
C O N F I G U R I N G Y O U R P R O J E C T
W I T H A U T O C O N F

Come my friends,
’Tis not too late to seek a newer world.
—Alfred, Lord Tennyson, “Ulysses”

Because Automake and Libtool are essen-
tially add-on components to the original

Autoconf framework, it’s useful to spend
some time focusing on using Autoconf without

Automake and Libtool. This will provide a fair amount
of insight into how Autoconf operates by exposing
aspects of the tool that are often hidden by Automake.

Before Automake came along, Autoconf was used alone. In fact, many
legacy open source projects never made the transition from Autoconf to
the full GNU Autotools suite. As a result, it’s not unusual to find a file called
configure.in (the original Autoconf naming convention) as well as handwritten
Makefile.in templates in older open source projects.

In this chapter, I’ll show you how to add an Autoconf build system to an
existing project. I’ll spend most of this chapter talking about the fundamental
features of Autoconf, and in Chapter 4, I’ll go into much more detail about how
some of the more complex Autoconf macros work and how to properly use
them. Throughout this process, we’ll continue using the Jupiter project as
our example.

Autotools
© 2010 by John Calcote

58 Chapter 3

Autoconf Configuration Scripts

The input to the autoconf program is shell script sprinkled with macro
calls. The input stream must also include the definitions of all referenced
macros—both those that Autoconf provides and those that you write yourself.

The macro language used in Autoconf is called M4. (The name means
M, plus 4 more letters, or the word Macro.1) The m4 utility is a general-purpose
macro language processor originally written by Brian Kernighan and Dennis
Ritchie in 1977.

While you may not be familiar with it, you can find some form of M4 on
every Unix and Linux variant (as well as other systems) in use today. The pro-
lific nature of this tool is the main reason it’s used by Autoconf, as the original
design goals of Autoconf stated that it should be able to run on all systems
without the addition of complex tool chains and utility sets.2

Autoconf depends on the existence of relatively few tools: a Bourne shell,
M4, and a Perl interpreter. The configuration scripts and makefiles it gener-
ates rely on the existence of a different set of tools, including a Bourne shell,
grep, ls, and sed or awk.3

NOTE Do not confuse the requirements of the Autotools with the requirements of the scripts
and makefiles they generate. The Autotools are maintainer tools, while the resulting
scripts and makefiles are end-user tools. We can reasonably expect a higher level of
installed functionality on development systems than we can on end-user systems.

The configuration script ensures that the end user’s build environment
is configured to properly build your project. This script checks for installed
tools, utilities, libraries, and header files, as well as for specific functionality
within these resources. What distinguishes Autoconf from other project con-
figuration frameworks is that Autoconf tests also ensure that these resources
can be properly consumed by your project. You see, it’s not only important
that your users have libxyz.so and its public header files properly installed
on their systems, but also that they have the correct versions of these files.
Autoconf is pathological about such tests. It ensures that the end user’s envi-
ronment is in compliance with the project requirements by compiling and
linking a small test program for each feature—a quintessential example, if
you will, that does what your project source code does on a larger scale.

Can’t I just ensure that libxyz.2.1.0.so is installed by searching library paths for
the filename? The answer to this question is debatable. There are legitimate
situations where libraries and tools get updated quietly. Sometimes, the spe-
cific functionality upon which your project relies is added in the form of a
security bug fix or enhancement to a library, in which case vendors aren’t
even required to bump up the version number. But it’s often difficult to tell
whether you’ve got version 2.1.0.r1 or version 2.1.0.r2 unless you look at the
file size or call a library function to make sure it works as expected.

1. As a point of interest, this naming convention is a fairly common practice in some software
engineering domains. For example, the term internationalization is often abbreviated i18n, for
the sake of brevity (or perhaps just because programmers love acronyms).
2. In fact, whatever notoriety M4 may have today is likely due to the widespread use of Autoconf.
3. Autoconf versions 2.62 and later generate configuration scripts that require awk in addition to
sed on the end user’s system.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 59

However, the most significant reason for not relying on library version
numbers is that they do not represent specific marketing releases of a library.
As we will discuss in Chapter 7, library version numbers indicate binary interface
characteristics on a particular platform. This means that library version numbers
for the same feature set can be different from platform to platform, which
means that you may not be able to tell—short of compiling and linking against
the library—whether or not a particular library has the functionality your
project needs.

Finally, there are several important cases where the same functionality
is provided by entirely different libraries on different systems. For example,
you may find cursor manipulation functionality in libtermcap on one system,
libncurses on another, and libcurses on yet another system. But it’s not critical
that you know about all of these side cases, because your users will tell you
when your project won’t build on their system because of such a discrepancy.

What can you do when such a bug is reported? You can use the Autoconf
AC_SEARCH_LIBS macro to test multiple libraries for the same functionality. Simply
add a library to the search list, and you’re done. Since this fix is so easy, it’s
likely the user who noticed the problem will simply send a patch to your
configure.ac file.

Because Autoconf tests are written in shell script, you have a lot of flexi-
bility as to how the tests operate. You can write a test that merely checks for
the existence of a library or utility in the usual locations on your user’s system,
but this bypasses some of the most significant features of Autoconf. Fortunately,
Autoconf provides dozens of macros that conform to Autoconf’s feature-testing
philosophy. You should carefully study and use the list of available macros,
rather than write your own, because they’re specifically designed to ensure
that the desired functionality is available on the widest variety of systems and
platforms.

The Shortest configure.ac File

The simplest possible configure.ac file has just two lines, as shown in Listing 3-1.

AC_INIT([Jupiter], [1.0])

AC_OUTPUT

Listing 3-1: The simplest configure.ac file

To those new to Autoconf, these two lines appear to be a couple of func-
tion calls, perhaps in the syntax of some obscure programming language.
Don’t let their appearance throw you—these are M4 macro calls. The macros
are defined in files distributed with the autoconf package. You can find the
definition of AC_INIT, for example, in the autoconf/general.m4 file in Autoconf’s
installation directory (usually /usr/(local/)share/autoconf). AC_OUTPUT is defined
in autoconf/status.m4.

Autotools
© 2010 by John Calcote

60 Chapter 3

Comparing M4 to the C Preprocessor

M4 macros are similar in many ways to the C-preprocessor (CPP) macros
defined in C-language source files. The C preprocessor is also a text replacement
tool, which isn’t surprising: Both M4 and the C preprocessor were designed and
written by Kernighan and Ritchie around the same time.

Autoconf uses square brackets around macro parameters as a quoting
mechanism. Quotes are necessary only for cases in which the context of the
macro call could cause an ambiguity that the macro processor may resolve
incorrectly (usually without telling you). We’ll discuss M4 quoting in much
more detail in Chapter 10. For now, just use square brackets around every
argument to ensure that the expected macro expansions are generated.

Like CPP macros, you can define M4 macros to accept a comma-delimited
list of arguments enclosed in parentheses. In both utilities, the opening
parenthesis must immediately follow the macro name in its definition, with
no intervening whitespace. A significant difference, however, is that in M4,
the arguments to parameterized macros are optional, and the caller may simply
omit them. If no arguments are passed, you can also omit the parentheses.
Extra arguments passed to M4 macros are simply ignored. Finally, M4 does
not allow intervening whitespace between a macro name and the opening
parenthesis in a macro call.

The Nature of M4 Macros

If you’ve been programming in C for many years, you’ve no doubt run across
a few C-preprocessor macros from the dark regions of the lower realm. I’m
talking about those truly evil macros that expand into one or two pages of C
code. They should have been written as C functions, but their authors were
either overly worried about performance or just got carried away, and now
it’s your turn to debug and maintain them. But, as any veteran C programmer
will tell you, the slight performance gains you get by using a macro where
you should have used a function do not justify the trouble you cause main-
tainers trying to debug your fancy macros. Debugging such macros can be a
nightmare because the source code generated by macros is usually inaccessible
from within a symbolic debugger.4

Writing such complex macros is viewed by M4 programmers as a sort of
macro nirvana—the more complex and functional they are, the “cooler” they
are. The two Autoconf macros in Listing 3-1 expand into a file containing
over 2,200 lines of Bourne-shell script that total more than 60KB in size! But
you wouldn’t guess this by looking at their definitions. They’re both fairly
short—only a few dozen lines each. The reason for this apparent disparity is
simple: They’re written in a modular fashion, each macro expanding several
others, which, in turn, expand several others, and so on.

