
8
D I S K S A N D F I L E S Y S T E M S

The importance of managing filesystems
and disks cannot be overemphasized.

(Go ahead, try to emphasize it too much.
I’ll wait.) Your disks contain your data, making

reliability and flexibility paramount to the operating
system. FreeBSD supports a variety of filesystems and
has many different ways to handle them. In this chapter
we’ll consider the most common disk tasks every system
administrator performs.

Disk Drives 101

Most people treat disk drives as fragile magic boxes. If you treat a drive badly,
you can make the drive screech and grind, and with enough abuse, you can
let the magic smoke escape so it will never work again. To really understand

210 Chap te r 8

filesystems, you must know a little bit about what’s going on inside the drive.
If you have a dusty old disk drive that you no longer have any respect for, feel
free to crack the case and follow along.

Inside the hard drive case you’ll find a stack of round aluminum or
plastic disks, commonly called platters. When the drive is active, the platters
spin at thousands of revolutions per minute. The RPM count on hard drives
measures platter rotation speed.

A thin layer of magnetic media covers the platters. This magnetic material
is arranged in thousands of circular rings, called tracks, that extend from the
platter’s inner core to its outer edge, much like the growth rings in a tree.
These tracks hold data as strings of zeros and ones. Each track is subdivided
into sectors. Each sector on the outer tracks holds more data than a corre-
sponding sector on an inner track, and reading a constant amount of data
takes less time on an outer track than on an inner track because any point
on the outer track is moving faster.

Heads, mounted over each platter, write and read data as the platters pass
by, much like a phonograph needle. These heads can read and write data
quickly, but they must wait for the disk to move into the proper position under
them. Drive performance basically boils down to how quickly those platters can
move under the drive heads, which is what makes RPM important.

Device Nodes

We touched briefly on device nodes in Chapter 3, but let’s consider them in
more detail. Device nodes are special files that represent hardware on the
system. They’re used as logical interfaces between user programs and either
a device driver or a physical device. By using a command on a device node,
sending information to a device node, or reading data from a device node,
you’re telling the kernel to perform an action upon a physical device. These
actions can be very different for different devices—writing data to a disk
is very different than writing data to a sound card. All device nodes exist
in /dev.

Before you can work with a disk or disk partition, you must know its
device name. FreeBSD disk device nodes come from the names of the device
drivers for that type of hardware. Device driver names, in turn, come from
the chipset used in the device and not from what the device appears to be.

Table 8-1 shows the most common disk device nodes. See the man page
for each if you want the full details.

A T A , S A T A , S CS I , A N D S A S

I assume that you’re familiar with the basics of the standard disk storage technologies.
If you’re not, please spend a few moments online with any of the excellent tutorials
on these subjects, or even the brief articles available on Wikipedia. I’ll make sug-
gestions here and there about how these technologies can be used, but SCSI IDs
and LUNs are a subject for another book.

Disks and F i l esys tems 211

Disks attached to most hardware RAID controllers don’t use device
names for each disk. Instead, these RAID controllers present a virtual disk
for each RAID container, using a device node named after the RAID driver.
For example, the amr(4) driver presents its virtual disks as /dev/amrd*. A
few RAID cards use the cam(4) abstraction layer, so their hard drives do
show up as /dev/da* devices.

Hard Disks and Partitions

While we discussed partitioning in Chapter 2, let’s consider partitions from a
disk device perspective. The first possible ATA disk on our first ATA controller
is called /dev/ad0. Subsequent disks are /dev/ad1, /dev/ad2, and so on. Sub-
divisions of each disk start with this name and add something at the end, like
/dev/ad0s1b. While you might expect a disk to be a monolithic whole, you’ll
see lots of subdivisions if you look in /dev for everything that begins with
/dev/ad0.

ls /dev/ad*

/dev/ad0 /dev/ad0s1a /dev/ad0s1c /dev/ad0s1e

/dev/ad0s1 /dev/ad0s1b /dev/ad0s1d /dev/ad0s1f

So, what are all these subdivisions? Think back to when you allocated
disk space. If you followed the recommendations in this book, you used the
whole disk for FreeBSD. You could have created a second chunk of disk for
a second operating system, or even cut the disk into two FreeBSD sections.
These sections are called partitions in the Microsoft and Linux worlds, and
slices in FreeBSD land. The s1 in the preceding list represents these large parti-
tions, or slices. The drive ad0 has one slice, ad0s1, with further subdivisions
marked by letters.

In FreeBSD, a partition is a further subdivision within a slice. You created
partitions inside the slice during the install. Each partition has a unique device
node name created by adding a letter to the slice device node. For example,
partitions inside the slice /dev/ad0s1 show up as /dev/ad0s1a, /dev/ad0s1b,
/dev/ad0s1c, and so on. Each partition you created—/usr, /var, and so on—is
assigned one of these device nodes.

