
H U W C O L L I N G B O U R N E

T H E B O O K O F

R U B Y
T H E B O O K O F

R U B Y
A H A N D S - O N G U I D E F O R T H E A D V E N T U R O U S

™

THE BOOK
OF™ RUBY

A H a n d s - O n G u i d e f o r
t h e A d v e n t u r o u s

by Huw Col l ingbourne

San Francisco

G E T T H E F U L L B O O K

Take 30% off when you buy The Book of Ruby
(print or ebook) from nostarch.com!

Use coupon code RUNREADRUBY
nostarch.com/boruby.htm

http://www.nostarch.com/boruby.htm

B R I E F C O N T E N T S

Acknowledgments ..xv

Introduction ...xvii

Chapter 1: Strings, Numbers, Classes, and Objects ..1

Chapter 2: Class Hierarchies, Attributes, and Class Variables ..15

Chapter 3: Strings and Ranges ...33

Chapter 4: Arrays and Hashes ...47

Chapter 5: Loops and Iterators..67

Chapter 6: Conditional Statements ..83

Chapter 7: Methods ..97

Chapter 8: Passing Arguments and Returning Values ...121

Chapter 9: Exception Handling...139

Chapter 10: Blocks, Procs, and Lambdas ...155

Chapter 11: Symbols...181

Chapter 12: Modules and Mixins..191

Chapter 13: Files and IO ...213

Chapter 14: YAML ..227

Chapter 15: Marshal...239

vi Brie f Conten ts

Chapter 16: Regular Expressions ..249

Chapter 17: Threads ...263

Chapter 18: Debugging and Testing ...283

Chapter 19: Ruby on Rails ...299

Chapter 20: Dynamic Programming ..325

Appendix A: Documenting Ruby with RDoc ..345

Appendix B: Installing MySQL for Ruby on Rails..349

Appendix C: Further Reading ...353

Appendix D: Ruby and Rails Development Software ..357

Index ...361

B L O C K S , P R O C S , A N D
L A M B D A S

When programmers talk about blocks, they
often mean some arbitrary “chunks” of code.

In Ruby, however, a block is special. It is a unit of
code that works somewhat like a method but, unlike a
method, it has no name.

Blocks are very important in Ruby, but they can be difficult to under-
stand. In addition, there are some important differences in the behavior of
blocks in Ruby 1.8 and Ruby 1.9. If you fail to appreciate those differences,
your programs may behave in unexpected ways when run in different versions
of Ruby. This chapter looks at blocks in great detail. Not only does it explain
how they work and why they are special, but it also provides guidance on ensur-
ing that they continue to work consistently no matter which version of Ruby
you happen to be using.

156 Chapter 10

What Is a Block?

Consider this code:

1blocks.rb 3.times do |i|
 puts(i)
end

It’s probably pretty obvious that this code is intended to execute three
times. What may be less obvious is the value that i will have on each succes-
sive turn through the loop. In fact, the values of i in this case will be 0, 1, and
2. The following is an alternative form of the previous code. This time, the
block is delimited by curly brackets rather than by do and end.

3.times { |i|
 puts(i)
}

According to the Ruby documentation, times is a method of Integer (let’s
call the Integer int), which iterates a block “int times, passing in values from
0 to int -1.” So here, the code within the block is run three times. The first
time it is run, the variable i is given the value 0; each subsequent time, i is
incremented by 1 until the final value, 2 (that is, int-1), is reached.

The two code examples shown earlier are functionally identical. A block
can be enclosed either by curly brackets or by the do and end keywords, and
the programmer can use either syntax according to personal preference.

NOTE Some Ruby programmers like to delimit blocks with curly brackets when the entire code
of the block fits onto a single line and with do..end when the block spans multiple lines.
My personal prejudice is to be consistent, irrespective of code layout, so I generally use
curly brackets when delimiting blocks. Usually your choice of delimiters makes no differ-
ence to the behavior of the code—but see “Precedence Rules” on page 170.

If you are familiar with a C-like language such as C# or Java, you may, per-
haps, assume that Ruby’s curly brackets can be used, as in those languages,
simply to group together arbitrary “blocks” of code—for example, a block of
code to be executed when a condition evaluates to true. This is not the case.
In Ruby, a block is a special construct that can be used only in very specific
circumstances.

Line Breaks Are Significant

You must place the opening block delimiter on the same line as the method
with which it is associated.

For example, these are okay:

3.times do |i|
 puts(i)
end

Blocks, Procs, and Lambdas 157

3.times { |i|
 puts(i)
}

But these contain syntax errors:

3.times
do |i|
 puts(i)
end

3.times
{ |i|
 puts(i)
}

Nameless Functions

A Ruby block may be regarded as a sort of nameless function or method, and
its most frequent use is to provide a means of iterating over items from a list
or range of values. If you have never come across nameless functions, this may
sound like gobbledygook. With luck, by the end of this chapter, things will
have become a little clearer. Let’s look back at the simple example given ear-
lier. I said a block is like a nameless function. Take this block as an example:

{ |i|
 puts(i)
}

If that were written as a normal Ruby method, it would look something
like this:

def aMethod(i)
 puts(i)
end

To call that method three times and pass values from 0 to 2, you might
write this:

for i in 0..2
 aMethod(i)
end

When you create a nameless method (that is, a block), variables declared
between upright bars such as |i| can be treated like the arguments to a named
method. I will refer to these variables as block parameters.

