
S Y M B O L S

Many newcomers to Ruby are confused
by symbols. A symbol is an identifier whose

first character is a colon (:), so :this is a sym-
bol and so is :that. Symbols are, in fact, not at all

complicated—and, in certain circumstances, they may
be extremely useful, as you will see shortly.

Let’s first be clear about what a symbol is not : It is not a string, it is not a
constant, and it is not a variable. A symbol is, quite simply, an identifier with
no intrinsic meaning other than its own name. Whereas you might assign a
value to a variable like this . . .

name = "Fred"

you would not assign a value to a symbol:

:name = "Fred" # Error!

The Book of Ruby
© 2011 by Huw Collingbourne

182 Chapter 11

The value of a symbol is itself. So, the value of a symbol called :name
is :name.

NOTE For a more technical account of what a symbol is, refer to“Digging Deeper” on page 190.

You have, of course, used symbols before. In Chapter 2, for instance, you
created attribute readers and writers by passing symbols to the attr_reader
and attr_writer methods, like this:

attr_reader(:description)
attr_writer(:description)

You may recall that the previous code causes Ruby to create a @description
instance variable plus a pair of getter (reader) and setter (writer) methods
called description. Ruby takes the value of a symbol literally. The attr_reader
and attr_writer methods create, from that name, variables and methods with
matching names.

Symbols and Strings

It is a common misconception that a symbol is a type of string. After all, isn’t
the symbol :hello pretty similar to the string "hello"? In fact, symbols are quite
unlike strings. For one thing, each string is different—so, as far as Ruby is
concerned, "hello", "hello", and "hello" are three separate objects with three
separate object_ids.

symbol_ids.rb # These 3 strings have 3 different object_ids
puts("hello".object_id) #=> 16589436
puts("hello".object_id) #=> 16589388
puts("hello".object_id) #=> 16589340

But a symbol is unique, so :hello, :hello, and :hello all refer to the same
object with the same object_id.

These 3 symbols have the same object_id
puts(:hello.object_id) #=> 208712
puts(:hello.object_id) #=> 208712
puts(:hello.object_id) #=> 208712

In this respect, a symbol has more in common with an integer than with
a string. Each occurrence of a given integer value, you may recall, refers to
the same object, so 10, 10, and 10 may be considered to be the same object,
and they have the same object_id. Remember that the actual IDs assigned to
objects will change each time you run a program. The number itself is not

The Book of Ruby
© 2011 by Huw Collingbourne

Symbols 183

significant. The important thing to note is that each separate object always
has a unique ID, so when an ID is repeated, it indicates repeated references
to the same object.

ints_and_symbols
.rb

These three symbols have the same object_id
puts(:ten.object_id) #=> 20712
puts(:ten.object_id) #=> 20712
puts(:ten.object_id) #=> 20712

These three integers have the same object_id
puts(10.object_id) #=> 21
puts(10.object_id) #=> 21
puts(10.object_id) #=> 21

You can also test for equality using the equal? method:

symbols_strings.rb puts(:helloworld.equal?(:helloworld)) #=> true
puts("helloworld".equal?("helloworld")) #=> false
puts(1.equal?(1)) #=> true

Being unique, a symbol provides an unambiguous identifier. You can
pass symbols as arguments to methods, like this:

amethod(:deletefiles)

A method might contain code to test the value of the incoming argument:

symbols_1.rb def amethod(doThis)
 if (doThis == :deletefiles) then
 puts('Now deleting files...')
 elsif (doThis == :formatdisk) then
 puts('Now formatting disk...')
 else
 puts("Sorry, command not understood.")
 end
end

Symbols can also be used in case statements where they provide both the
readability of strings and the uniqueness of integers:

case doThis
 when :deletefiles then puts('Now deleting files...')
 when :formatdisk then puts('Now formatting disk...')
 else puts("Sorry, command not understood.")
end

The Book of Ruby
© 2011 by Huw Collingbourne

184 Chapter 11

The scope in which a symbol is declared does not affect its uniqueness.
Consider the following:

symbol_ref.rb module One
 class Fred
 end
 $f1 = :Fred
end

module Two
 Fred = 1
 $f2 = :Fred
end

def Fred()
end

$f3 = :Fred

Here, the variables $f1, $f2, and $f3 are assigned the symbol :Fred in three
different scopes: module One, module Two, and the “main” scope. Variables
starting with $ are global, so once created, they can be referenced anywhere.
I’ll have more to say on modules in Chapter 12. For now, just think of them
as “namespaces” that define different scopes. And yet each variable refers to
the same symbol, :Fred, and has the same object_id.

All three display the same id!
puts($f1.object_id) #=> 208868
puts($f2.object_id) #=> 208868
puts($f3.object_id) #=> 208868

Even so, the “meaning” of the symbol changes according to its scope.
In module One, :Fred refers to the class Fred; in module Two, it refers to the
constant Fred = 1; and in the main scope, it refers to the method Fred.

