
Once you’re done with the partitioning process described in Section 4.1, 
you’re ready to create filesystems. As with partitioning, you’ll do this in 
user space because a user-space process can directly access and manipulate 
a block device. The mkfs utility can create many kinds of filesystems. For 
example, you can create an ext4 partition on /dev/sdf2 with this command:

# mkfs -t ext4 /dev/sdf2

The mkfs program automatically determines the number of blocks in 
a device and sets some reasonable defaults. Unless you really know what 
you’re doing and feel like reading the documentation in detail, don’t 
change these. 

When you create a filesystem, mkfs prints diagnostic output as it works, 
including output pertaining to the superblock. The superblock is a key com-
ponent at the top level of the filesystem database, and it’s so important 
that mkfs creates a number of backups in case the original is destroyed. 
Consider recording a few of the superblock backup numbers when mkfs 
runs, in case you need to recover the superblock in the event of a disk fail-
ure (see Section 4.2.11). 

W a R n i n G  Filesystem creation is a task that you should only need to perform after adding a 
new disk or repartitioning an old one. You should create a filesystem just once for 
each new partition that has no preexisting data (or that has data that you want to 
remove). Creating a new filesystem on top of an existing filesystem will effectively 
destroy the old data.

It turns out that mkfs is only a frontend for a series of filesystem creation 
programs, mkfs.fs, where fs is a filesystem type. So when you run mkfs -t 
ext4, mkfs in turn runs mkfs.ext4. 

And there’s even more indirection. Inspect the mkfs.* files behind the 
commands and you’ll see the following:

$ ls -l /sbin/mkfs.*
-rwxr-xr-x 1 root root 17896 Mar 29 21:49 /sbin/mkfs.bfs
-rwxr-xr-x 1 root root 30280 Mar 29 21:49 /sbin/mkfs.cramfs
lrwxrwxrwx 1 root root     6 Mar 30 13:25 /sbin/mkfs.ext2 -> mke2fs
lrwxrwxrwx 1 root root     6 Mar 30 13:25 /sbin/mkfs.ext3 -> mke2fs
lrwxrwxrwx 1 root root     6 Mar 30 13:25 /sbin/mkfs.ext4 -> mke2fs
lrwxrwxrwx 1 root root     6 Mar 30 13:25 /sbin/mkfs.ext4dev -> mke2fs
-rwxr-xr-x 1 root root 26200 Mar 29 21:49 /sbin/mkfs.minix
lrwxrwxrwx 1 root root     7 Dec 19  2011 /sbin/mkfs.msdos -> mkdosfs
lrwxrwxrwx 1 root root     6 Mar  5  2012 /sbin/mkfs.ntfs -> mkntfs
lrwxrwxrwx 1 root root     7 Dec 19  2011 /sbin/mkfs.vfat -> mkdosfs
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As you can see, mkfs.ext4 is just a symbolic link to mke2fs. This is 
important to remember if you run across a system without a specific mkfs 
command or when you’re looking up the documentation for a particular 
filesystem. Each filesystem’s creation utility has its own manual page, like 
mke2fs(8). This shouldn’t be a problem on most systems, because access-
ing the mkfs.ext4(8) manual page should redirect you to the mke2fs(8) 
manual page, but keep it in mind.

4.2.3 Mounting a Filesystem
On Unix, the process of attaching a filesystem is called mounting. When the 
system boots, the kernel reads some configuration data and mounts root (/) 
based on the configuration data. 

In order to mount a filesystem, you must know the following: 

•	 The filesystem’s device (such as a disk partition; where the actual file-
system data resides). 

•	 The filesystem type. 

•	 The mount point—that is, the place in the current system’s directory 
hierarchy where the filesystem will be attached. The mount point 
is always a normal directory. For instance, you could use /cdrom as 
a mount point for CD-ROM devices. The mount point need not be 
directly below / ; it may be anywhere on the system. 

When mounting a filesystem, the common terminology is “mount a 
device on a mount point.” To learn the current filesystem status of your sys-
tem, run mount. The output should look like this: 

$ mount
/dev/sda1 on / type ext4 (rw,errors=remount-ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
none on /sys/fs/fuse/connections type fusectl (rw)
none on /sys/kernel/debug type debugfs (rw)
none on /sys/kernel/security type securityfs (rw)
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
--snip--

Each line corresponds to one currently mounted filesystem, with items 
in this order: 

•	 The device, such as /dev/sda3. Notice that some of these aren’t real 
devices (proc, for example) but are stand-ins for real device names 
because these special-purpose filesystems do not need devices. 

•	 The word on. 

•	 The mount point. 

•	 The word type. 
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•	 The filesystem type, usually in the form of a short identifier. 

•	 Mount options (in parentheses). (See Section 4.2.6 for more details.)