158 Chapter 10

Look again at my earlier example:

3.times { |i|
 puts(i)
}

The times method of an integer passes values to a block from 0 to the
specified integer value minus 1.

So, this:

3.times{ |i| }

is very much like this:

for i in 0..2
 aMethod(i)
end

The chief difference is that the second example has to call a named
method to process the value of i, whereas the first example uses the name-
less method (the code between curly brackets) to process i.

Look Familiar?

Now that you know what a block is, you may notice that you’ve seen them
before. Many times. For example, you previously used do..end blocks to iter-
ate over ranges like this:

(1..3).each do |i|
 puts(i)
end

You have also used do..end blocks to iterate over arrays (see for_each2.rb
on page 69):

arr = ['one','two','three','four']
arr.each do |s|
 puts(s)
end

And you have executed a block repeatedly by passing it to the loop
method (see 3loops.rb on page 75):

i=0
loop {
 puts(arr[i])
 i+=1
 if (i == arr.length) then
 break
 end
}

Blocks, Procs, and Lambdas 159

The previous loop example is notable for two things: It has no list of
items (such as an array or a range of values) to iterate over, and it is pretty
darn ugly. These two features are not entirely unrelated! The loop method is
part of the Kernel class, which is “automatically” available to your programs.
Because it has no “end value,” it will execute the block forever unless you
explicitly break out of it using the break keyword. Usually there are more ele-
gant ways to perform this kind of iteration—by iterating over a sequence of
values with a finite range.

Blocks and Arrays

Blocks are commonly used to iterate over arrays. The Array class, conse-
quently, provides a number of methods to which blocks are passed.

One useful method is called collect; this passes each element of the array
to a block and creates a new array to contain each of the values returned by
the block. Here, for example, a block is passed to each of the integers in an
array (each integer is assigned to the variable x); the block doubles its value
and returns it. The collect method creates a new array containing each of
the returned integers in sequence:

2blocks.rb b3 = [1,2,3].collect{|x| x*2}

The previous example assigns this array to b3:

[2,4,6]

In the next example, the block returns a version of the original strings in
which each initial letter is capitalized:

b4 = ["hello","good day","how do you do"].collect{|x| x.capitalize }

So, b4 is now as follows:

["Hello", "Good day", "How do you do"]

The each method of the Array class may look rather similar to collect; it
too passes each array element in turn to be processed by the block. However,
unlike collect, the each method does not create a new array to contain the
returned values:

b5 = ["hello","good day","how do you do"].each{|x| x.capitalize }

This time, b5 is unchanged:

["hello", "good day", "how do you do"]

160 Chapter 10

Recall, however, that some methods—notably those ending with an excla-
mation mark (!)—actually alter the original objects rather than yielding new
values. If you wanted to use the each method to capitalize the strings in the
original array, you could use the capitalize! method:

b6 = ["hello","good day", "how do you do"].each{|x| x.capitalize! }

So, b6 is now as follows:

["Hello", "Good day", "How do you do"]

With a bit of thought, you could also use a block to iterate over the char-
acters in a string. First, you need to split off each character from a string. This
can be done using the split method of the String class like this:

"hello world".split(//)

The split method divides a string into substrings based on a delimiter
and returns an array of these substrings. Here // is a regular expression that
defines a zero-length string; this has the effect of returning a single charac-
ter, so you end up creating an array of all the characters in the string. You
can now iterate over this array of characters, returning a capitalized version
of each:

a = "hello world".split(//).each{ |x| newstr << x.capitalize }

At each iteration, a capitalized character is appended to newstr, and the
following is displayed:

H
HE
HEL
HELL
HELLO
HELLO
HELLO W
HELLO WO
HELLO WOR
HELLO WORL
HELLO WORLD

Because you are using the capitalize method here (with no terminating
! character), the characters in the array a remain as they began, all lowercase,
since the capitalize method does not alter the receiver object (here the
receiver objects are the characters passed into the block).

Blocks, Procs, and Lambdas 161

Be aware, however, that this code would not work if you were to use
the capitalize! method to modify the original characters. This is because
capitalize! returns nil when no changes are made, so when the space char-
acter is encountered, nil would be returned, and your attempt to append
(<<) a nil value to the string newstr would fail.

You could also capitalize a string using the each_byte method. This iter-
ates through the string characters, passing each byte to the block. These bytes
take the form of ASCII codes. So, “hello world” would be passed in the form
of these numeric values: 104 101 108 108 111 32 119 111 114 108 100.

Obviously, you can’t capitalize an integer, so you need to convert each
ASCII value to a character. The chr method of String does this:

a = "hello world".each_byte{|x| newstr << (x.chr).capitalize }

Procs and Lambdas

In the examples up to now, blocks have been used in cahoots with methods.
This has been a requirement since nameless blocks cannot have an indepen-
dent existence in Ruby. You cannot, for example, create a stand-alone block
like this:

{|x| x = x*10; puts(x)} # This is not allowed!