A rewritten version of the previous program demonstrates this:

symbol_ref2.rb module One
 class Fred
 end
 $f1 = :Fred
 def self.evalFred(aSymbol)
 puts(eval(aSymbol.id2name))
 end
end

module Two
 Fred = 1
 $f2 = :Fred
 def self.evalFred(aSymbol)
 puts(eval(aSymbol.id2name))
 end
end

The Book of Ruby
© 2011 by Huw Collingbourne

Symbols 185

def Fred()
 puts("hello from the Fred method")
end

$f3 = :Fred

First I access the evalFred method inside the module named One using two
colons (::), which is the Ruby “scope resolution operator.” I then pass $f1 to
that method:

One::evalFred($f1)

In this context, Fred is the name of a class defined inside module One, so
when the :Fred symbol is evaluated, the module and class names are displayed:

One::Fred

Next I pass $f2 to the evalFred method of module Two:

Two::evalFred($f2)

In this context, Fred is the name of a constant that is assigned the integer
1, so that is what is displayed: 1. And finally, I call a special method called
simply method. This is a method of Object. It tries to find a method with the
same name as the symbol passed to it as an argument and, if found, returns
that method as an object that can then be called:

method($f3).call

The Fred method exists in the main scope, and when called, its output is
this string:

"hello from the Fred method"

Naturally, since the variables $f1, $f2, and $f3 reference the same symbol,
it doesn’t matter which variable you use at any given point. Any variable to
which a symbol is assigned, or, indeed, the symbol itself, will produce the
same results. The following are equivalent:

One::evalFred($f1) #=> One::Fred
Two::evalFred($f2) #=> 1
method($f3).call #=> hello from the Fred method

One::evalFred($f3) #=> One::Fred
Two::evalFred($f1) #=> 1
method($f2).call #=> hello from the Fred method

The Book of Ruby
© 2011 by Huw Collingbourne

186 Chapter 11

One::evalFred(:Fred) #=> One::Fred
Two::evalFred(:Fred) #=> 1
method(:Fred).call #=> hello from the Fred method

Symbols and Variables

To understand the relationship between a symbol and an identifier such as a
variable name, take a look at the symbols_2.rb program. It begins by assigning
the value 1 to a local variable, x. It then assigns the symbol :x to a local vari-
able, xsymbol:

symbols_2.rb x = 1
xsymbol = :x

At this point, there is no obvious connection between the variable x
and the symbol :x. I have declared a method that simply takes some incom-
ing argument and inspects and displays it using the p method. I can call this
method with the variable and the symbol:

def amethod(somearg)
 p(somearg)
end

Test 1
amethod(x)
amethod(:x)

This is the data that the method prints as a result:

1
:x

In other words, the value of the x variable is 1, since that’s the value
assigned to it and the value of :x is :x. But the interesting question that arises
is this: If the value of :x is :x and this is also the symbolic name of the variable
x, would it be possible to use the symbol :x to find the value of the variable x?
Confused? I hope the next line of code will make this clearer:

Test 2
amethod(eval(:x.id2name))

Here, id2name is a method of the Symbol class. It returns the name or string
corresponding to the symbol (the to_s method would perform the same func-
tion); the end result is that, when given the symbol :x as an argument, id2name
returns the string “x.” Ruby’s eval method (which is defined in the Kernel

The Book of Ruby
© 2011 by Huw Collingbourne

Symbols 187

class) is able to evaluate expressions within strings. In the present case, that
means it finds the string “x” and tries to evaluate it as though it were execut-
able code. It finds that x is the name of a variable and that the value of x is 1.
So, the value 1 is passed to amethod. You can verify this by running symbols2.rb.

NOTE Evaluating data as code is explained in more detail in Chapter 20.

Things can get even trickier. Remember that the variable xsymbol has
been assigned the symbol :x.

x = 1
xsymbol = :x

That means that if you eval :xsymbol, you can obtain the name assigned to
it—that is, the symbol :x. Having obtained :x, you can go on to evaluate this
also, giving the value of x, namely, 1:

Test 3
amethod(xsymbol) #=> :x
amethod(:xsymbol) #=> :xsymbol
amethod(eval(:xsymbol.id2name)) #=> :x
amethod(eval((eval(:xsymbol.id2name)).id2name)) #=> 1

As you’ve seen, when used to create attribute accessors, symbols can refer
to method names. You can make use of this by passing a method name as a
symbol to the method method and then calling the specified method using the
call method:

#Test 4
method(:amethod).call("")

The call method lets you pass arguments, so, just for the heck of it, you
could pass an argument by evaluating a symbol:

method(:amethod).call(eval(:x.id2name))

If this seems complicated, take a look at a simpler example in symbols_3.rb.
This begins with this assignment:

symbols_3.rb def mymethod(somearg)
 print("I say: " << somearg)
end

this_is_a_method_name = method(:mymethod)

The Book of Ruby
© 2011 by Huw Collingbourne

188 Chapter 11

Here method(:mymethod) looks for a method with the name specified by the
symbol passed as an argument (:mymethod), and if one is found, it returns the
Method object with the corresponding name. In my code I have a method
called mymethod, and this is now assigned to the variable this_is_a_method_name.