You can assign partition device names almost arbitrarily, with some
exceptions. Tradition says that the node ending in a (in our example,
/dev/ad0s1a) is the root partition, and the node ending in b (/dev/ad0s1b) is

Table 8-1: Storage Devices and Types

Device Node Man Page Description

/dev/fd* fdc(4) Floppy disks

/dev/acd* acd(4) IDE CD drives

/dev/ad* ad(4) ATA and SATA hard disks and partitions

/dev/cd* cd(4) SCSI CD drives

/dev/da* da(4) SCSI and SAS hard disks, USB and flash storage, etc.

212 Chap te r 8

the swap space. The c label indicates the entire slice, from beginning to
end. You can assign d through h to any partition you like. You can have only
eight partitions in one slice, and up to four slices per drive. For example, the
device node /dev/ad0s1a is disk number 0, slice 1, partition 1, and is probably
the root filesystem. The device node /dev/ad1s2b is on disk number 2, and
is probably swap space.

If you have non-ATA disks, substitute the appropriate device for /dev/ad.

The Filesystem Table: /etc/fstab
So, how does your system map these device names to partitions? With the
filesystem table, /etc/fstab. In that file, each filesystem appears on a separate
line, along with any special options used by mount(8). Here’s a sample entry
from a filesystem table:

/dev/ad4s2a / ufs rw 1 1

The first field in each entry gives the device name.
The second field lists the mount point, or the directory where the

filesystem is attached. Every partition you can write files to is attached to a
mount point such as /usr, /var, and so on. A few special partitions, such as
swap space, have a mount point of none. You can’t write files to swap space—
at least, not if you want to use either the file or the swap space!

Next, we have the type of filesystem on this partition. The standard
FreeBSD partition is of type ufs, or Unix Fast File System. The example
below includes swap (swap space), cd9660 (CD), and nfs (Network File System).
Before you can attach a partition to your directory tree, you must know
what sort of filesystem it has. As you might guess, trying to mount a DOS
floppy as an FFS filesystem will fail.

The fourth field shows the mount options used on this filesystem. The
mount options tell FreeBSD to treat the filesystem in a certain matter. We’ll
discuss mount options in more detail later in this chapter, but here are a few
special ones used only by /etc/fstab:

ro The filesystem is mounted as read-only. Not even root can write to it.

rw The filesystem is mounted read-write.

noauto FreeBSD won’t automatically mount the filesystem, neither at
boot nor when using mount -a. This option is useful for removable media
drives which might not have media in them at boot.

A T A D I S K N U M B E R I N G

Just because the first possible ATA disk on the system would be /dev/ad0 doesn’t
mean that you have to have a hard drive /dev/ad0 installed. My laptop’s hard
drive is /dev/ad4 because it’s on a RAID controller, not on the built-in ATA controller.
SCSI and SAS hard drives are smarter about this and generally number the first
disk with /dev/da0 no matter where they’re attached. Removing the kernel option
ATA_STATIC_ID makes ATA disks start numbering at 0, if you desire.

Disks and F i l esys tems 213

The fifth field tells the dump(8) whether or not this filesystem needs
dumping. If set to 0, dump won’t back up the filesystem at all. Otherwise, the
number gives the minimum dump level needed to trigger a backup of this
filesystem. See Chapter 4 for details.

The last field, Pass#, tells the system when to check the filesystem’s
integrity during the boot process. All of the partitions in the same Pass# are
checked in parallel with fsck(8). Only the root filesystem has a Pass# of 1,
and it is checked first. All other filesystems are set to 2, which means that
FreeBSD mounts them after the root filesystem. Swap and read-only media
don’t require integrity checking, so are set to 0.

With this knowledge, let’s look at a complete /etc/fstab.

Device Mountpoint FStype Options Dump Pass#

� /dev/ad4s1b none swap sw 0 0

� /dev/ad4s2a / ufs rw 1 1

� /dev/ad4s1a /amd64 ufs rw 2 2

/dev/ad4s1f /amd64/usr ufs rw 2 2

/dev/ad4s1d /amd64/var ufs rw 2 2

� /dev/ad4s1e /tmp ufs rw 2 2

� /dev/ad4s2e /usr ufs rw 2 2

� /dev/ad4s2d /var ufs rw 2 2

� /dev/ad4s3d /home ufs rw 2 2

� /dev/acd0 /cdrom cd9660 ro,noauto 0 0

� data:/mp3 /mp3 nfs rw,noauto,soft 0 0

Our first entry, /dev/ad4s1b�, is swap space. It isn’t mounted anywhere;
FreeBSD uses swap as secondary memory.