This is one of the exceptions to the rule that “everything in Ruby is an
object.” A block clearly is not an object. Every object is created from a class,
and you can find an object’s class by calling its class method.

Do this with a hash, for example, and the class name “Hash” will be
displayed:

puts({1=>2}.class)

Try this with a block, however, and you will only get an error message:

puts({|i| puts(i)}.class) #<= error!

Block or Hash?

Ruby uses curly brackets to delimit both blocks and hashes. So, how can you
(and Ruby) tell which is which? The answer, basically, is that it’s a hash when
it looks like a hash, and otherwise it’s a block. A hash looks like a hash when
curly brackets contain key-value pairs:

puts({1=>2}.class) #<= Hash

162 Chapter 10

or when they are empty:

block_or_hash.rb puts({}.class) #<= Hash

However, if you omit the parentheses, there is an ambiguity. Is this an
empty hash, or is it a block associated with the puts method?

puts{}.class

Frankly, I have to admit I don’t know the answer to that question, and I
can’t get Ruby to tell me. Ruby accepts this as valid syntax but does not, in
fact, display anything when the code executes. So, how about this?

print{}.class

Once again, this prints nothing at all in Ruby 1.9, but in Ruby 1.8 it dis-
plays nil (not, you will notice, the actual class of nil, which is NilClass, but nil
itself). If you find all this confusing (as I do!), just remember that this can all
be clarified by the judicious use of parentheses:

print({}.class) #<= Hash

Creating Objects from Blocks

Although blocks may not be objects by default, they can be “turned into”
objects. There are three ways of creating objects from blocks and assigning
them to variables—here’s how:

proc_create.rb a = Proc.new{|x| x = x*10; puts(x) } #=> Proc
b = lambda{|x| x = x*10; puts(x) } #=> Proc
c = proc{|x| x.capitalize! } #=> Proc

In each of the three cases, you will end up creating an instance of the
Proc class—which is the Ruby “object wrapper” for a block.

Let’s take a look at a simple example of creating and using a Proc object.
First, you can create an object calling Proc.new and passing to it a block as an
argument:

3blocks.rb a = Proc.new{|x| x = x*10; puts(x)}

Second, you can execute the code in the block to which a refers using
the Proc class’s call method with one or more arguments (matching the
block parameters) to be passed into the block; in the previous code, you
could pass an integer such as 100, and this would be assigned to the block
variable x:

a.call(100) #=> 1000

Blocks, Procs, and Lambdas 163

Finally, you can also create a Proc object by calling the lambda or proc
methods, which are supplied by the Kernel class. The name lambda is taken
from the Scheme (Lisp) language and is a term used to describe an anony-
mous method, or closure.

b = lambda{|x| x = x*10; puts(x) }
b.call(100) #=> 1000

c = proc{|x| x.capitalize! }
c1 = c.call("hello")
puts(c1) #=> Hello

Here is a slightly more complicated example that iterates over an array
of strings, capitalizing each string in turn. The array of capitalized strings is
then assigned to the d1 variable:

d = lambda{|x| x.capitalize! }
d1 = ["hello","good day","how do you do"].each{ |s| d.call(s)}
puts(d1.inspect) #=> ["Hello", "Good day", "How do you do"]

There is one important difference between creating a Proc object using
Proc.new and creating a Proc object using a lambda method—Proc.new does not
check that the number of arguments passed to the block matches the num-
ber of block parameters. lambda does. The behavior of the proc method is dif-
ferent in Ruby 1.8 and 1.9. In Ruby 1.8, proc is equivalent to lambda—it checks
the number of arguments. In Ruby 1.9, proc is equivalent to Proc.new—it does
not check the number of arguments:

proc_lamba.rb a = Proc.new{|x,y,z| x = y*z; puts(x) }
a.call(2,5,10,100) # This is not an error

b = lambda{|x,y,z| x = y*z; puts(x) }
b.call(2,5,10,100) # This is an error

puts('---Block #2---')
c = proc{|x,y,z| x = y*z; puts(x) }
c.call(2,5,10,100) # This is an error in Ruby 1.8
 # Not an error in Ruby 1.9

What Is a Closure?

A closure is a function that has the ability to store (that is, to “enclose”) values
of local variables within the scope in which the block was created (think of
this as the block’s “native scope”). Ruby’s blocks are closures. To understand
this, look at this example:

block_closure.rb x = "hello world"

ablock = Proc.new { puts(x) }

164 Chapter 10

def aMethod(aBlockArg)
 x = "goodbye"
 aBlockArg.call
end

puts(x)
ablock.call
aMethod(ablock)
ablock.call
puts(x)

Here, the value of the local variable x is “hello world” within the scope of
ablock. Inside aMethod, however, a local variable named x has the value “good-
bye.” In spite of that, when ablock is passed to aMethod and called within the
scope of aMethod, it prints “hello world” (that is, the value of x within the block’s
native scope) rather than “goodbye,” which is the value of x within the scope
of aMethod. The previous code, therefore, only ever prints “hello world.”