4. A technique I’ve used in the past for debugging large macros involves manually generating
source code using the C preprocessor, and then compiling this generated source. Symbolic
debuggers can only work with the source code you provide. By providing source with the macros
fully expanded, you enable the debugger to allow you to step through the generated source.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 61

For the same reasons that programmers are taught not to abuse the C
preprocessor, the extensive use of M4 causes a fair amount of frustration for
those trying to understand Autoconf. That’s not to say Autoconf shouldn’t
use M4 this way; quite the contrary—this is the domain of M4. But there is a
school of thought that says M4 was a poor choice for Autoconf because of the
problems with macros mentioned above. Fortunately, being able to use Auto-
conf effectively usually doesn’t require a deep understanding of the inner
workings of the macros that ship with it.5

Executing autoconf

Running autoconf is simple: Just execute it in the same directory as your
configure.ac file. While I could do this for each example in this chapter, I’m
going to use the autoreconf program instead of the autoconf program, because
running autoreconf has exactly the same effect as running autoconf, except
that autoreconf will also do the right thing when you start adding Automake
and Libtool functionality to your build system. That is, it will execute all of
the Autotools in the right order based on the contents of your configure.ac file.

autoreconf is smart enough to only execute the tools you need, in the order
you need them, with the options you want (with one caveat that I’ll mention
shortly). Therefore, running autoreconf is the recommended method for exe-
cuting the Autotools tool chain.

Let’s start by adding the simple configure.ac file from Listing 3-1 to our
project directory. The top-level directory currently contains only a Makefile
and a src directory which contains its own Makefile and a main.c file. Once
you’ve added configure.ac to the top-level directory, run autoreconf:

$ autoreconf

$

$ ls -1p

autom4te.cache/

configure

configure.ac

Makefile

src/

$

First, notice that autoreconf operates silently by default. If you want to see
something happening, use the -v or --verbose option. If you want autoreconf
to execute the Autotools in verbose mode as well, then add -vv to the com-
mand line.6

Next, notice that autoconf creates a directory called autom4te.cache. This is
the autom4te cache directory. This cache speeds up access to configure.ac during
successive executions of utilities in the Autotools tool chain.

5. There are a few exceptions to this rule. Poor documentation can sometimes lead to a
misunderstanding about the intended use of some of the published Autoconf macros. This
book highlights a few of these situations, but a degree of expertise with M4 is the only way to
work your way through most of these problems.
6. You may also pass --verbose --verbose, but this syntax seems a bit . . . verbose to me.

Autotools
© 2010 by John Calcote

62 Chapter 3

The result of passing configure.ac through autoconf is essentially the same
file (now called configure), but with all of the macros fully expanded. You’re
welcome to take a look at configure, but don’t be too surprised if you don’t
immediately understand what you see. The configure.ac file has been trans-
formed, through M4 macro expansions, into a text file containing thousands
of lines of complex Bourne shell script.

Executing configure

As discussed in “Configuring Your Package” on page 54, the GNU Coding
Standards indicate that a handwritten configure script should generate
another script called config.status, whose job it is to generate files from
templates. Unsurprisingly, this is exactly the sort of functionality you’ll find
in an Autoconf-generated configuration script. This script has two primary
tasks:

Perform requested checks

Generate and then call config.status

The results of the checks performed by configure are written into
config.status in a manner that allows them to be used as replacement text for
Autoconf substitution variables in template files (Makefile.in, config.h.in, and
so on). When you execute configure, it tells you that it’s creating config.status.
It also creates a log file called config.log that has several important attributes.
Let’s run configure and then see what’s new in our project directory.

$./configure

configure: creating ./config.status

$

$ ls -1p

autom4te.cache/

config.log

config.status

configure

configure.ac

Makefile

src/

$

We see that configure has indeed generated both config.status and
config.log. The config.log file contains the following information:

The command line that was used to invoke configure (very handy!)

Information about the platform on which configure was executed

Information about the core tests configure executed

The line number in configure at which config.status is generated and
then called

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 63

At this point in the log file, config.status takes over generating log infor-
mation and adds the following information:

The command line used to invoke config.status

After config.status generates all the files from their templates, it exits,
returning control to configure, which then appends the following informa-
tion to the log:

The cache variables config.status used to perform its tasks

The list of output variables that may be replaced in templates

The exit code configure returned to the shell

This information is invaluable when debugging a configure script and its
associated configure.ac file.

Why doesn’t configure just execute the code it writes into config.status
instead of going to all the trouble of generating a second script, only to
immediately call it? There are a few good reasons. First, the operations of
performing checks and generating files are conceptually different, and make
works best when conceptually different operations are associated with separate
make targets. A second reason is that you can execute config.status separately
to regenerate output files from their corresponding template files, saving the
time required to perform those lengthy checks. Finally, config.status is written
to remember the parameters originally used on the configure command line.
Thus, when make detects that it needs to update the build system, it can call
config.status to re-execute configure, using the command-line options that
were originally specified.

Executing config.status

Now that you know how configure works, you might be tempted to execute
config.status yourself. This was exactly the intent of the Autoconf designers
and the authors of the GCS, who originally conceived these design goals.
However, a more important reason for separating checks from template
processing is that make rules can use config.status to regenerate makefiles
from their templates when make determines that a template is newer than its
corresponding makefile.

Rather than call configure to perform needless checks (your environment
hasn’t changed—just your template files), makefile rules should be written to
indicate that output files are dependent on their templates. The commands
for these rules run config.status, passing the rule’s target as a parameter. If, for
example, you modify one of your Makefile.in templates, make calls config.status to
regenerate the corresponding Makefile, after which, make re-executes its own
original command line—basically restarting itself.7

7. This is a built-in feature of GNU make. However, for the sake of portability, Automake generates
makefiles that carefully reimplement this functionality as much as possible in make script, rather
than relying on the built-in mechanism found in GNU make. The Automake solution isn’t quite
as comprehensive as GNU make’s built-in functionality, but it’s the best we can do, under the
circumstances.

Autotools
© 2010 by John Calcote

64 Chapter 3

Listing 3-2 shows the relevant portion of such a Makefile.in template, con-
taining the rules needed to regenerate the corresponding Makefile.

...

Makefile: Makefile.in config.status

 ./config.status $@

...

Listing 3-2: A rule that causes make to regenerate Makefile if its template has changed

A rule with a target named Makefile is the trigger here. This rule allows
make to regenerate the source makefile from its template if the template changes.
It does this before executing either the user’s specified targets or the default
target, if no specific target was given.

The rule in Listing 3-2 indicates that Makefile is dependent on config.status
as well as Makefile.in, because if configure updates config.status, it may generate
the makefile differently. Perhaps different command-line options were pro-
vided so that configure can now find libraries and header files it couldn’t find
previously. In this case, Autoconf substitution variables may have different val-
ues. Thus, Makefile should be regenerated if either Makefile.in or config.status
is updated.

Since config.status is itself a generated file, it stands to reason that you
could write such a rule to regenerate this file when needed. Expanding on the
previous example, Listing 3-3 adds the required code to rebuild config.status if
configure changes.

...

Makefile: Makefile.in config.status

 ./config.status $@

config.status: configure

 ./config.status --recheck

...

Listing 3-3: A rule to rebuild config.status when configure changes

Since config.status is a dependency of Makefile, make will look for a rule
whose target is config.status and run its commands if configure is newer than
config.status.