To mount a filesystem, use the mount command as follows with the file-
system type, device, and desired mount point: 

# mount -t type device mountpoint

For example, to mount the Fourth Extended filesystem /dev/sdf2 on  
/home/extra, use this command:

# mount -t ext4 /dev/sdf2 /home/extra

You normally don’t need to supply the -t type option because mount can 
usually figure it out for you. However, sometimes it’s necessary to distin-
guish between two similar types, such as the various FAT-style filesystems.

See Section 4.2.6 for a few more long options to mount. To unmount 
(detach) a filesystem, use the umount command: 

# umount mountpoint

You can also unmount a filesystem with its device instead of its mount 
point.

4.2.4 Filesystem UUID
The method of mounting filesystems discussed in the preceding section 
depends on device names. However, device names can change because 
they depend on the order in which the kernel finds the devices. To solve 
this problem, you can identify and mount filesystems by their Universally 
Unique Identifier (UUID), a software standard. The UUID is a type of serial 
number, and each one should be different. Filesystem creation programs 
like mke2fs generate a UUID identifier when initializing the file system data 
structure.

To view a list of devices and the corresponding filesystems and UUIDs 
on your system, use the blkid (block ID) program:

# blkid
/dev/sdf2: UUID="a9011c2b-1c03-4288-b3fe-8ba961ab0898" TYPE="ext4" 
/dev/sda1: UUID="70ccd6e7-6ae6-44f6-812c-51aab8036d29" TYPE="ext4" 
/dev/sda5: UUID="592dcfd1-58da-4769-9ea8-5f412a896980" TYPE="swap" 
/dev/sde1: SEC_TYPE="msdos" UUID="3762-6138" TYPE="vfat" 

In this example, blkid found four partitions with data: two with ext4 
filesystems, one with a swap space signature (see Section 4.3), and one 
with a FAT-based filesystem. The Linux native partitions all have standard 
UUIDs, but the FAT partition doesn’t have one. You can reference the FAT 
partition with its FAT volume serial number (in this case, 3762-6138).
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To mount a filesystem by its UUID, use the UUID= syntax. For example, 
to mount the first filesystem from the preceding list on /home/extra, enter:

# mount UUID=a9011c2b-1c03-4288-b3fe-8ba961ab0898 /home/extra

You will typically not manually mount filesystems by UUID as above, 
because you’ll probably know the device, and it’s much easier to mount a 
device by its name than by its crazy UUID number. Still, it’s important to 
understand UUIDs. For one thing, they’re the preferred way to automati-
cally mount filesystems in /etc/fstab at boot time (see Section 4.2.8). In 
addition, many distributions use the UUID as a mount point when you 
insert removable media. In the preceding example, the FAT filesystem 
is on a flash media card. An Ubuntu system with someone logged in will 
mount this partition at /media/3762­6138 upon insertion. The udevd daemon 
described in Chapter 3 handles the initial event for the device insertion.

You can change the UUID of a filesystem if necessary (for example, if 
you copied the complete filesystem from somewhere else and now need to 
distinguish it from the original). See the tune2fs(8) manual page for how 
to do this on an ext2/ext3/ext4 filesystem.

4.2.5 Disk Buffering, Caching, and Filesystems
Linux, like other versions of Unix, buffers writes to the disk. This means that 
the kernel usually doesn’t immediately write changes to filesystems when pro-
cesses request changes. Instead it stores the changes in RAM until the kernel 
can conveniently make the actual change to the disk. This buffering system 
is transparent to the user and improves performance. 

When you unmount a filesystem with umount, the kernel automatically 
synchronizes with the disk. At any other time, you can force the kernel to 
write the changes in its buffer to the disk by running the sync command. If 
for some reason you can’t unmount a filesystem before you turn off the sys-
tem, be sure to run sync first.

In addition, the kernel has a series of mechanisms that use RAM to 
automatically cache blocks read from a disk. Therefore, if one or more 
processes repeatedly access a file, the kernel doesn’t have to go to the disk 
again and again—it can simply read from the cache and save time and 
resources.

4.2.6 Filesystem Mount Options
There are many ways to change the mount command behavior, as is often 
necessary with removable media or when performing system maintenance. 
In fact, the total number of mount options is staggering. The extensive 
mount(8) manual page is a good reference, but it’s hard to know where to 
start and what you can safely ignore. You’ll see the most useful options in 
this section.
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Options fall into two rough categories: general and filesystem-specific 
ones. General options include -t for specifying the filesystem type (as men-
tioned earlier). In contrast, a filesystem-specific option pertains only to cer-
tain filesystem types. 

To activate a filesystem option, use the -o switch followed by the option. 
For example, -o norock turns off Rock Ridge extensions on an ISO 9660 file-
system, but it has no meaning for any other kind of filesystem. 