NOTE See “Digging Deeper” on page 175 for more on closures.

yield

Let’s see a few more blocks in use. The 4blocks.rb program introduces some-
thing new, namely, a way of executing a nameless block when it is passed to a
method. This is done using the keyword yield. In the first example, I define
this simple method:

4blocks.rb def aMethod
 yield
end

It doesn’t really have any code of its own. Instead, it expects to receive a
block, and the yield keyword causes the block to execute. This is how I pass a
block to it:

aMethod{ puts("Good morning") }

Notice that this time the block is not passed as a named argument. It
would be an error to try to pass the block between parentheses, like this:

aMethod({ puts("Good morning") }) # This won't work!

Instead, you simply put the block right next to the method to which you
are passing it, just as you did in the first example in this chapter. That method
receives the block without having to declare a named parameter for it, and it
calls the block with yield.

Blocks, Procs, and Lambdas 165

Here is a slightly more useful example:

def caps(anarg)
 yield(anarg)
end

caps("a lowercase string"){ |x| x.capitalize! ; puts(x) }

Here the caps method receives one argument, anarg, and passes this argu-
ment to a nameless block, which is then executed by yield. When I call the
caps method, I pass it a string argument ("a lowercase string") using the nor-
mal parameter-passing syntax. The nameless block is passed after the end of
the parameter list.

When the caps method calls yield(anarg), then the string argument is
passed into the block; it is assigned to the block variable x. This capitalizes it
and displays it with puts(s), which shows that the initial letter has been cap-
italized: “A lowercase string.”

Blocks Within Blocks

You’ve already seen how to use a block to iterate over an array. In the next
example (also in 4blocks.rb), I use one block to iterate over an array of strings,
assigning each string in turn to the block variable s. A second block is then
passed to the caps method in order to capitalize the string:

["hello","good day","how do you do"].each{
 |s|
 caps(s){ |x| x.capitalize!
 puts(x)
 }
}

This results in the following output:

Hello
Good day
How do you do

Passing Named Proc Arguments

Up to now, you have passed blocks to procedures either anonymously (in
which case the block is executed with the yield keyword) or in the form
of a named argument, in which case it is executed using the call method.
There is another way to pass a block. When the last argument in a method’s
list of parameters is preceded by an ampersand (&), it is considered to be a
Proc object. This gives you the option of passing an anonymous block to a

166 Chapter 10

procedure using the same syntax as when passing a block to an iterator, and
yet the procedure itself can receive the block as a named argument. Load
5blocks.rb to see some examples of this.

First, here is a reminder of the two ways you’ve already seen of passing
blocks. This method has three parameters, a, b, and c:

5blocks.rb def abc(a, b, c)
 a.call
 b.call
 c.call
 yield
end

You call this method with three named arguments (which here happen
to be blocks but could, in principle, be anything) plus an unnamed block:

a = lambda{ puts "one" }
b = lambda{ puts "two" }
c = proc{ puts "three" }
abc(a, b, c){ puts "four" }

The abc method executes the named block arguments using the call
method and the unnamed block using the yield keyword. The results are
shown in the #=> comments here:

a.call #=> one
b.call #=> two
c.call #=> three
yield #=> four

The next method, abc2, takes a single argument, &d. The ampersand here
is significant because it indicates that the &d parameter is a block. Instead of
using the yield keyword, the abc2 method is able to execute the block using
the name of the argument (without the ampersand):

def abc2(&d)
 d.call
end

So, a block argument with an ampersand is called in the same way as one
without an ampersand. However, there is a difference in the way the object
matching that argument is passed to the method. To match an ampersand-
argument, an unnamed block is passed by appending it to the method name:

abc2{ puts "four" }

Blocks, Procs, and Lambdas 167

You can think of ampersand-arguments as type-checked block parame-
ters. Unlike normal arguments (without an ampersand), the argument can-
not match any type; it can match only a block. You cannot pass some other
sort of object to abc2:

abc2(10) # This won't work!

The abc3 method is essentially the same as the abc method except it spec-
ifies a fourth formal block-typed argument (&d):

def abc3(a, b, c, &d)

The arguments a, b, and c are called, while the argument &d may be
either called or yielded, as you prefer:

def abc3(a, b, c, &d)
 a.call
 b.call
 c.call
 d.call # first call block &d
 yield # then yield block &d
end

This means the calling code must pass to this method three formal argu-
ments plus a block, which may be nameless:

abc3(a, b, c){ puts "five" }

The previous method call would result in this output (bearing in mind
that the final block argument is executed twice since it is both called and
yielded):

one
two
three
five
five

You can also use a preceding ampersand in order to pass a named block
to a method when the receiving method has no matching named argument,
like this:

myproc = proc{ puts("my proc") }
abc3(a, b, c, &myproc)

168 Chapter 10

An ampersand block variable such as &myproc in the previous code may be
passed to a method even if that method does not declare a matching variable
in its argument list. This gives you the choice of passing either an unnamed
block or a Proc object:

xyz{ |a,b,c| puts(a+b+c) }
xyz(&myproc)

Be careful, however! Notice in one of the previous examples, I have used
block parameters (|a,b,c|) with the same names as the three local variables
to which I previously assigned Proc objects: a, b, c:

a = lambda{ puts "one" }
b = lambda{ puts "two" }
c = proc{ puts "three" }
xyz{ |a,b,c| puts(a+b+c) }

In principle, block parameters should be visible only within the block
itself. However, it turns out that assignment to block parameters has pro-
foundly different effects in Ruby 1.8 and Ruby 1.9. Let’s look first at Ruby
1.8. Here, assignment to block parameters can initialize the values of any
local variables with the same name within the block’s native scope (see
“What Is a Closure?” on page 163).