When you run this program, you will see that the first line of output
prints the value of the variable:

puts(this_is_a_method_name) #=> #<Method: Object#mymethod>

This shows that the variable this_is_a_method_name has been assigned the
method, mymethod, which is bound to the Object class (as are all methods that are
entered as “freestanding” functions). To double-check that the variable really
is an instance of the Method class, the next line of code prints out its class:

puts("#{this_is_a_method_name.class}") #=> Method

Okay, so if it’s really and truly a method, then you should be able to call
it, shouldn’t you? To do that, you need to use the call method. That is what
the last line of code does:

this_is_a_method_name.call("hello world") #=>I say: hello world

Why Use Symbols?

Some methods in the Ruby class library specify symbols as arguments. Natu-
rally, if you need to call those methods, you are obliged to pass symbols to
them. Other than in those cases, however, there is no absolute requirement
to use symbols in your own programming. For many Ruby programmers, the
“conventional” data types such as strings and integers are perfectly sufficient.
However, many Ruby programmers do like to use symbols as the keys into
hashes. When you look at the Rails framework in Chapter 19, for example,
you will see examples similar to the following:

{ :text => "Hello world" }

Symbols do have a special place in “dynamic” programming, however.
For example, a Ruby program is able to create a new method at runtime by
calling, within the scope of a certain class, define_method with a symbol repre-
senting the method to be defined and a block representing the code of the
method:

add_method.rb class Array
 define_method(:aNewMethod, lambda{
 |*args| puts(args.inspect)
 })
end

The Book of Ruby
© 2011 by Huw Collingbourne

Symbols 189

After the previous code executes, the Array class will have gained a
method named aNewMethod. You can verify this by calling method_defined? with
a symbol representing the method name:

Array.method_defined?(:aNewMethod) #=> true

And, of course, you can call the method itself:

[].aNewMethod(1,2,3 #=> [1,2,3]

You can remove an existing method at runtime in a similar way by calling
remove_method inside a class with a symbol providing the name of the method
to be removed:

class Array
 remove_method(:aNewMethod)
end

Dynamic programming is invaluable in applications that need to modify the
behavior of the Ruby program while that program is still executing. Dynamic
programming is widely used in the Rails framework, for example, and it is
discussed in depth in the final chapter of this book.

The Book of Ruby
© 2011 by Huw Collingbourne

190 Chapter 11

D I G G I N G D E E P E R
Symbols are fundamental to Ruby. Here you will learn why that is so and how
you can display all the symbols available.

What Is a Symbol?
Previously, I said that a symbol is an identifier whose value is itself. That
describes, in a broad sense, the way that symbols behave from the point of
view of the Ruby programmer. But it doesn’t tell you what symbols are literally
from the point of view of the Ruby interpreter. A symbol is, in fact, a pointer
into the symbol table. The symbol table is Ruby’s internal list of known iden-
tifiers—such as variable and method names.

If you want to take a peek deep inside Ruby, you can display all the sym-
bols that Ruby knows about like this:

allsymbols.rb p(Symbol.all_symbols)

This will shows thousands of symbols including method names such as
:to_s and :reverse, global variables such as :$/ and :$DEBUG, and class names
such as :Array and :Symbol. You may restrict the number of symbols displayed
using array indexes like this:

p(Symbol.all_symbols[0,10])

In Ruby 1.8, you can’t sort symbols since symbols are not considered to
be inherently sequential. In Ruby 1.9, sorting is possible, and the symbol
characters are sorted as though they were strings:

In Ruby 1.9
p [:a,:c,:b].sort #=> [:a,:b,:c]

In Ruby 1.8
p [:a,:c,:b].sort #=> 'sort': undefined method '<=>' for :a:Symbol

The easiest way to display a sorted list of symbols in a way that avoids
incompatibility problems related to Ruby versions is to convert the symbols to
strings and sort those. In the following code, I pass all the symbols known to
Ruby into a block, convert each symbol to a string, and collect the strings into
a new array that is assigned to the str_array variable. Now I can sort this array
and display the results:

str_arr = Symbol.all_symbols.collect{ |s| s.to_s }
puts(str_arr.sort)

The Book of Ruby
© 2011 by Huw Collingbourne