Short Options

The most important general options are these:

-r The -r option mounts the filesystem in read-only mode. This has 
a number of uses, from write protection to bootstrapping. You don’t 
need to specify this option when accessing a read-only device such as a 
CD-ROM; the system will do it for you (and will also tell you about the 
read-only status). 

-n The -n option ensures that mount does not try to update the system 
runtime mount database, /etc/mtab. The mount operation fails when it 
cannot write to this file, which is important at boot time because the 
root partition (and, therefore, the system mount database) is read-only 
at first. You’ll also find this option handy when trying to fix a system 
problem in single-user mode, because the system mount database may 
not be available at the time.

-t The -t type option specifies the filesystem type.

Long Options

Short options like -r are too limited for the ever-increasing number of 
mount options; there are too few letters in the alphabet to accommodate all 
possible options. Short options are also troublesome because it is difficult 
to determine an option’s meaning based on a single letter. Many general 
options and all filesystem-specific options use a longer, more flexible option 
format.

To use long options with mount on the command line, start with -o and 
supply some keywords. Here’s a complete example, with the long options 
following -o:

# mount -t vfat /dev/hda1 /dos -o ro,conv=auto

The two long options here are ro and conv=auto. The ro option specifies 
read-only mode and is the same as the -r short option. The conv=auto option 
tells the kernel to automatically convert certain text files from the DOS 
newline format to the Unix style (you’ll see more shortly).

The most useful long options are these: 

exec, noexec Enables or disables execution of programs on the 
filesystem. 

suid, nosuid Enables or disables setuid programs. 
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ro Mounts the filesystem in read-only mode (as does the -r short 
option).

rw Mounts the filesystem in read-write mode. 

conv=rule (FAT-based filesystems) Converts the newline characters 
in files based on rule, which can be binary, text, or auto. The default 
is binary, which disables any character translation. To treat all files as 
text, use text. The auto setting converts files based on their extension. 
For example, a .jpg file gets no special treatment, but a .txt file does. Be 
careful with this option because it can damage files. Consider using it 
in read-only mode. 

4.2.7 Remounting a Filesystem
There will be times when you may need to reattach a currently mounted 
filesystem at the same mount point when you need to change mount options. 
The most common such situation is when you need to make a read-only file-
system writable during crash recovery. 

The following command remounts the root in read-write mode (you 
need the -n option because the mount command can’t write to the system 
mount database when the root is read-only): 

# mount -n -o remount /

This command assumes that the correct device listing for / is in 
/etc/fstab (as discussed in the next section). If it is not, you must specify 
the device. 

4.2.8 The /etc/fstab Filesystem Table
To mount filesystems at boot time and take the drudgery out of the mount 
command, Linux systems keep a permanent list of filesystems and options in 
/etc/fstab. This is a plaintext file in a very simple format, as Listing 4-1 shows.

proc /proc proc nodev,noexec,nosuid 0 0
UUID=70ccd6e7-6ae6-44f6-812c-51aab8036d29 / ext4 errors=remount-ro 0 1
UUID=592dcfd1-58da-4769-9ea8-5f412a896980 none swap sw 0 0
/dev/sr0 /cdrom iso9660  ro,user,nosuid,noauto 0 0

Listing 4-1: List of filesystems and options in /etc/fstab

Each line corresponds to one filesystem, each of which is broken into 
six fields. These fields are as follows, in order from left to right: 

The device or UUID Most current Linux systems no longer use the 
device in /etc/fstab, preferring the UUID. (Notice that the /proc entry 
has a stand-in device named proc.)

The mount point Indicates where to attach the filesystem.

The filesystem type You may not recognize swap in this list; this is a 
swap partition (see Section 4.3). 
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Options Use long options separated by commas.

Backup information for use by the dump command You should 
always use a 0 in this field. 

The filesystem integrity test order To ensure that fsck always runs 
on the root first, always set this to 1 for the root filesystem and 2 for 
any other filesystems on a hard disk. Use 0 to disable the bootup check 
for everything else, including CD-ROM drives, swap, and the /proc file-
system (see the fsck command in Section 4.2.11).

When using mount, you can take some shortcuts if the filesystem you 
want to work with is in /etc/fstab. For example, if you were using Listing 4-1 
and mounting a CD-ROM, you would simply run mount /cdrom. 