Even though the variables in the xyz method are named x, y, and z, it
turns out that the integer assignments in that method are actually made to
the variables a, b, and c when this block:

{ |a,b,c| puts(a+b+c) }

is passed the values of x, y, and z:

def xyz
 x = 1
 y = 2
 z = 3
 yield(x, y, z) # 1,2,3 assigned to block parameters a,b,c
end

As a consequence, the Proc variables a, b, and c within the block’s native
scope (the main scope of my program) are initialized with the integer values
of the block variables x, y, and z once the code in the block has been run. So,
a, b, and c, which began as Proc objects, end up as integers.

In Ruby 1.9, on the contrary, the variables inside the block are sealed
off from the variables declared outside the block. So, the values of the xyz
method’s x, y, and z variables are not assigned to the block’s a, b, and c param-
eters. That means once the block has executed, the values of the a, b, and c
variables declared outside that method are unaffected: They began as Proc
objects, and they end up as Proc objects.

Blocks, Procs, and Lambdas 169

Now let’s suppose you execute the following code, remembering that a,
b, and c are Proc objects at the outset:

xyz{ |a,b,c| puts(a+b+c) }
puts(a, b, c)

In Ruby 1.8, the puts statement shown earlier displays the end values of a,
b, and c, showing that they have been initialized with the integer values that
were passed into the block when it was yielded (yield(x, y, z)) in the xyz
method. As a consequence, they are now integers:

1
2
3

But in Ruby 1.9, a, b, and c are not initialized by the block parameters
and remain, as they began, as Proc objects:

#<Proc:0x2b65828@C:/bookofruby/ch10/5blocks.rb:36 (lambda)>
#<Proc:0x2b65810@C:/bookofruby/ch10/5blocks.rb:37 (lambda)>
#<Proc:0x2b657f8@C:/bookofruby/ch10/5blocks.rb:38>

This behavior can be difficult to understand, but it is worth taking the
time to do so. The use of blocks is commonplace in Ruby, and it is important
to know how the execution of a block may (or may not) affect the values of
variables declared outside the block. To clarify this, try the simple program
in 6blocks.rb:

6blocks.rb a = "hello world"

def foo
 yield 100
end

puts(a)
foo{ |a| puts(a) }

puts(a)

Here a is a string within the scope of the main program. A different
variable with the same name, a, is declared in the block, which is passed to
foo and yielded. When it is yielded, an integer value, 100, is passed into the
block, causing the block’s parameter, a, to be initialized to 100. The question
is, does the initialization of the block argument, a, also initialize the string
variable, a, in the main scope? And the answer is, yes in Ruby 1.8 but no in
Ruby 1.9.

170 Chapter 10

Ruby 1.8 displays this:

hello world
100
100

Ruby 1.9 displays this:

hello world
100
hello world

If you want to make sure that block parameters do not alter the values of
variables declared outside the block, no matter which version of Ruby you
use, just ensure that the block parameter names do not duplicate names used
elsewhere. In the current program, you can do this simply by changing the
name of the block argument to ensure that it is unique to the block:

foo{ |b| puts(b) } # the name 'b' is not used elsewhere

This time, when the program is run, Ruby 1.8 and Ruby 1.9 both pro-
duce the same results:

hello world
100
hello world

This is an example of one of the pitfalls into which it is all too easy to fall
in Ruby. As a general rule, when variables share the same scope (for exam-
ple, a block declared within the scope of the main program here), it is best to
make their names unique in order to avoid any unforeseen side effects. For
more on scoping, see “Blocks and Local Variables” on page 177.

Precedence Rules

Blocks within curly brackets have stronger precedence than blocks within do
and end. Let’s see what that means in practice. Consider these two examples:

foo bar do |s| puts(s) end
foo bar{ |s| puts(s) }

Here, foo and bar are both methods, and the code between curly brackets
and do and end are blocks. So, to which of the two methods is each of these
blocks passed? It turns out that the do..end block would be passed to the left-
most method, foo, whereas the block in curly brackets would be sent to the
rightmost method, bar. This is because curly brackets are said to have higher
precedence than do and end.