Adding Some Real Functionality

I’ve suggested before that you should call config.status in your makefiles to
generate those makefiles from templates. Listing 3-4 shows the code in
configure.ac that actually makes this happen. It’s just a single additional
macro call between the two original lines of Listing 3-1.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 65

AC_INIT([Jupiter],[1.0])

AC_CONFIG_FILES([Makefile src/Makefile])

AC_OUTPUT

Listing 3-4: configure.ac: Using the AC_CONFIG_FILES macro

This code assumes that templates exist for Makefile and src/Makefile, called
Makefile.in and src/Makefile.in, respectively. These template files look exactly
like their Makefile counterparts, with one exception: Any text that I want
Autoconf to replace is marked as an Autoconf substitution variable, using the
@VARIABLE@ syntax.

To create these files, simply rename the existing Makefiles to Makefile.in
in both the top-level and src directories. This is a common practice when
autoconfiscating a project:

$ mv Makefile Makefile.in

$ mv src/Makefile src/Makefile.in

$

Next, let’s add a few Autoconf substitution variables to replace the original
default values. At the top of these files, I’ve also added the Autoconf substitu-
tion variable, @configure_input@, after a comment hash mark. Listing 3-5 shows
the comment text that is generated in Makefile.

Makefile. Generated from Makefile.in by configure.

...

Listing 3-5: Makefile: The text generated from the Autoconf @configure_input@ variable

I’ve also added the makefile regeneration rules from the previous examples
to each of these templates, with slight path differences in each file to account
for their different positions relative to config.status and configure in the
build directory.

Listings 3-6 and 3-7 highlight in bold the required changes to the final ver-
sions of Makefile and src/Makefile from the end of Chapter 2.

@configure_input@

Package-specific substitution variables

package = @PACKAGE_NAME@

version = @PACKAGE_VERSION@

tarname = @PACKAGE_TARNAME@

distdir = $(tarname)-$(version)

Prefix-specific substitution variables

prefix = @prefix@

exec_prefix = @exec_prefix@

bindir = @bindir@

...

Autotools
© 2010 by John Calcote

66 Chapter 3

$(distdir): FORCE

 mkdir -p $(distdir)/src

 cp configure.ac $(distdir)

 cp configure $(distdir)

 cp Makefile.in $(distdir)

 cp src/Makefile.in $(distdir)/src

 cp src/main.c $(distdir)/src

distcheck: $(distdir).tar.gz

 gzip -cd $(distdir).tar.gz | tar xvf -

 cd $(distdir) && ./configure

 cd $(distdir) && $(MAKE) all

 cd $(distdir) && $(MAKE) check

 cd $(distdir) && $(MAKE) DESTDIR=$${PWD}/_inst install

 cd $(distdir) && $(MAKE) DESTDIR=$${PWD}/_inst uninstall

 @remaining="`find $${PWD}/$(distdir)/_inst -type f | wc -l`"; \

 if test "$${remaining}" -ne 0; then \

 echo "*** $${remaining} file(s) remaining in stage directory!"; \

 exit 1; \

 fi

 cd $(distdir) && $(MAKE) clean

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz is ready for distribution."

Makefile: Makefile.in config.status

 ./config.status $@

config.status: configure

 ./config.status --recheck

...

Listing 3-6: Makefile.in: Required modifications to Makefile from the end of Chapter 2

@configure_input@

Package-specific substitution variables

package = @PACKAGE_NAME@

version = @PACKAGE_VERSION@

tarname = @PACKAGE_TARNAME@

distdir = $(tarname)-$(version)

Prefix-specific substitution variables

prefix = @prefix@

exec_prefix = @exec_prefix@

bindir = @bindir@

...

Makefile: Makefile.in ../config.status

 cd .. && ./config.status src/$@

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 67

../config.status: ../configure

 cd .. && ./config.status --recheck

...

Listing 3-7: src/Makefile.in: Required modifications to src/Makefile from the end of
Chapter 2

I’ve removed the export statements from the top-level Makefile.in and added
a copy of all of the make variables (originally only in the top-level Makefile)
into src/Makefile.in. Since config.status generates both of these files, I can
reap excellent benefits by substituting values for these variables directly into
both files. The primary advantage of doing this is that I can now run make in
any subdirectory without worrying about uninitialized variables that would
originally have been passed down by a higher-level makefile.

Since Autoconf generates entire values for these make variables, you may
be tempted to clean things up a bit by removing the variables and just substi-
tuting @prefix@ where we currently use $(prefix) throughout the files. There
are a few good reasons for keeping the make variables. First and foremost, we’ll
retain the original benefits of the make variables; our end users can continue
to substitute their own values on the make command line. (Even though
Autoconf places default values in these variables, users may wish to override
them.) Second, for variables such as $(distdir), whose values are comprised
of multiple variable references, it’s simply cleaner to build the name in one
place and use it everywhere else through a single variable.

I’ve also changed the commands in the distribution targets a bit. Rather
than distribute the makefiles, I now need to distribute the Makefile.in templates,
as well as the new configure script and the configure.ac file.8

Finally, I modified the distcheck target’s commands to run the configure
script before running make.

Generating Files from Templates

Note that you can use AC_CONFIG_FILES to generate any text file from a file of
the same name with an .in extension, found in the same directory. The .in
extension is the default template naming pattern for AC_CONFIG_FILES, but you
can override this default behavior. I’ll get into the details shortly.

Autoconf generates sed or awk expressions into the resulting configure script,
which then copies them into config.status. The config.status script uses these
expressions to perform string replacement in the input template files.

Both sed and awk are text-processing tools that operate on file streams.
The advantage of a stream editor (the name sed is a contraction of the phrase
stream editor) is that it replaces text patterns in a byte stream. Thus, both sed
and awk can operate on huge files because they don’t need to load the entire
input file into memory in order to process it. Autoconf builds the expression
list that config.status passes to sed or awk from a list of variables defined by

8. Distributing configure.ac is not merely an act of kindness—it could also be considered a
requirement of GNU source licenses, since configure.ac is very literally the source code for
configure.

Autotools
© 2010 by John Calcote

68 Chapter 3

various macros, many of which I’ll cover in greater detail later in this chap-
ter. It’s important to understand that Autoconf substitution variables are the
only items replaced in a template file while generating output files.

At this point, with very little effort, I’ve created a basic configure.ac file. I
can now execute autoreconf, followed by configure and then make, in order to
build the Jupiter project. This simple, three-line configure.ac file generates a
configure script that is fully functional, according to the definition of a proper
configuration script defined by the GCS.

The resulting configuration script runs various system checks and gener-
ates a config.status script that can replace a fair number of substitution
variables in a set of specified template files in this build system. That’s a lot
of functionality in just three lines of code.

Adding VPATH Build Functionality

At the end of Chapter 2, I mentioned that I hadn’t yet covered an important
concept—that of VPATH builds. A VPATH build is a way of using a makefile
construct (VPATH) to configure and build a project in a directory other than
the source directory. This is important if you need to perform any of the fol-
lowing tasks:

Maintain a separate debug configuration

Test different configurations side by side

Keep a clean source directory for patch diffs after local modifications

Build from a read-only source directory

The VPATH keyword is short for virtual search path. A VPATH statement con-
tains a colon-separated list of places to look for relative-path dependencies
when they can’t be found relative to the current directory. In other words,
when make can’t find a prerequisite file relative to the current directory, it
searches for that file successively in each of the paths in the VPATH statement.

Adding remote build functionality to an existing makefile using VPATH is very
simple. Listing 3-8 shows an example of using a VPATH statement in a makefile.

VPATH = some/path:some/other/path:yet/another/path

program: src/main.c

 $(CC) ...

Listing 3-8: An example of using VPATH in a makefile

In this (contrived) example, if make can’t find src/main.c in the current direc-
tory while processing the rule, it will look for some/path/src/main.c, and then for
some/other/path/src/main.c, and finally for yet/another/path/src/main.c before giving
up with an error message about not knowing how to make src/main.c.