The second entry � is the root partition. Note the device name—while
swap is partition b on slice 1, the root filesystem is partition a on slice 2. The
root directory is on a different slice than the swap space!

The third partition is /dev/ad4s1a �. We’d normally expect the root par-
tition to be here, but instead it’s mounted as /amd64. The next two partitions
are also on slice 1, but mounted under /amd64.

Our /tmp � filesystem is a partition on slice 1, which contains the /amd64
filesystem.

The next entries, /usr � and /var�, are normal-looking partitions on
slice 2.

The next partition, /home �, is on the same disk, slice 3, partition d.
Where the heck did slice 3 come from?

Our CD drive is mounted on /cdrom� and is not automatically mounted
at boot.

The final entry doesn’t start with a device node. This is a Network File
System (NFS) entry, and it tells us to mount the partition mp3 on the machine
data as /mp3 on the local machine when we specifically request it. We’ll talk
about NFS later in this chapter.

This filesystem table comes from a dual-boot machine, running FreeBSD/
i386 and FreeBSD/amd64. That’s why the table doesn’t look quite normal.
I can access the amd64 filesystem and use the amd64 swap space while
running the i386 slice.

214 Chap te r 8

What’s Mounted Now?

If not all filesystems are mounted automatically at boot, and if the sysadmin
can request additional mounts, how can you determine what’s mounted
right now on the system? Run mount(8) without any options to see a list of
all mounted filesystems.

mount

/dev/ad4s2a on / (ufs, local)

devfs on /dev (devfs, local)

/dev/ad4s1e on /tmp (ufs, local, soft-updates)

/dev/ad4s2e on /usr (ufs, local, soft-updates)

/dev/ad4s2d on /var (ufs, local, soft-updates)

/dev/ad4s3d on /usr/home (ufs, local, soft-updates)

Here we see that our filesystems are almost all standard UFS partitions.
The word local means that the partition is on a hard drive attached to this
machine. We also see soft-updates, a feature of the FreeBSD filesystem we’ll
discuss later in this chapter. If you’re using features such as NFS or SMB to
mount partitions, they’ll appear here.

mount(8) is a quick way to get the device names for each of your
partitions, but it also provides other functions.

Mounting and Unmounting Disks

mount(8)’s main purpose is to mount partitions onto your filesystem. If you’ve
never played with mounting before, boot your FreeBSD machine into the
single-user mode (see Chapter 3) and follow along.

In single-user mode FreeBSD has mounted the root partition read-only.
The root partition contains just enough of the system to perform basic setup,
get core services running, and find the rest of the filesystems. Those other
filesystems are not mounted, so their content is inaccessible. Go ahead and
look in /usr on a system in single-user mode; it’s empty. FreeBSD hasn’t lost
the files, it just hasn’t mounted the partition with those files on it yet. To do
anything interesting in single-user mode, you must mount other filesystems.

Mounting Standard Filesystems

To manually mount a filesystem listed in /etc/fstab, such as /var or /usr, give
mount(8) the name of the filesystem you want to mount.

mount /usr

This mounts the partition exactly as listed in /etc/fstab, with all the options
specified in that file. If you want to mount all the partitions listed in /etc/fstab,
use mount’s -a flag.

mount -a

Disks and F i l esys tems 215

Mounting at Nonstandard Locations

Perhaps you need to mount a filesystem at an unusual point. I do this most
commonly when installing a new disk. Use the device name and the desired
mount point. If my /usr partition is /dev/ad0s1e, and I want to mount it on
/mnt, I would run:

mount /dev/ad0s1e /mnt

Unmounting a Partition

When you want to disconnect a filesystem from the system, use umount(8) to
tell the system to unmount the partition. (Note that the command is umount,
not unmount.)

umount /usr

You cannot unmount filesystems that are in use by any program. If you
cannot unmount a partition, you’re probably accessing it somehow. Even a
command prompt in the mounted directory prevents you from unmounting
the underlying partition.

How Full Is a Partition?

To get an overview of how much space each partition has left, use df(1). This
provides a list of partitions on your system, the amount of space used by each
one, and where it’s mounted. The annoying thing about df is that it defaults
to providing information in 1KB blocks. This was fine when disks were much
much smaller, but counting out blocks can make you go cross-eyed today.
Fortunately, the -h and -H flags provide human-readable output. The small
-h uses base 2 to create a 1,024-byte megabyte, while the large -H uses base
10 for a 1,000-byte megabyte. Typically, network administrators and disk man-
ufacturers use base 10, while system administrators use base 2.1 Either works
so long as you know which you’ve chosen. I’m a network administrator, so
you get to suffer through my prejudices in these examples, despite what my
tech editor thinks.

df -H

Filesystem Size Used Avail Capacity Mounted on

/dev/ad4s2a 520M 301M 177M 63% /

devfs 1.0k 1.0k 0B 100% /dev

/dev/ad4s1e 520M 2.4M 476M 0% /tmp

/dev/ad4s2e 11G 4.1G 5.9G 41% /usr

/dev/ad4s2d 1.0G 322M 632M 34% /var

/dev/ad4s3d 49G 43G 2.0G 96% /usr/home

1 This discussion is even less productive than the “Emacs versus vi” argument. And I bet you
thought no such argument could exist!