You can also try to mount all entries at once in /etc/fstab that do not 
contain the noauto option with this command:

# mount -a

Listing 4-1 contains some new options, namely errors, noauto, and user, 
because they don’t apply outside the /etc/fstab file. In addition, you’ll often 
see the defaults option here. The meanings of these options are as follows: 

defaults This uses the mount defaults: read-write mode, enable device 
files, executables, the setuid bit, and so on. Use this when you don’t 
want to give the filesystem any special options but you do want to fill all 
fields in /etc/fstab. 

errors This ext2-specific parameter sets the kernel behavior when 
the system has trouble mounting a filesystem. The default is normally 
errors=continue, meaning that the kernel should return an error code 
and keep running. To have the kernel try the mount again in read-only 
mode, use errors=remount-ro. The errors=panic setting tells the kernel 
(and your system) to halt when there is a problem with the mount. 

noauto This option tells a mount -a command to ignore the entry. Use 
this to prevent a boot-time mount of a removable-media device, such as 
a CD-ROM or floppy drive. 

user This option allows unprivileged users to run mount on a particu-
lar entry, which can be handy for allowing access to CD-ROM drives. 
Because users can put a setuid-root file on removable media with 
another system, this option also sets nosuid, noexec, and nodev (to bar 
special device files).

4.2.9 Alternatives to /etc/fstab
Although the /etc/fstab file has been the traditional way to represent file-
systems and their mount points, two new alternatives have appeared. The 
first is an /etc/fstab.d directory that contains individual filesystem configu-
ration files (one file for each filesystem). The idea is very similar to many 
other configuration directories that you’ll see throughout this book.
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A second alternative is to configure systemd units for the filesystems. 
You’ll learn more about systemd and its units in Chapter 6. However, the 
systemd unit configuration is often generated from (or based on) the /etc/
fstab file, so you may find some overlap on your system.

4.2.10 Filesystem Capacity
To view the size and utilization of your currently mounted filesystems, use 
the df command. The output should look like this: 

$ df
Filesystem   1024-blocks     Used  Available Capacity Mounted on
/dev/sda1        1011928    71400     889124     7%   /
/dev/sda3       17710044  9485296    7325108    56%   /usr

Here’s a brief description of the fields in the df output: 

Filesystem The filesystem device

1024-blocks The total capacity of the filesystem in blocks of 1024 bytes

Used The number of occupied blocks

Available The number of free blocks

Capacity The percentage of blocks in use

Mounted on The mount point

It should be easy to see that the two filesystems here are roughly 1GB 
and 17.5GB in size. However, the capacity numbers may look a little strange 
because 71,400 plus 889,124 does not equal 1,011,928, and 9,485,296 does 
not constitute 56 percent of 17,710,044. In both cases, 5 percent of the total 
capacity is unaccounted for. In fact, the space is there, but it is hidden in 
reserved blocks. Therefore, only the superuser can use the full filesystem 
space if the rest of the partition fills up. This feature keeps system servers 
from immediately failing when they run out of disk space. 

If your disk fills up and you need to know where all of those space-
hogging media files are, use the du command. With no arguments, du 
prints the disk usage of every directory in the directory hierarchy, starting 
at the current working directory. (That’s kind of a mouthful, so just run 
cd /; du to get the idea. Press ctrl-C when you get bored.) The du -s com-
mand turns on summary mode to print only the grand total. To evaluate a 
particular directory, change to that directory and run du -s *. 

n O t e  The POSIX standard defines a block size of 512 bytes. However, this size is harder 
to read, so by default, the df and du output in most Linux distributions is in 
1024­byte blocks. If you insist on displaying the numbers in 512­byte blocks, set 
the POSIXLY_CORRECT environment variable. To explicitly specify 1024­byte blocks, 
use the -k option (both utilities support this). The df program also has a -m option 
to list capacities in 1MB blocks and a -h option to take a best guess at what a person 
can read.
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4.2.11 Checking and Repairing Filesystems
The optimizations that Unix filesystems offer are made possible by a 
sophisticated database mechanism. For filesystems to work seamlessly, 
the kernel has to trust that there are no errors in a mounted file system. If 
errors exist, data loss and system crashes may result. 

Filesystem errors are usually due to a user shutting down the system in 
a rude way (for example, by pulling out the power cord). In such cases, the 
filesystem cache in memory may not match the data on the disk, and the 
system also may be in the process of altering the filesystem when you hap-
pen to give the computer a kick. Although a new generation of files ystems 
supports journals to make filesystem corruption far less common, you should 
always shut the system down properly. And regardless of the files ystem in use, 
filesystem checks are still necessary every now and to maintain sanity.

The tool to check a filesystem is fsck. As with the mkfs program, there 
is a different version of fsck for each filesystem type that Linux supports. 
For example, when you run fsck on an Extended filesystem series (ext2/
ext3/ext4), fsck recognizes the filesystem type and starts the e2fsck utility. 
Therefore, you generally don’t need to type e2fsck, unless fsck can’t figure 
out the filesystem type or you’re looking for the e2fsck manual page.