With just a few simple modifications, we can completely support remote
builds in Jupiter. Listings 3-9 and 3-10 illustrate the necessary changes to the
project’s two makefiles.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 69

...

VPATH-specific substitution variables

srcdir = @srcdir@

VPATH = @srcdir@

...

$(distdir): FORCE

 mkdir -p $(distdir)/src

 cp $(srcdir)/configure.ac $(distdir)

 cp $(srcdir)/configure $(distdir)

 cp $(srcdir)/Makefile.in $(distdir)

 cp $(srcdir)/src/Makefile.in $(distdir)/src

 cp $(srcdir)/src/main.c $(distdir)/src

...

Listing 3-9: Makefile.in: Adding VPATH build capabilities to the top-level makefile

...

VPATH-related substitution variables

srcdir = @srcdir@

VPATH = @srcdir@

...

Listing 3-10: src/Makefile.in: Adding VPATH build capabilities to the lower-level makefile

That’s it. Really. When config.status generates a file, it replaces an Autoconf
substitution variable called @srcdir@ with the relative path to the template’s
source directory. The value substituted for @srcdir@ in a given Makefile within
the build directory structure is the relative path to the directory containing the
corresponding Makefile.in template in the source directory structure. The
concept here is that for each Makefile in the remote build directory, VPATH
provides a relative path to the directory containing the source code for that
build directory.

The changes required for supporting remote builds in your build system
are summarized as follows:

Set a make variable, srcdir, to the @srcdir@ substitution variable.

Set the VPATH variable to @srcdir@.

Prefix all file dependencies used in commands with $(srcdir)/.

NOTE Don’t use $(srcdir) in the VPATH statement itself, because some older versions of make
won’t substitute variable references within the VPATH statement.

If the source directory is the same as the build directory, the @srcdir@ sub-
stitution variable degenerates to a dot (.). That means all of these $(srcdir)/
prefixes simply degenerate to ./, which is harmless.9

9. This is not strictly true for non-GNU implementations of make. GNU make is smart enough to
know that file and ./file refer to the same filesystem object. However, non-GNU implementations
of make aren’t always quite so intelligent, so you should be careful to refer to a filesystem object
using the same notation for each reference in your Makefile.in templates.

Autotools
© 2010 by John Calcote

70 Chapter 3

A quick example is the easiest way to show you how this works. Now that
Jupiter is fully functional with respect to remote builds, let’s give it a try. Start
in the Jupiter project directory, create a subdirectory called build, and then
change into that directory. Execute the configure script using a relative path,
and then list the current directory contents:

$ mkdir build

$ cd build

$../configure

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

$

$ ls -1p

config.log

config.status

Makefile

src/

$

$ ls -1p src

Makefile

$

The entire build system has been constructed by configure and config.status
within the build subdirectory. Enter make to build the project from within the
build directory:

$ make

cd src && make all

make[1]: Entering directory '../prj/jupiter/build'

gcc -g -O2 -o jupiter ../../src/main.c

make[1]: Leaving directory '../prj/jupiter/build'

$

$ ls -1p src

jupiter

Makefile

$

No matter where you are, if you can access the project directory using
either a relative or an absolute path, you can do a remote build from that
location. This is just one more thing that Autoconf does for you in Autoconf-
generated configuration scripts. Imagine managing proper relative paths to
source directories in your own hand-coded configuration scripts!

Let’s Take a Breather

So far, I’ve shown you a nearly complete build system that includes almost all
of the features outlined in the GCS. The features of Jupiter’s build system are
all fairly self-contained and reasonably simple to understand. The most diffi-
cult feature to implement by hand is the configuration script. In fact, writing

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 71

a configuration script by hand is so labor intensive, compared to the simplicity
of using Autoconf, that I just skipped the hand-coded version entirely in
Chapter 2.

Although using Autoconf like I’ve used it here is quite easy, most people
don’t create their build systems in the manner I’ve shown you. Instead, they
try to copy the build system of another project, and tweak it to make it work
in their own project. Later, when they start a new project, they do the same
thing again. This can cause trouble because the code they’re copying was
never meant to be used the way they’re now trying to use it.

I’ve seen projects in which the configure.ac file contained junk that had
nothing to do with the project to which it belonged. These leftover bits came
from some legacy project, but the maintainer didn’t know enough about
Autoconf to properly remove all the extraneous text. With the Autotools,
it’s generally better to start small and add what you need than to start with a
copy of configure.ac from another full-featured build system, and try to pare it
down to size or otherwise modify it to work with a new project.

I’m sure you’re feeling like there’s a lot more to learn about Autoconf,
and you’re right. We’ll spend the majority of this chapter examining the
most important Autoconf macros and how they’re used in the context of the
Jupiter project. But first, let’s go back and see if we might be able to simplify
the Autoconf startup process even more by using another utility that comes
with the autoconf package.

An Even Quicker Start with autoscan

The easiest way to create a (mostly) complete configure.ac file is to run the
autoscan utility, which is part of the autoconf package. This utility examines
the contents of a project directory and generates the basis for a configure.ac
file (which autoscan names configure.scan) using existing makefiles and source
files.

Let’s see how well autoscan does on the Jupiter project. First, I’ll clean up
the droppings from my earlier experiments, and then run autoscan in the
jupiter directory. Note that I’m not deleting my original configure.ac file—I’ll
just let autoscan tell me how to improve it. In less than a second, I have a few
new files in the top-level directory:

$ rm -rf autom4te.cache build

$ rm configure config.* Makefile src/Makefile src/jupiter

$ ls -1p

configure.ac

Makefile.in

src/

$

$ autoscan

 configure.ac: warning: missing AC_CHECK_HEADERS([stdlib.h]) wanted by: src/main.c:2

configure.ac: warning: missing AC_PREREQ wanted by: autoscan

configure.ac: warning: missing AC_PROG_CC wanted by: src/main.c

configure.ac: warning: missing AC_PROG_INSTALL wanted by: Makefile.in:18

$

Autotools
© 2010 by John Calcote

72 Chapter 3

$ ls -1p

autom4te.cache/

autoscan.log

configure.ac

configure.scan

Makefile.in

src/

$

The autoscan utility examines the project directory hierarchy and creates
two files called configure.scan and autoscan.log. The project may or may not
already be instrumented for Autotools—it doesn’t really matter, because
autoscan is decidedly non-destructive. It will never alter any existing files in a
project.

The autoscan utility generates a warning message for each problem it dis-
covers in an existing configure.ac file. In this example, autoscan noticed that
configure.ac should be using the Autoconf-provided AC_CHECK_HEADERS, AC_PREREQ,
AC_PROG_CC, and AC_PROG_INSTALL macros. It made these assumptions based on
information gleaned from the existing Makefile.in templates and from the C-
language source files, as you can see by the comments after the warning state-
ments beginning at . You can always see these messages (in even greater
detail) by examining the autoscan.log file.

NOTE The notices you receive from autoscan and the contents of your configure.ac file may
differ slightly from mine, depending on the version of Autoconf you have installed. I
have version 2.64 of GNU Autoconf installed on my system (the latest, as of this writing).
If your version of autoscan is older (or newer), you may see some minor differences.

Looking at the generated configure.scan file, I note that autoscan has added
more text to this file than was in my original configure.ac file. After looking it
over to ensure that I understand everything, I see that it’s probably easiest for
me to overwrite configure.ac with configure.scan and then change the few bits
of information that are specific to Jupiter:

$ mv configure.scan configure.ac

$ cat configure.ac

-*- Autoconf -*-

Process this file with autoconf to produce a configure script.

AC_PREREQ([2.64])

AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS])

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADERS([config.h])

Checks for programs.

AC_PROG_CC

AC_PROG_INSTALL

Checks for libraries.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 73

Checks for header files.

AC_CHECK_HEADERS([stdlib.h])

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.