Blocks, Procs, and Lambdas 171

Consider this program:

precedence.rb def foo(b)
 puts("---in foo---")
 a = 'foo'
 if block_given?
 puts("(Block passed to foo)")
 yield(a)
 else
 puts("(no block passed to foo)")
 end
 puts("in foo, arg b = #{b}")
 return "returned by " << a
end

def bar
 puts("---in bar---")
 a = 'bar'
 if block_given?
 puts("(Block passed to bar)")
 yield(a)
 else
 puts("(no block passed to bar)")
 end
 return "returned by " << a
end

foo bar do |s| puts(s) end # 1) do..end block
foo bar{ |s| puts(s) } # 2) {..} block

Here the do..end block has lower precedence, and the method foo is
given priority. This means both bar and the do..end block are passed to foo.
Thus, these two expressions are equivalent:

foo bar do |s| puts(s) end
foo(bar) do |s| puts(s) end

A curly bracket block, on the other hand, has stronger precedence, so
it tries to execute immediately and is passed to the first possible receiver
method (bar). The result (that is, the value returned by bar) is then passed
as an argument to foo, but this time, foo does not receive the block itself.
Thus, the two following expressions are equivalent:

foo bar{ |s| puts(s) }
foo(bar{ |s| puts(s) })

If you are confused by all this, take comfort in that you are not alone!
The potential ambiguities result from the fact that, in Ruby, the parentheses
around argument lists are optional. As you can see from the alternative ver-
sions I gave earlier, the ambiguities disappear when you use parentheses.

NOTE A method can test whether it has received a block using the block_given? method. You
can find examples of this in the precedence.rb program.

172 Chapter 10

Blocks as Iterators

As mentioned earlier, one of the primary uses of blocks in Ruby is to provide
iterators to which a range or list of items can be passed. Many standard classes
such as Integer and Array have methods that can supply items over which a
block can iterate. For example:

3.times{ |i| puts(i) }
[1,2,3].each{|i| puts(i) }

You can, of course, create your own iterator methods to provide a series of
values to a block. In the iterate1.rb program, I have defined a simple timesRepeat
method that executes a block a specified number of times. This is similar to
the times method of the Integer class except it begins at index 1 rather than
at index 0 (here the variable i is displayed in order to demonstrate this):

iterate1.rb def timesRepeat(aNum)
 for i in 1..aNum do
 yield i
 end
end

Here is an example of how this method might be called:

timesRepeat(3){ |i| puts("[#{i}] hello world") }

This displays the following:

[1] hello world
[2] hello world
[3] hello world

I’ve also created a timesRepeat2 method to iterate over an array:

def timesRepeat2(aNum, anArray)
 anArray.each{ |anitem|
 yield(anitem)
 }
end

This could be called in this manner:

timesRepeat2(3, ["hello","good day","how do you do"]){ |x| puts(x) }

This displays the following:

hello
good day
how do you do

Blocks, Procs, and Lambdas 173

Of course, it would be better (truer to the spirit of object orientation) if
an object itself contained its own iterator method. I’ve implemented this in
the next example. Here I have created MyArray, a subclass of Array:

class MyArray < Array

It is initialized with an array when a new MyArray object is created:

def initialize(anArray)
 super(anArray)
end

It relies upon its own each method (an object refers to itself as self), which
is provided by its ancestor, Array, to iterate over the items in the array, and it
uses the times method of Integer to do this a certain number of times. This is
the complete class definition:

iterate2.rb class MyArray < Array
 def initialize(anArray)
 super(anArray)
 end

 def timesRepeat(aNum)
 aNum.times{ # start block 1...
 | num |
 self.each{ # start block 2...
 | anitem |
 yield("[#{num}] :: '#{anitem}'")
 } # ...end block 2
 } # ...end block 1
 end
end

Notice that, because I have used two iterators (aNum.times and self.each),
the timesRepeat method comprises two nested blocks. This is an example of
how you might use this:

numarr = MyArray.new([1,2,3])
numarr.timesRepeat(2){ |x| puts(x) }

This would output the following:

[0] :: '1'
[0] :: '2'
[0] :: '3'
[1] :: '1'
[1] :: '2'
[1] :: '3'

174 Chapter 10

In iterate3.rb, I have set myself the problem of defining an iterator for an
array containing an arbitrary number of subarrays, in which each subarray
has the same number of items. In other words, it will be like a table or matrix
with a fixed number of rows and a fixed number of columns. Here, for exam-
ple, is a multidimensional array with three “rows” (subarrays) and four “col-
umns” (items):

iterate3.rb multiarr =
[['one','two','three','four'],
 [1, 2, 3, 4],
 [:a, :b, :c, :d]
]

I’ve tried three alternative versions of this. The first version suffers from
the limitation of only working with a predefined number (here 2 at indexes
[0] and [1]) of “rows” so it won’t display the symbols in the third row:

multiarr[0].length.times{|i|
 puts(multiarr[0][i], multiarr[1][i])
}

The second version gets around this limitation by iterating over each
element (or “row”) of multiarr and then iterating along each item in that row
by obtaining the row length and using the Integer’s times method with that
value. As a result, it displays the data from all three rows:

multiarr.each{ |arr|
 multiarr[0].length.times{|i|
 puts(arr[i])
 }
}

The third version reverses these operations: The outer block iterates
along the length of row 0, and the inner block obtains the item at index i
in each row. Once again, this displays the data from all three rows:

multiarr[0].length.times{|i|
 multiarr.each{ |arr|
 puts(arr[i])
 }
}

However, although versions 2 and 3 work in a similar way, you will find that
they iterate through the items in a different order. Version 2 iterates through
each complete row one at a time. Version 3 iterates down the items in each
column. Run the program to verify that. You could try creating your own sub-
class of Array and adding iterator methods like this—one method to iterate
through the rows in sequence and one to iterate through the columns.