The information presented in this section is specific to the Extended 
filesystem series and e2fsck. 

To run fsck in interactive manual mode, give the device or the mount 
point (as listed in /etc/fstab) as the argument. For example: 

# fsck /dev/sdb1

W a R n i n G  You should never use fsck on a mounted filesystem because the kernel may alter the 
disk data as you run the check, causing runtime mismatches that can crash your 
system and corrupt files. There is only one exception: If you mount the root partition 
read­only in single­user mode, you may use fsck on it. 

In manual mode, fsck prints verbose status reports on its passes, which 
should look something like this when there are no problems: 

Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/sdb1: 11/1976 files (0.0% non-contiguous), 265/7891 blocks

If fsck finds a problem in manual mode, it stops and asks you a ques-
tion relevant to fixing the problem. These questions deal with the internal 
structure of the filesystem, such as reconnecting loose inodes and clearing 
blocks (an inode is a building block of the filesystem; you’ll see how inodes 
work in Section 4.5). When fsck asks you about reconnecting an inode, it 
has found a file that doesn’t appear to have a name. When reconnecting 
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such a file, fsck places the file in the lost+found directory in the filesystem, 
with a number as the filename. If this happens, you need to guess the name 
based on the content of the file; the original name is probably gone.

In general, it’s pointless to sit through the fsck repair process if you’ve 
just uncleanly shut down the system, because fsck may have a lot of minor 
errors to fix. Fortunately, e2fsck has a -p option that automatically fixes 
ordinary problems without asking and aborts when there’s a serious error. 
In fact, Linux distributions run some variant of fsck -p at boot time. (You 
may also see fsck -a, which just does the same thing.)

If you suspect a major disaster on your system, such as a hardware fail-
ure or device misconfiguration, you need to decide on a course of action 
because fsck can really mess up a filesystem that has larger problems. (One 
telltale sign that your system has a serious problem is that fsck asks a lot of 
questions in manual mode.)

If you think that something really bad has happened, try running 
fsck -n to check the filesystem without modifying anything. If there’s a 
problem with the device configuration that you think you can fix (such as 
an incorrect number of blocks in the partition table or loose cables), fix it 
before running fsck for real, or you’re likely to lose a lot of data. 

If you suspect that only the superblock is corrupt (for example, because 
someone wrote to the beginning of the disk partition), you might be able to 
recover the filesystem with one of the superblock backups that mkfs creates. 
Use fsck -b num to replace the corrupted superblock with an alternate at 
block num and hope for the best.

If you don’t know where to find a backup superblock, you may be able 
to run mkfs -n on the device to view a list of superblock backup numbers 
without destroying your data. (Again, make sure that you’re using -n, or 
you’ll really tear up the filesystem.)

Checking ext3 and ext4 Filesystems 

You normally do not need to check ext3 and ext4 filesystems manually 
because the journal ensures data integrity. However, you may wish to 
mount a broken ext3 or ext4 filesystem in ext2 mode because the kernel 
will not mount an ext3 or ext4 filesystem with a nonempty journal. (If you 
don’t shut your system down cleanly, you can expect the journal to con-
tain some data.) To flush the journal in an ext3 or ext4 filesystem to the 
regular filesystem database, run e2fsck as follows:

# e2fsck –fy /dev/disk_device

The Worst Case

Disk problems that are worse in severity leave you with few choices: 

•	 You can try to extract the entire filesystem image from the disk with dd 
and transfer it to a partition on another disk of the same size. 
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•	 You can try to patch the filesystem as much as possible, mount it in 
read-only mode, and salvage what you can.

•	 You can try debugfs.

In the first two cases, you still need to repair the filesystem before you 
mount it, unless you feel like picking through the raw data by hand. If you 
like, you can choose to answer y to all of the fsck questions by entering 
fsck -y, but do this as a last resort because issues may come up during the 
repair process that you would rather handle manually. 

The debugfs tool allows you to look through the files on a filesystem and 
copy them elsewhere. By default, it opens filesystems in read-only mode. If 
you’re recovering data, it’s probably a good idea to keep your files intact to 
avoid messing things up further.

Now, if you’re really desperate, say with a catastrophic disk failure on 
your hands and no backups, there isn’t a lot you can do other than hope a 
professional service can “scrape the platters.” 

4.2.12 Special-Purpose Filesystems
Not all filesystems represent storage on physical media. Specifically, most 
versions of Unix have filesystems that serve as system interfaces. That is, 
rather than serving only as a means to store data on a device, a filesystem 
can represent system information such as process IDs and kernel diagnos-
tics. This idea goes back to the /dev mechanism, which is an early model of 
using files for I/O interfaces. The /proc idea came from the eighth edition 
of research Unix, implemented by Tom J. Killian and accelerated when Bell 
Labs (including many of the original Unix designers) created Plan 9—a 
research operating system that took filesystem abstraction to a whole new level 
(http://plan9.bell­labs.com/sys/doc/9.html).