AC_CONFIG_FILES([Makefile

 src/Makefile])

AC_OUTPUT

$

My first modification involves changing the AC_INIT macro parameters for
Jupiter, as illustrated in Listing 3-11.

-*- Autoconf -*-

Process this file with autoconf to produce a configure script.

AC_PREREQ([2.64])

AC_INIT([Jupiter], [1.0], [jupiter-bugs@example.org])

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADERS([config.h])

...

Listing 3-11: configure.ac: Tweaking the AC_INIT macro generated by autoscan

The autoscan utility does a lot of the work for you. The GNU Autoconf
Manual10 states that you should modify this file to meet the needs of your
project before you use it, but there are only a few key issues to worry about
(besides those related to AC_INIT). I’ll cover each of these issues in turn, but
first, let’s take care of a few administrative details.

The Proverbial autogen.sh Script
Before autoreconf came along, maintainers passed around a short shell script,
often named autogen.sh or bootstrap.sh, which would run all of the Autotools
required for their projects in the proper order. The autogen.sh script can be
fairly sophisticated, but to solve the problem of the missing install-sh script
(see “Missing Required Files in Autoconf” on page 74), I’ll just add a simple
temporary autogen.sh script to the project root directory, as shown in Listing 3-12.

#!/bin/sh

autoreconf --install

 automake --add-missing --copy >/dev/null 2>&1

Listing 3-12: autogen.sh: A temporary bootstrap script that executes the required Autotools

The automake --add-missing option copies the required missing utility scripts
into the project, and the --copy option indicates that true copies should be

10. See the Free Software Foundation’s GNU Autoconf Manual at http://www.gnu.org/software/
autoconf/manual/index.html.

Autotools
© 2010 by John Calcote

74 Chapter 3

made (otherwise, symbolic links are created that refer to the files where they’re
installed with the Automake package).11

11. The automake --add-missing option copies in the missing required utility scripts, and the
--copy option indicates that true copies should be made—otherwise, symbolic links are created
to the files where the automake package has installed them. This isn’t as bad as it sounds, because
when make dist generates a distribution archive, it creates true copies in the image directory.
Therefore, links work just fine, as long as you (the maintainer) don’t move your work area
to another host. Note that automake provides a --copy option, but autoreconf provides just the
opposite: a --symlink option. Thus, if you execute automake --add-missing and you wish to actually
copy the files, you should pass --copy as well. If you execute autoreconf --install, --copy will be
assumed and passed to automake by autoreconf.

M I S S I N G R E Q U I R E D F I L E S I N A U T O C O N F

When I first tried to execute autoreconf on the configure.ac file in Listing 3-11, I dis-
covered a minor problem related to using Autoconf without Automake. When I ran
the configure script, it failed with an error: configure: error: cannot find install-sh

or install.sh ...

Autoconf is all about portability and, unfortunately, the Unix install utility is not
as portable as it could be. From one platform to another, critical bits of installation
functionality are just different enough to cause problems, so the Autotools provide a
shell script called install-sh (deprecated name: install.sh). This script acts as a
wrapper around the system’s own install utility, masking important differences
between various versions of install.

autoscan noticed that I’d used the install program in my src/Makefile.in tem-
plate, so it generated an expansion of the AC_PROG_INSTALL macro. The problem is
that configure couldn’t find the install-sh wrapper script anywhere in my project.

I reasoned that the missing file was part of the Autoconf package, and it just
needed to be installed. I also knew that autoreconf accepts a command-line option
to install such missing files into a project directory. The --install option supported
by autoreconf is designed to pass tool-specific options down to each of the tools that
it calls in order to install missing files. However, when I tried that, I found that the file
was still missing, because autoconf doesn’t support an option to install missing files.1

I could have manually copied install-sh from the Automake installation direc-
tory (usually /usr/(local/)share/automake-*), but looking for a more automated solu-
tion, I tried manually executing automake --add-missing --copy. This command
generated a slew of warnings indicating that the project was not configured for
Automake. However, I could now see that install-sh had been copied into my
project root directory, and that’s all I was after. Executing autoreconf --install

didn’t run automake because configure.ac was not configured for Automake.
Autoconf should ship with install-sh, since it provides a macro that requires it,

but then autoconf would have to provide an --add-missing command-line option.
Nevertheless, there is actually a quite obvious solution to this problem. The install-sh

script is not really required by any code Autoconf generates. How could it be?
Autoconf doesn’t generate any makefile constructs—it only substitutes variables into
your Makefile.in templates. Thus, there’s really no reason for Autoconf to complain
about a missing install-sh script.2

1. Worse still, the GNU Autoconf Manual that I was using at the time told me that “Autoconf
comes with a copy of install-sh that you can use”—but it’s really Automake and Libtool that
come with copies of install-sh.
2. When I presented this problem on the Autoconf mailing list, I was told several times that
autoconf has no business copying install-sh into a project directory, thus there is no install-
missing-file functionality accessible from the autoconf command line. If this is indeed the case,
then autoconf has no business complaining about the missing file, either!

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 75

NOTE When make dist generates a distribution archive, it creates true copies in the image
directory, so the use of symlinks causes no real problems, as long as you (the main-
tainer) don’t move your work area to another host.

We don’t need to see the warnings from automake, so I’ve redirected the
stderr and stdout streams to /dev/null on the automake command line at in
this script. In Chapter 5, we’ll remove autogen.sh and simply run autoreconf
--install, but for now, this will solve our missing file problems.

Updating Makefile.in
Let’s execute autogen.sh and see what we end up with:

$ sh autogen.sh

$ ls -1p

autogen.sh

autom4te.cache/

 config.h.in

configure

configure.ac

 install-sh

Makefile.in

src/

$

We know from the file list at that config.h.in has been created, so we
know that autoreconf has executed autoheader. We also see the new install-sh
script at that was created when we executed automake in autogen.sh. Anything
provided or generated by the Autotools should be copied into the archive
directory so that it can be shipped with release tarballs. Therefore, we’ll
add cp commands for these two files to the $(distdir) target in the top-level
Makefile.in template. Note that we don’t need to copy the autogen.sh script
because it’s purely a maintainer tool—users should never need to execute it
from a tarball distribution.

Listing 3-13 illustrates the required changes to the $(distdir) target in
the top-level Makefile.in template.

...

$(distdir): FORCE

 mkdir -p $(distdir)/src

 cp $(srcdir)/configure.ac $(distdir)

 cp $(srcdir)/configure $(distdir)

 cp $(srcdir)/config.h.in $(distdir)

 cp $(srcdir)/install-sh $(distdir)

 cp $(srcdir)/Makefile.in $(distdir)

 cp $(srcdir)/src/Makefile.in $(distdir)/src

 cp $(srcdir)/src/main.c $(distdir)/src

...

Listing 3-13: Makefile.in: Additional files needed in the distribution archive image directory

Autotools
© 2010 by John Calcote

76 Chapter 3

If you’re beginning to think that this could become a maintenance prob-
lem, then you’re right. I mentioned earlier that the $(distdir) target was painful
to maintain. Luckily, the distcheck target still exists and still works as designed.
It would have caught this problem, because attempts to build from the tarball
will fail without these additional files—and the check target certainly won’t
succeed if the build fails. When we discuss Automake in Chapter 5, we will
clear up much of this maintenance mess.

Initialization and Package Information

Now let’s turn our attention back to the contents of the configure.ac file in
Listing 3-11. The first section contains Autoconf initialization macros. These
are required for all projects. Let’s consider each of these macros individually,
because they’re all important.

AC_PREREQ
The AC_PREREQ macro simply defines the earliest version of Autoconf that may
be used to successfully process this configure.ac file:

AC_PREREQ(version)

The GNU Autoconf Manual indicates that AC_PREREQ is the only macro that
may be used before AC_INIT. This is because it’s good to ensure you’re using a
new enough version of Autoconf before you begin processing any other macros,
which may be version dependent.