Blocks, Procs, and Lambdas 175

D I G G I N G D E E P E R
Here we look at important differences between block scoping in Ruby 1.8
and 1.9 and also learn about returning blocks from methods.

Returning Blocks from Methods
Earlier, I explained that blocks in Ruby may act as closures. A closure may
be said to enclose the “environment” in which it is declared. Or, to put it
another way, it carries the values of local variables from its original scope
into a different scope. The example I gave previously showed how the block
named ablock captures the value of the local variable x:

block_closure.rb x = "hello world"
ablock = Proc.new { puts(x) }

It is then able to “carry” that variable into a different scope. Here, for
example, ablock is passed to aMethod. When ablock is called inside that method,
it runs the code puts(x). This displays “hello world” and not “goodbye”:

def aMethod(aBlockArg)
 x = "goodbye"
 aBlockArg.call #=> "hello world"
end

In this particular example, this behavior may seem like a curiosity of no
great interest. In fact, block/closures can be used more creatively.

For example, instead of creating a block and sending it to a method, you
could create a block inside a method and return that block to the calling code.
If the method in which the block is created happens to take an argument,
the block could be initialized with that argument.

This gives you a simple way of creating multiple blocks from the same
“block template,” each instance of which is initialized with different data.
Here, for example, I have created two blocks and assigned them to the vari-
ables salesTax and vat, each of which calculates results based on different val-
ues (0.10) and (0.175):

block_closure2.rb def calcTax(taxRate)
 return lambda{
 |subtotal|
 subtotal * taxRate
 }
end

salesTax = calcTax(0.10)
vat = calcTax(0.175)

176 Chapter 10

print("Tax due on book = ")
print(salesTax.call(10)) #=> 1.0

print("\nVat due on DVD = ")
print(vat.call(10)) #=> 1.75

Blocks and Instance Variables
One of the less obvious features of blocks is the way in which they use vari-
ables. If a block may truly be regarded as a nameless function or method,
then, logically, it should be able to contain its own local variables and have
access to the instance variables of the object to which the block belongs.

Let’s look first at instance variables. Load the closures1.rb program. This
provides another illustration of a block acting as a closure—by capturing the
values of the local variables in the scope in which it was created. Here I have
created a block using the lambda method:

closures1.rb aClos = lambda{
 @hello << " yikes!"
}

This block appends the string “ yikes!” to the instance variable @hello.
Notice that at this stage in the proceedings, no value has previously been
assigned to @hello. I have, however, created a separate method, aFunc, which
does assign a value to a variable called @hello:

def aFunc(aClosure)
 @hello = "hello world"
 aClosure.call
end

When I pass my block (the aClosure argument) to the aFunc method, the
method brings @hello into being. I can now execute the code inside the block
using the call method. And sure enough, the @hello variable contains the
“hello world” string. The same variable can also be used by calling the block
outside of the method. Indeed, now, by repeatedly calling the block, I will
end up repeatedly appending the string “ yikes!” to @hello:

aFunc(aClos) #<= @hello = "hello world yikes!"
aClos.call #<= @hello = "hello world yikes! yikes!"
aClos.call #<= @hello = "hello world yikes! yikes! yikes!"
aClos.call # ...and so on

If you think about it, this is not too surprising. After all, @hello is an
instance variable, so it exists within the scope of an object. When you run a
Ruby program, an object called main is automatically created. So, you should
expect any instance variable created within that object (the program) to be
available to everything inside it.

Blocks, Procs, and Lambdas 177

The question now arises: What would happen if you were to send the
block to a method of some other object? If that object has its own instance
variable, @hello, which variable will the block use—the @hello from the scope
in which the block was created or the @hello from the scope of the object in
which the block is called? Let’s try that. You’ll use the same block as before,
except this time it will display a bit of information about the object to which
the block belongs and the value of @hello:

aClos = lambda{
 @hello << " yikes!"
 puts("in #{self} object of class #{self.class}, @hello = #{@hello}")
}

Now, create a new object from a new class (X), and give it a method that
will receive the block b and call the block:

class X
 def y(b)
 @hello = "I say, I say, I say!!!"
 puts(" [In X.y]")
 puts("in #{self} object of class #{self.class}, @hello = #{@hello}")
 puts(" [In X.y] when block is called...")
 b.call
 end
end

x = X.new

To test it, just pass the block aClos to the y method of x:

x.y(aClos)

And this is what is displayed:

 [In X.y]
in #<X:0x32a6e64> object of class X, @hello = I say, I say, I say!!!
 [In X.y] when block is called...
in main object of class Object, @hello = hello world yikes! yikes! yikes!
yikes! yikes! yikes!

So, it is clear that the block executes in the scope of the object in which
it was created (main) and retains the instance variable from that object even
though the object in whose scope the block is called has an instance variable
with the same name and a different value.