The special filesystem types in common use on Linux include the 
following: 

proc Mounted on /proc. The name proc is actually an abbreviation 
for process. Each numbered directory inside /proc is actually the process 
ID of a current process on the system; the files in those directories 
represent various aspects of the processes. The file /proc/self represents 
the current process. The Linux proc filesystem includes a great deal of 
additional kernel and hardware information in files like /proc/cpuinfo. 
(There has been a push to move information unrelated to processes out 
of /proc and into /sys.)

sysfs Mounted on /sys. (You saw this in Chapter 3.)

tmpfs Mounted on /run and other locations. With tmpfs, you can 
use your physical memory and swap space as temporary storage. For 
example, you can mount tmpfs where you like, using the size and 
nr_blocks long options to control the maximum size. However, be care-
ful not to constantly pour things into a tmpfs because your system will 
eventually run out of memory and programs will start to crash. (For 
years, Sun Microsystems used a version of tmpfs for /tmp that caused 
problems on long-running systems.)
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4.3 Swap Space
Not every partition on a disk contains a filesystem. It’s also possible to aug-
ment the RAM on a machine with disk space. If you run out of real memory, 
the Linux virtual memory system can automatically move pieces of memory 
to and from a disk storage. This is called swapping because pieces of idle pro-
grams are swapped to the disk in exchange for active pieces residing on the 
disk. The disk area used to store memory pages is called swap space (or just 
swap for short). 

The free command’s output includes the current swap usage in kilo-
bytes as follows: 

$ free
             total       used       free
--snip--
Swap:       514072     189804     324268

4.3.1 Using a Disk Partition as Swap Space
To use an entire disk partition as swap, follow these steps: 

1. Make sure the partition is empty. 

2. Run mkswap dev, where dev is the partition’s device. This command puts 
a swap signature on the partition. 

3. Execute swapon dev to register the space with the kernel. 

After creating a swap partition, you can put a new swap entry in your 
/etc/fstab file to make the system use the swap space as soon as the machine 
boots. Here is a sample entry that uses /dev/sda5 as a swap partition: 

/dev/sda5 none swap sw 0 0

Keep in mind that many systems now use UUIDs instead of raw device 
names.

4.3.2 Using a File as Swap Space
You can use a regular file as swap space if you’re in a situation where you 
would be forced to repartition a disk in order to create a swap partition. 
You shouldn’t notice any problems when doing this. 

Use these commands to create an empty file, initialize it as swap, and 
add it to the swap pool: 

# dd if=/dev/zero of=swap_file bs=1024k count=num_mb
# mkswap swap_file
# swapon swap_file

Here, swap_file is the name of the new swap file, and num_mb is the 
desired size, in megabytes. 

To remove a swap partition or file from the kernel’s active pool, use the 
swapoff command. 
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4.3.3 How Much Swap Do You Need?
At one time, Unix conventional wisdom said you should always reserve at 
least twice as much swap as you have real memory. Today, not only do the 
enormous disk and memory capacities available cloud the issue, but so do 
the ways we use the system. On one hand, disk space is so plentiful that 
it’s tempting to allocate more than double the memory size. On the other 
hand, you may never even dip into your swap space because you have so 
much real memory. 

The “double the real memory” rule dated from a time when multiple 
users would be logged into one machine at a time. Not all of them would 
be active, though, so it was convenient to be able to swap out the memory 
of the inactive users when an active user needed more memory. 

The same may still hold true for a single-user machine. If you’re running 
many processes, it’s generally fine to swap out parts of inactive processes or 
even inactive pieces of active processes. However, if you’re constantly using 
the swap space because many active processes want to use the memory at 
once, you will suffer serious performance problems because disk I/O is just 
too slow to keep up with the rest of the system. The only solutions are to 
buy more memory, terminate some processes, or complain.

Sometimes, the Linux kernel may choose to swap out a process in 
favor of a little more disk cache. To prevent this behavior, some adminis-
trators configure certain systems with no swap space at all. For example, 
high-performance network servers should never dip into swap space and 
should avoid disk access if at all possible.

n O t e  It’s dangerous to do this on a general­purpose machine. If a machine completely 
runs out of both real memory and swap space, the Linux kernel invokes the out­of­
memory (OOM) killer to kill a process in order to free up some memory. You obviously 
don’t want this to happen to your desktop applications. On the other hand, high­
performance servers include sophisticated monitoring and load­balancing systems 
to ensure that they never reach the danger zone.

You’ll learn much more about how the memory system works in 
Chapter 8.