AC_INIT
The AC_INIT macro, as its name implies, initializes the Autoconf system. Here’s
its prototype, as defined in the GNU Autoconf Manual:12

AC_INIT(package, version, [bug-report], [tarname], [url])

It accepts up to five arguments (autoscan only generates a call with the
first three): package, version, and optionally, bug-report, tarname, and url. The
package argument is intended to be the name of the package. It will end up
(in a canonical form) as the first part of the name of an Automake-generated
release distribution tarball when you execute make dist.

NOTE Autoconf uses a normalized form of the package name in the tarball name, so you can
use uppercase letters in the package name, if you wish. Automake-generated tarballs are
named tarname-version.tar.gz by default, but tarname is set to a normalized form of
the package name (lowercase, with all punctuation converted to underscores). Bear this
in mind when you choose your package name and version string.

12. The square brackets used in the macro definition prototypes within this book (as well as the
GNU Autoconf Manual) indicate optional parameters, not Autoconf quotes.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 77

The optional bug-report argument is usually set to an email address, but any
text string is valid. An Autoconf substitution variable called @PACKAGE_BUGREPORT@ is
created for it, and that variable is also added to the config.h.in template as a C-
preprocessor definition. The intent here is that you use the variable in your
code to present an email address for bug reports at appropriate places—possibly
when the user requests help or version information from your application.

While the version argument can be anything you like, there are a few
commonly used OSS conventions that will make things a little easier for you.
The most widely used convention is to pass in major.minor (e.g., 1.2). However,
there’s nothing that says you can’t use major.minor.revision, and there’s nothing
wrong with this approach. None of the resulting VERSION variables (Autoconf,
shell, or make) are parsed or analyzed anywhere—they’re only used as place-
holders for substituted text in various locations.13 So if you wish, you may
even add nonnumeric text into this macro, such as 0.15.alpha1, which is
occasionally useful.14

NOTE The RPM package manager, on the other hand, does care what you put in the version
string. For the sake of RPM, you may wish to limit the version string text to only alpha-
numeric characters and periods—no dashes or underscores.

The optional url argument should be the URL for your project website.
It’s shown in the help text displayed by configure --help.

Autoconf generates the substitution variables @PACKAGE_NAME@,
@PACKAGE_VERSION@, @PACKAGE_TARNAME@, @PACKAGE_STRING@ (a stylized concatena-
tion of the package name and version information), @PACKAGE_BUGREPORT@,
and @PACKAGE_URL@ from the arguments to AC_INIT.

AC_CONFIG_SRCDIR
The AC_CONFIG_SRCDIR macro is a sanity check. Its purpose is to ensure that the
generated configure script knows that the directory on which it is being exe-
cuted is actually the project directory.

More specifically, configure needs to be able to locate itself, because it
generates code that executes itself, possibly from a remote directory. There
are myriad ways to inadvertently fool configure into finding some other
configure script. For example, the user could accidentally provide an incorrect
--srcdir argument to configure. The $0 shell script parameter is unreliable, at
best—it may contain the name of the shell, rather than that of the script, or it
may be that configure was found in the system search path, so no path infor-
mation was specified on the command line.

13. As far as M4 is concerned, all data is text; thus M4 macro arguments, including package and
version, are treated simply as strings. M4 doesn’t attempt to interpret any of this text as numbers
or other data types.
14. A future version of Autoconf will support a public macro that allows lexicographical comparison
of version strings, and certain internal constructs in current versions already use such functionality.
Thus, it’s good practice to form version strings that increase properly in a lexical fashion from
version to version.

Autotools
© 2010 by John Calcote

78 Chapter 3

The configure script could try looking in the current or parent directories,
but it still needs a way to verify that the configure script it locates is actually
itself. Thus, AC_CONFIG_SRCDIR gives configure a significant hint that it’s looking
in the right place. Here’s the prototype for AC_CONFIG_SRCDIR:

AC_CONFIG_SRCDIR(unique-file-in-source-dir)

The argument can be a path (relative to the project’s configure script) to
any source file you like. You should choose one that is unique to your project
so as to minimize the possibility that configure is fooled into thinking some
other project’s configuration file is itself. I try to choose a file that sort of rep-
resents the project, such as a source file named for a feature that defines the
project. That way, in case I ever decide to reorganize the source code, I’m
not likely to lose it in a file rename. But it doesn’t really matter, because both
autoconf and configure will tell you and your users if it can’t find this file.

The Instantiating Macros

Before we dive into the details of AC_CONFIG_HEADERS, I’d like to spend a little
time on the file generation framework Autoconf provides. From a high-level
perspective, there are four major things happening in configure.ac:

Initialization

Check request processing

File instantiation request processing

Generation of the configure script

We’ve covered initialization—there’s not much to it, although there are
a few more macros you should be aware of. Check out the GNU Autoconf
Manual for more information—look up AC_COPYRIGHT, for an example. Now
let’s move on to file instantiation.

There are actually four so-called instantiating macros: AC_CONFIG_FILES,
AC_CONFIG_HEADERS, AC_CONFIG_COMMANDS, and AC_CONFIG_LINKS. An instantiating
macro accepts a list of tags or files; configure will generate these files from
templates containing Autoconf substitution variables.

NOTE You might need to change the name of AC_CONFIG_HEADER (singular) to AC_CONFIG_HEADERS
(plural) in your version of configure.scan. The singular version is the older name for
this macro, and the older macro is less functional than the newer one.15

The four instantiating macros have an interesting common signature.
The following prototype can be used to represent each of them, with appro-
priate text replacing the XXX portion of the macro name:

AC_CONFIG_XXXS(tag..., [commands], [init-cmds])

15. This was a defect in autoscan that had not been fixed as of Autoconf version 2.61. However,
version 2.62 of autoscan correctly generates a call to the newer, more functional AC_CONFIG_HEADERS.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 79

For each of these four macros, the tag argument has the form OUT[:INLIST],
where INLIST has the form IN0[:IN1:...:INn]. Often, you’ll see a call to one
of these macros with only a single argument, as in the three examples below
(note that these examples represent macro calls, not prototypes, so the square
brackets are actually Autoconf quotes, not indications of optional parameters):

AC_CONFIG_HEADERS([config.h])

In this example, config.h is the OUT portion of the above specification. The
default value for INLIST is the OUT portion with .in appended to it. So, in other
words, the above call is exactly equivalent to:

AC_CONFIG_HEADERS([config.h:config.h.in])

What this means is that config.status contains shell code that will gener-
ate config.h from config.h.in, substituting all Autoconf variables in the process.
You may also provide a list of input files in the INLIST portion. In this case, the
files in INLIST will be concatenated to form the resulting OUT file:

AC_CONFIG_HEADERS([config.h:cfg0:cfg1:cfg2])

Here, config.status will generate config.h by concatenating cfg0, cfg1, and
cfg2 (in that order), after substituting all Autoconf variables. The GNU Autoconf
Manual refers to this entire OUT[:INLIST] construct as a tag.

Why not just call it a file? Well, this parameter’s primary purpose is to
provide a sort of command-line target name—much like makefile targets. It
can also be used as a filesystem name if the associated macro generates files,
as is the case with AC_CONFIG_HEADERS, AC_CONFIG_FILES, and AC_CONFIG_LINKS.

But AC_CONFIG_COMMANDS is unique in that it doesn’t generate any files. Instead,
it runs arbitrary shell code, as specified by the user in the macro’s arguments.
Thus, rather than name this first parameter after a secondary function (the
generation of files), the GNU Autoconf Manual refers to it more generally,
according to its primary purpose—as a command-line tag that may be specified
on the config.status command line, in this manner:

$./config.status config.h

This config.status command line will regenerate the config.h file based
on the macro call to AC_CONFIG_HEADERS in configure.ac. It will only regenerate
config.h.