Blocks and Local Variables
Now let’s see how a block/closure deals with local variables. In the closures2.rb
program, I declare a variable, x, which is local to the context of the program:

closures2.rb x = 3000

178 Chapter 10

The first block/closure is called c1. Each time I call this block, it picks up
the value of x defined outside the block (3,000) and returns x + 100:

c1 = proc{
 x + 100
}

Incidentally, even though this returns a value (in ordinary Ruby meth-
ods, the default value is the result of the last expression to be evaluated), in
Ruby 1.9 you cannot explicitly use the return statement here like this:

return x + 1

If you do this, Ruby 1.9 throws a LocalJumpError exception. Ruby 1.8,
on the other hand, does not throw an exception.

This block has no block parameters (that is, there are no “block-local”
variables between upright bars), so when it is called with a variable, someval,
that variable is discarded, unused. In other words, c1.call(someval) has the
same effect as c1.call().

So, when you call the block c1, it returns x+100 (that is, 3,100); this value
is then assigned to someval. When you call c1 a second time, the same thing
happens all over again, so once again someval is assigned 3,100:

someval=1000
someval=c1.call(someval); puts(someval) #<= someval is now 3100
someval=c1.call(someval); puts(someval) #<= someval is now 3100

NOTE Instead of repeating the call to c1, as shown earlier, you could place the call inside a
block and pass this to the times method of Integer like this:

2.times{ someval=c1.call(someval); puts(someval) }

However, because it can be hard enough to work out what just one block is up to
(such as the c1 block here), I’ve deliberately avoided using any more blocks than are
absolutely necessary in this program!

The second block is named c2. This declares the “block parameter” z.
This too returns a value:

c2 = proc{
 |z|
 z + 100
}

Blocks, Procs, and Lambdas 179

However, this time the returned value can be reused since the block
parameter acts like an incoming argument to a method—so when the value
of someval is changed after it is assigned the return value of c2, this changed
value is subsequently passed as an argument:

someval=1000
someval=c2.call(someval); puts(someval) #<= someval is now 1100
someval=c2.call(someval); puts(someval) #<= someval is now 1200

The third block, c3, looks, at first sight, pretty much the same as the sec-
ond block, c2. In fact, the only difference is that its block parameter is called
x instead of z:

c3 = proc{
 |x|
 x + 100
}

The name of the block parameter has no effect on the return value.
As before, someval is first assigned the value 1,100 (that is, its original value,
1,000, plus the 100 added inside the block). Then, when the block is called
a second time, someval is assigned the value 1,200 (its previous value, 1,100,
plus 100 assigned inside the block).

But now look at what happens to the value of the local variable x. This
was assigned 3,000 at the top of the unit. Remember that, in Ruby 1.8, an
assignment to a block parameter can change the value of a variable with the
same name in its surrounding context. In Ruby 1.8, then the local variable x
changes when the block parameter x is changed. It now has the value, 1,100—
that is, the value that the block parameter, x, last had when the c3 block was
called:

x = 3000
someval=1000
someval=c3.call(someval); puts(someval) #=> 1100
someval=c3.call(someval); puts(someval) #=> 1200
puts(x) # Ruby 1.8, x = 1100. Ruby 1.9, x = 3000

Incidentally, even though block-local variables and block parameters can
affect similarly named local variables outside the block in Ruby 1.8, the block
variables themselves have no “existence” outside the block. You can verify
this using the defined? keyword to attempt to display the type of variable if it
is, indeed, defined:

print("x=[#{defined?(x)}],z=[#{defined?(z)}]")

180 Chapter 10

This demonstrates that only x, and not the block variable z, is defined in
the main scope:

x=[local-variable], z=[]

Matz, the creator of Ruby, has described the scoping of local variables
within a block as “regrettable.” Although Ruby 1.9 has addressed some issues,
it is worth noting that one other curious feature of block scoping remains:
Namely, local variables within a block are invisible to the method containing
that block. This may be changed in future versions. For an example of this,
look at this code:

local_var_scope
.rb

def foo
 a = 100
 [1,2,3].each do |b|
 c = b
 a = b
 print("a=#{a}, b=#{b}, c=#{c}\n")
 end
 print("Outside block: a=#{a}\n") # Can't print #{b} and #{c} here!!!
end

Here, the block parameter, b, and the block-local variable, c, are both
visible only when inside the block. The block has access to both these vari-
ables and to the variable a (local to the foo method). However, outside of
the block, b and c are inaccessible, and only a is visible.

Just to add to the confusion, whereas the block-local variable, c, and the
block parameter, b, are both inaccessible outside the block in the previous
example, they are accessible when you iterate a block with for, as in the fol-
lowing example:

def foo2
 a = 100
 for b in [1,2,3] do
 c = b
 a = b
 print("a=#{a}, b=#{b}, c=#{c}\n")
 end
 print("Outside block: a=#{a}, b=#{b}, c=#{b}\n")
end

G E T T H E F U L L B O O K

Take 30% off when you buy The Book of Ruby
(print or ebook) from nostarch.com!

Use coupon code RUNREADRUBY
nostarch.com/boruby.htm

http://www.nostarch.com/boruby.htm

	bookofruby_TITLE_COPY_promo
	Ruby_briefTOC
	bookofruby10_03_promo

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