4.4 Looking Forward: Disks and User Space
In disk-related components on a Unix system, the boundaries between user 
space and the kernel can be difficult to characterize. As you’ve seen, the 
kernel handles raw block I/O from the devices, and user-space tools can 
use the block I/O through device files. However, user space typically uses 
the block I/O only for initializing operations such as partitioning, file-
system creation, and swap space creation. In normal use, user space uses 
only the filesystem support that the kernel provides on top of the block I/O. 
Similarly, the kernel also handles most of the tedious details when dealing 
with swap space in the virtual memory system.
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The remainder of this chapter briefly looks at the innards of a Linux 
filesystem. This is more advanced material, and you certainly don’t need to 
know it to proceed with the book. If this is your first time through, skip to 
the next chapter and start learning about how Linux boots.

4.5 Inside a Traditional Filesystem
A traditional Unix filesystem has two primary components: a pool of data 
blocks where you can store data and a database system that manages the 
data pool. The database is centered around the inode data structure. An 
inode is a set of data that describes a particular file, including its type, per-
missions, and—perhaps most importantly—where in the data pool the file 
data resides. Inodes are identified by numbers listed in an inode table.

Filenames and directories are also implemented as inodes. A directory 
inode contains a list of filenames and corresponding links to other inodes.

To provide a real-life example, I created a new filesystem, mounted it, 
and changed the directory to the mount point. Then, I added some files and 
directories with these commands (feel free to do this yourself with a flash 
drive):

$ mkdir dir_1
$ mkdir dir_2
$ echo a > dir_1/file_1
$ echo b > dir_1/file_2
$ echo c > dir_1/file_3
$ echo d > dir_2/file_4
$ ln dir_1/file_3 dir_2/file_5

Note that I created dir_2/file_5 as a hard link to dir_1/file_3, meaning 
that these two filenames actually represent the same file. (More on this 
shortly.)

If you were to explore the directories in this filesystem, its contents 
would appear to the user as shown in Figure 4-4. The actual layout of the 
filesystem, as shown in Figure 4-5, doesn’t look nearly as clean as the user-
level representation.

(root)

dir_1 dir_2

file_1 file_2 file_3 file_4 file_5

Figure 4-4: User-level representation of a filesystem
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inode table
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“b”
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Figure 4-5: Inode structure of the filesystem shown in Figure 4-4

How do we make sense of this? For any ext2/3/4 filesystem, you start at 
inode number 2—the root inode. From the inode table in Figure 4-5, you can 
see that this is a directory inode (dir), so you can follow the arrow over to 
the data pool, where you see the contents of the root directory: two entries 
named dir_1 and dir_2 corresponding to inodes 12 and 7633, respectively. 
To explore those entries, go back to the inode table and look at either of 
those inodes.

To examine dir_1/file_2 in this filesystem, the kernel does the following:

1. Determines the path’s components: a directory named dir_1, followed 
by a component named file_2.

2. Follows the root inode to its directory data.

3. Finds the name dir_1 in inode 2’s directory data, which points to inode 
number 12.

4. Looks up inode 12 in the inode table and verifies that it is a directory 
inode.

5. Follows inode 12’s data link to its directory information (the second 
box down in the data pool).
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6. Locates the second component of the path (file_2) in inode 12’s direc-
tory data. This entry points to inode number 14.

7. Looks up inode 14 in the directory table. This is a file inode.

At this point, the kernel knows the properties of the file and can open 
it by following inode 14’s data link.

This system, of inodes pointing to directory data structures and direc-
tory data structures pointing to inodes, allows you to create the filesystem 
hierarchy that you’re used to. In addition, notice that the directory inodes 
contain entries for . (the current directory) and .. (the parent directory, 
except for the root directory). This makes it easy to get a point of reference 
and to navigate back down the directory structure.

4.5.1 Viewing Inode Details 
To view the inode numbers for any directory, use the ls -i command. 
Here’s what you’d get at the root of this example. (For more detailed inode 
information, use the stat command.)

$ ls -i
  12 dir_1  7633 dir_2

Now you’re probably wondering about the link count. You’ve already 
seen the link count in the output of the common ls -l command, but you 
likely ignored it. How does the link count relate to the files in Figure 4-5, 
in particular the “hard-linked” file_5? The link count field is the number of 
total directory entries (across all directories) that point to an inode. Most 
of the files have a link count of 1 because they occur only once in the direc-
tory entries. This is expected: Most of the time when you create a file, you 
create a new directory entry and a new inode to go with it. However, inode 
15 occurs twice: First it’s created as dir_1/file_3, and then it’s linked to as 
dir_2/file_5. A hard link is just a manually created entry in a directory to an 
inode that already exists. The ln command (without the -s option) allows 
you to manually create new links.