Enter ./config.status --help to see the other command-line options you
can use when executing config.status:

$./config.status --help

'config.status' instantiates files from templates according to the

current configuration.

 Usage: ./config.status [OPTION]... [TAG]...

Autotools
© 2010 by John Calcote

80 Chapter 3

 -h, --help print this help, then exit

 -V, --version print version number and configuration settings, then exit

 -q, --quiet, --silent

 do not print progress messages

 -d, --debug don't remove temporary files

 --recheck update config.status by reconfiguring in the same
conditions

 --file=FILE[:TEMPLATE]

 instantiate the configuration file FILE

 --header=FILE[:TEMPLATE]

 instantiate the configuration header FILE

 Configuration files:

 Makefile src/Makefile

 Configuration headers:

 config.h

Report bugs to <bug-autoconf@gnu.org>.

$

Notice that config.status provides custom help about a project’s
config.status file. It lists configuration files and configuration headers
that we can use as tags on the command line where the usage specifies
[TAG]... at . In this case, config.status will only instantiate the specified
objects. In the case of commands, it will execute the command set specified by
the tag passed in the associated expansion of the AC_CONFIG_COMMANDS macro.

Each of these macros may be used multiple times in a configure.ac file.
The results are cumulative, and we can use AC_CONFIG_FILES as many times as
we need to in configure.ac. It is also important to note that config.status sup-
ports the --file= option (at). When you call config.status with tags on the
command line, the only tags you can use are those the help text lists as avail-
able configuration files, headers, links, and commands. When you execute
config.status with the --file= option, you’re telling config.status to generate
a new file that’s not already associated with any of the calls to the instantiating
macros found in configure.ac. This new file is generated from an associated
template using configuration options and check results determined by the
last execution of configure. For example, I could execute config.status in this
manner:

$./config.status --file=extra:extra.in

NOTE The default template name is the filename with a .in suffix, so this call could have
been made without using the :extra.in portion of the option. I added it here for clarity.

Let’s return to the instantiating macro signature at the bottom of
page 78. I’ve shown you that the tag... argument has a complex format,
but the ellipsis indicates that it also represents multiple tags, separated by
whitespace. The format you’ll see in nearly all configure.ac files is shown in
Listing 3-14.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 81

...

AC_CONFIG_FILES([Makefile

 src/Makefile

 lib/Makefile

 etc/proj.cfg])

...

Listing 3-14: Specifying multiple tags (files) in AC_CONFIG_FILES

Each entry here is one tag specification, which, if fully specified, would
look like the call in Listing 3-15.

...

AC_CONFIG_FILES([Makefile:Makefile.in

 src/Makefile:src/Makefile.in

 lib/Makefile:lib/Makefile.in

 etc/proj.cfg:etc/proj.cfg.in])

...

Listing 3-15: Fully specifying multiple tags in AC_CONFIG_FILES

Returning to the instantiating macro prototype, there are two optional
arguments that you’ll rarely see used in these macros: commands and init-cmds.
The commands argument may be used to specify some arbitrary shell code that
should be executed by config.status just before the files associated with the tags
are generated. It is unusual for this feature to be used within the file-generating
instantiating macros. You will almost always see the commands argument used
with AC_CONFIG_COMMANDS, which generates no files by default, because a call to
this macro is basically useless without commands to execute!16 In this case,
the tag argument becomes a way of telling config.status to execute a specific
set of shell commands.

The init-cmds argument initializes shell variables at the top of config.status
with values available in configure.ac and configure. It’s important to remember
that all calls to instantiating macros share a common namespace along with
config.status. Therefore, you should try to choose your shell variable names
carefully so they are less likely to conflict with each other and with Autoconf-
generated variables.

The old adage about the value of a picture versus an explanation holds
true here, so let’s try a little experiment. Create a test version of your configure.ac
file that contains only the contents of Listing 3-16.

AC_INIT([test], [1.0])

AC_CONFIG_COMMANDS([abc],

 [echo "Testing $mypkgname"],

 [mypkgname=$PACKAGE_NAME])

AC_OUTPUT

Listing 3-16: Experiment #1—a simple configure.ac file

16. The truth is that we don’t often use AC_CONFIG_COMMANDS.

Autotools
© 2010 by John Calcote

82 Chapter 3

Now execute autoreconf, configure, and config.status in various ways to
see what happens:

$ autoreconf

 $./configure

configure: creating ./config.status

config.status: executing abc commands

Testing test

$

 $./config.status

config.status: executing abc commands

Testing test

$

 $./config.status --help

'config.status' instantiates files from templates according to the current
configuration.

Usage: ./config.status [OPTIONS]... [FILE]...

...

Configuration commands:

 abc

Report bugs to <bug-autoconf@gnu.org>.

$

 $./config.status abc

config.status: executing abc commands

Testing test

$

As you can see at , executing configure caused config.status to be executed
with no command-line options. There are no checks specified in configure.ac,
so manually executing config.status, as we did at , has nearly the same effect.
Querying config.status for help (as we did at) indicates that abc is a valid
tag; executing config.status with that tag (as we did at) on the command
line simply runs the associated commands.

In summary, the important points regarding the instantiating macros are
as follows:

The config.status script generates all files from templates.

The configure script performs all checks and then executes config.status.

When you execute config.status with no command-line options, it gener-
ates files based on the last set of check results.

You can call config.status to execute file generation or command sets
specified by any of the tags given in any of the instantiating macro calls.

config.status may generate files not associated with any tags specified in
configure.ac, in which case it will substitute variables based on the last set
of checks performed.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 83

AC_CONFIG_HEADERS
As you’ve no doubt concluded by now, the AC_CONFIG_HEADERS macro allows
you to specify one or more header files that config.status should generate
from template files. The format of a configuration header template is very
specific. A short example is given in Listing 3-17.

/* Define as 1 if you have unistd.h. */

#undef HAVE_UNISTD_H

Listing 3-17: A short example of a header file template

You can place multiple statements like this in your header template, one
per line. The comments are optional, of course. Let’s try another experiment.
Create a new configure.ac file like that shown in Listing 3-18.

AC_INIT([test], [1.0])

AC_CONFIG_HEADERS([config.h])

AC_CHECK_HEADERS([unistd.h foobar.h])

AC_OUTPUT

Listing 3-18: Experiment #2—a simple configure.ac file

Create a template header file called config.h.in that contains the two lines
in Listing 3-19.

#undef HAVE_UNISTD_H

#undef HAVE_FOOBAR_H

Listing 3-19: Experiment #2 continued—a simple config.h.in file

Now execute the following commands:

$ autoconf

$./configure

checking for gcc... gcc

...

 checking for unistd.h... yes

checking for unistd.h... (cached) yes

checking foobar.h usability... no

checking foobar.h presence... no

 checking for foobar.h... no

configure: creating ./config.status

 config.status: creating config.h

$

$ cat config.h

/* config.h. Generated from ... */

#define HAVE_UNISTD_H 1

 /* #undef HAVE_FOOBAR_H */

$

Autotools
© 2010 by John Calcote

84 Chapter 3

You can see at that config.status generated a config.h file from the
simple config.h.in template we wrote. The contents of this header file are
based on the checks executed by configure. Since the shell code generated by
AC_CHECK_HEADERS([unistd.h foobar.h]) was able to locate a unistd.h header file
() in the system include directory, the corresponding #undef statement was
converted into a #define statement. Of course, no foobar.h header was found
in the system include directory, as you can also see by the output of configure
at ; therefore, its definition was left commented out in the template, as
shown at .

Thus, you may add the sort of code shown in Listing 3-20 to appropriate
C-language source files in your project.

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_UNISTD_H

include <unistd.h>

#endif

#if HAVE_FOOBAR_H

include <foobar.h>

#endif

Listing 3-20: Using generated CPP definitions in a C-language source file

Using autoheader to Generate an Include File Template
Manually maintaining a config.h.in template is more trouble than necessary.
The format of config.h.in is very strict—for example, you can’t have any leading
or trailing whitespace on the #undef lines. Besides that, most of the informa-
tion you need from config.h.in is available in configure.ac.