This is also why removing a file is sometimes called unlinking. If you run 
rm dir_1/file_2, the kernel searches for an entry named file_2 in inode 12’s 
directory entries. Upon finding that file_2 corresponds to inode 14, the ker-
nel removes the directory entry and then subtracts 1 from inode 14’s link 
count. As a result, inode 14’s link count will be 0, and the kernel will know 
that there are no longer any names linking to the inode. Therefore, it can 
now delete the inode and any data associated with it. 

However, if you run rm dir_1/file_3, the end result is that the link count 
of inode 15 goes from 2 to 1 (because dir_2/file_5 still points there), and the 
kernel knows not to remove the inode.

Link counts work much the same for directories. Observe that inode 
12’s link count is 2, because there are two inode links there: one for dir_1 
in the directory entries for inode 2 and the second a self-reference (.) in 
its own directory entries. If you create a new directory dir_1/dir_3, the link 
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count for inode 12 would go to 3 because the new directory would include a 
parent (..) entry that links back to inode 12, much as inode 12’s parent link 
points to inode 2.

There is one small exception. The root inode 2 has a link count of 4. 
However, Figure 4-5 shows only three directory entry links. The “fourth” 
link is in the filesystem’s superblock because the superblock tells you where 
to find the root inode.

Don’t be afraid to experiment on your system. Creating a directory 
structure and then using ls -i or stat to walk through the pieces is harm-
less. You don’t need to be root (unless you mount and create a new filesystem).

But there’s still one piece missing: When allocating data pool blocks for 
a new file, how does the filesystem know which blocks are in use and which 
are available? One of the most basic ways is with an additional management 
data structure called a block bitmap. In this scheme, the filesystem reserves a 
series of bytes, with each bit corresponding to one block in the data pool. A 
value of 0 means that the block is free, and a 1 means that it’s in use. Thus, 
allocating and deallocating blocks is a matter of flipping bits.

Problems in a filesystem arise when the inode table data doesn’t match 
the block allocation data or when the link counts are incorrect; this can 
happen when you don’t cleanly shut down a system. Therefore, when you 
check a filesystem, as described in Section 4.2.11, the fsck program walks 
through the inode table and directory structure to generate new link 
counts and a new block allocation map (such as the block bitmap), and 
then it compares the newly generated data with the filesystem on the disk. 
If there are mismatches, fsck must fix the link counts and determine what 
to do with any inodes and/or data that didn’t come up when it traversed the 
directory structure. Most fsck programs make these “orphans” new files in 
the filesystem’s lost+found directory. 

4.5.2 Working with Filesystems in User Space
When working with files and directories in user space, you shouldn’t have 
to worry much about the implementation going on below them. You’re 
expected to access the contents of files and directories of a mounted file-
system through kernel system calls. Curiously, though, you do have access 
to certain filesystem information that doesn’t seem to fit in user space—in 
particular, the stat() system call returns inode numbers and link counts. 

When not maintaining a filesystem, do you have to worry about inode 
numbers and link counts? Generally, no. This stuff is accessible to user 
mode programs primarily for backward compatibility. Furthermore, not 
all file systems available in Linux have these filesystem internals. The Virtual 
File System (VFS) interface layer ensures that system calls always return inode 
numbers and link counts, but those numbers may not necessarily mean 
anything. 

You may not be able to perform traditional Unix filesystem operations 
on nontraditional filesystems. For example, you can’t use ln to create a 
hard link on a mounted VFAT filesystem because the directory entry struc-
ture is entirely different.
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Fortunately, the system calls available to user space on Unix/Linux 
systems provide enough abstraction for painless file access—you don’t 
need to know anything about the underlying implementation in order to 
access files. In addition, filenames are flexible in format and mixed-case 
names are supported, making it easy to support other hierarchical-style 
filesystems.

Remember, specific filesystem support does not necessarily need to be 
in the kernel. In user-space filesystems, the kernel only needs to act as a 
conduit for system calls.

4.5.3 The Evolution of Filesystems
As you can see, even the simple filesystem just described has many differ-
ent components to maintain. At the same time, the demands placed on 
filesystems continuously increase with new tasks, technology, and storage 
capacity. Today’s performance, data integrity, and security requirements 
are beyond the offerings of older filesystem implementations, so filesystem 
technology is constantly changing. We’ve already mentioned Btrfs as an 
example of a next-generation filesystem (see Section 4.2.1).

One example of how filesystems are changing is that new filesystems 
use separate data structures to represent directories and filenames, rather 
than the directory inodes described here. They reference data blocks differ-
ently. Also, filesystems that optimize for SSDs are still evolving. Continuous 
change in the development of filesystems is the norm, but keep in mind 
that the evolution of filesystems doesn’t change their purpose.