Fortunately, the autoheader utility will generate a properly formatted
header file template for you based on the contents of configure.ac, so you
don’t often need to write config.h.in templates. Let’s return to the command
prompt for a final experiment. This one is easy—just delete your config.h.in
template and then run autoheader and autoconf:

$ rm config.h.in

$ autoheader

$ autoconf

$./configure

checking for gcc... gcc

...

checking for unistd.h... yes

checking for unistd.h... (cached) yes

checking foobar.h usability... no

checking foobar.h presence... no

checking for foobar.h... no

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 85

configure: creating ./config.status

config.status: creating config.h

$

$ cat config.h

/* config.h. Generated from config.h.in... */

/* config.h.in. Generated from configure.ac... */

...

/* Define to 1 if you have... */

/* #undef HAVE_FOOBAR_H */

/* Define to 1 if you have... */

#define HAVE_UNISTD_H 1

/* Define to the address where bug... */

#define PACKAGE_BUGREPORT ""

/* Define to the full name of this package. */

#define PACKAGE_NAME "test"

/* Define to the full name and version... */

#define PACKAGE_STRING "test 1.0"

/* Define to the one symbol short name... */

#define PACKAGE_TARNAME "test"

/* Define to the version... */

#define PACKAGE_VERSION "1.0"

/* Define to 1 if you have the ANSI C... */

#define STDC_HEADERS 1

$

NOTE Again, I encourage you to use autoreconf, which will automatically run autoheader if
it notices an expansion of AC_CONFIG_HEADERS in configure.ac.

As you can see by the output of the cat command at , an entire set of
preprocessor definitions was derived from configure.ac by autoheader.

Listing 3-21 shows a much more realistic example of using a generated
config.h file to increase the portability of your project source code. In this
example, the AC_CONFIG_HEADERS macro call indicates that config.h should be
generated, and the call to AC_CHECK_HEADERS will cause autoheader to insert a
definition into config.h.

AC_INIT([test], [1.0])

AC_CONFIG_HEADERS([config.h])

AC_CHECK_HEADERS([dlfcn.h])

AC_OUTPUT

Listing 3-21: A more realistic example of using AC_CONFIG_HEADERS

The config.h file is intended to be included in your source code in loca-
tions where you might wish to test a configured option in the code itself using
the C preprocessor. This file should be included first in source files so it can
influence the inclusion of system header files later in the source.

NOTE The config.h.in template that autoheader generates doesn’t contain an include-guard
construct, so you need to be careful that it’s not included more than once in a source file.

Autotools
© 2010 by John Calcote

86 Chapter 3

It’s often the case that every .c file in a project needs to include config.h.
In this case, it might behoove you to include config.h at the top of an internal
project header file that’s included by all the source files in your project. You
can (and probably should) also add an include-guard construct to this inter-
nal header file to protect against including it more than once.

Don’t make the mistake of including config.h in a public header file if
your project installs libraries and header files as part of your product set. For
more detailed information on this topic, refer to “Item 1: Keeping Private
Details out of Public Interfaces” on page 272.

Using the configure.ac file from Listing 3-21, the generated configure script
will create a config.h header file with appropriate definitions for determining,
at compile time, whether or not the current system provides the dlfcn inter-
face. To complete the portability check, you can add the code from Listing 3-22
to a source file in your project that uses dynamic loader functionality.

#if HAVE_CONFIG_H

include <config.h>

#endif

 #if HAVE_DLFCN_H

include <dlfcn.h>

#else

error Sorry, this code requires dlfcn.h.

#endif

...

 #if HAVE_DLFCN_H

 handle = dlopen("/usr/lib/libwhatever.so", RTLD_NOW);

#endif

...

Listing 3-22: A sample source file that checks for dynamic loader functionality

If you already had code that included dlfcn.h, autoscan would have gener-
ated a line in configure.ac to call AC_CHECK_HEADERS with an argument list containing
dlfcn.h as one of the header files to be checked. Your job as maintainer is to
add the conditional statements at and to your source code around the
existing inclusions of the dlfcn.h header file and around calls to the dlfcn
interface functions. This is the crux of Autoconf-provided portability.

Your project might prefer dynamic loader functionality, but could get along
without it if necessary. It’s also possible that your project requires a dynamic
loader, in which case your build should terminate with an error (as this code
does) if the key functionality is missing. Often, this is an acceptable stopgap
until someone comes along and adds support to the source code for a more
system-specific dynamic loader service.

NOTE If you have to bail out with an error, it’s best to do so at configuration time rather than
at compile time. The general rule of thumb is to bail out as early as possible.

Autotools
© 2010 by John Calcote

Conf igur ing Your Project wi th Autoconf 87

One obvious flaw in this source code is that config.h is only included
if HAVE_CONFIG_H is defined in your compilation environment. You must define
HAVE_CONFIG_H manually on your compiler command lines if you’re writing
your own makefiles. Automake does this for you in generated Makefile.in
templates.

HAVE_CONFIG_H is part of a string of definitions passed on the compiler
command line in the Autoconf substitution variable @DEFS@. Before autoheader
and AC_CONFIG_HEADERS functionality existed, Automake added all of the compiler
configuration macros to the @DEFS@ variable. You can still use this method if
you don’t use AC_CONFIG_HEADERS in configure.ac, but it’s not recommended—
mainly because a large number of definitions make for very long compiler
command lines.

Back to Remote Builds for a Moment

As we wrap up this chapter, you’ll notice that we’ve come full circle. We started
out covering some preliminary information before we discussed how to add
remote builds to Jupiter. Now we’ll return to this topic for a moment, because I
haven’t yet covered how to get the C preprocessor to properly locate a gener-
ated config.h file.

Since this file is generated from a template, it will be at the same relative
position in the build directory structure as its counterpart template file,
config.h.in, is in the source directory structure. The template is located in the
top-level source directory (unless you chose to put it elsewhere), so the gener-
ated file will be in the top-level build directory. Well, that’s easy enough—it’s
always one level up from the generated src/Makefile.

Before we draw any conclusions then about header file locations, let’s
consider where header files might appear in a project. We might generate
them in the current build directory, as part of the build process. We might
also add internal header files to the current source directory. We know we
have a config.h file in the top-level build directory. Finally, we might also create
a top-level include directory for library interface header files our package pro-
vides. What is the order of priority for these various include directories?

The order in which we place include directives (-Ipath options) on the
compiler command line is the order in which they will be searched, so the
order should be based on which files are most relevant to the source file
currently being compiled. Thus, the compiler command line should include
-Ipath directives for the current build directory (.) first, followed by the source
directory [$(srcdir)], then the top-level build directory (..), and finally, our
project’s include directory, if it has one. We impose this ordering by adding
-Ipath options to the compiler command line, as shown in Listing 3-23.

...

jupiter: main.c

 $(CC) -I. -I$(srcdir) -I.. $(CPPFLAGS) $(CFLAGS) -o $@ main.c

...

Listing 3-23: src/Makefile.in: Adding proper compiler include directives

Autotools
© 2010 by John Calcote

88 Chapter 3

Now that we know this, we need to add another rule of thumb for remote
builds to the list we created on page 69:

Add preprocessor commands for the current build directory, the associ-
ated source directory, and the top-level build directories, in that order.

Summary

In this chapter, we covered just about all the major features of a fully func-
tional GNU project build system, including writing a configure.ac file, from
which Autoconf generates a fully functional configure script. We’ve also covered
adding remote build functionality to makefiles with VPATH statements.

So what else is there? Plenty! In the next chapter, I’ll continue to show
you how you can use Autoconf to test system features and functionality before
your users run make. We’ll also continue enhancing the configuration script
so that when we’re done, users will have more options and understand exactly
how our package will be built on their systems.

Autotools
© 2010 by John Calcote