216 Chap te r 8

Here we see the partition name, the size of the partition, the amount of
space used, the amount of space available, the percent of space used, and the
mount point. For example, the home directory on this machine is 96 percent
full, but it still has 2GB of disk free. The root partition is only 63 percent full,
but it has only 177MB free.

FFS holds back 8 percent of the disk space for on-the-fly optimization.
This is used for moving files and reducing fragmentation. You can overfill
your disks and see negative disk space remaining. When this happens, disk
performance drops dramatically. It is best to keep a little free space on your
partitions, so that FFS can continually defragment itself. While you can adjust
the filesystem to reduce the amount of reserved space, this negatively impacts
performance and is basically unwise. See tunefs(8) if you really want to try it.

The obvious question is, “What is taking up all that space?” If your systems
are like mine, disk usage somehow keeps growing for no apparent reason.
You can identify individual large files with ls -l, but recursively doing this
on every directory in the system is impractical.

du(1) displays disk usage in a single directory. Its initial output is intimi-
dating and can scare off inexperienced users. Here, we use du(1) to find out
what’s taking up all the space in my home directory:

cd $HOME

du

1 ./bin/RCS

21459 ./bin/wp/shbin10

53202 ./bin/wp

53336 ./bin

5 ./.kde/share/applnk/staroffice_52

6 ./.kde/share/applnk

...

This goes on and on, displaying every subdirectory and giving its size in
blocks. The total of each subdirectory is given—for example, the contents of
$HOME/bin totals 53,336 blocks, or roughly 53MB. I could sit and let du(1)
list every directory and subdirectory, but then I’d have to dig through much
more information than I really want to. And blocks aren’t that convenient a
measurement, especially not when they’re printed left-justified.

Let’s clean this up. First, du(1) supports an -h flag much like df. Also, I
don’t need to see the recursive contents of each subdirectory. We can control
the number of directories we display with du’s -d flag. This flag takes one

$ B LO C K S I Z E

Many disk tools show sizes in blocks of 512 bytes, or one-half KB. If you set the
environment variable $BLOCKSIZE to k, df(1) and many other programs display
file sizes in blocks of 1KB, which is much more useful. Others like a setting of 1M,
for sizes in megabytes.

Disks and F i l esys tems 217

argument, the number of directories you want to explicitly list. For example,
-d0 goes one directory deep and gives a simple subtotal of the files in a
directory.

du -h -d0 $HOME
 37G /home/mwlucas

I have 37 gigs of data in my home directory? Let’s look a layer deeper
and identify the biggest subdirectory.

du -h -d1

 38K ./bin

 56M ./mibs

...

 34G ./mp3

...

Apparently I must look elsewhere for storage space, as the data in my
home directory is too important to delete.

If you’re not too attached to the -h flag, you can use sort(1) to find the
largest directory with a command like du -kxd 1 | sort -n.

The Fast File System

FreeBSD’s filesystem, the Fast File System (FFS), is a direct descendant of
the filesystem shipped with BSD 4.4. One of the original FFS authors still
develops the FreeBSD filesystem and has added many nifty features in recent
years. FFS is sometimes called UFS (for Unix File System), and many system
utilities still call FFS partitions UFS. FreeBSD is not the only operating system
to still use the 4.4 BSD filesystem or a descendant thereof. If a Unix vendor
doesn’t specifically tout its “improved and advanced” filesystem, it is almost
certainly running a derivative of FFS.

FFS is designed to be fast and reliable, and to handle the most common
situations as effectively as possible while still supporting unusual situations
reliably. FreeBSD ships with FFS configured to be as widely useful as possible
on relatively modern hardware, but you can choose to optimize a particular
filesystem for trillions of small files or a half-dozen 30GB files if you must.
You don’t have to know much about FFS’s internals, but you do need to
understand blocks, fragments, and inodes, if nothing else.

Blocks are segments of disk that contain data. FreeBSD defaults to 16KB
blocks. Not all files are even multiples of 16KB, so FFS uses fragments to store
leftovers. The standard is one-eighth of the block size, or 2KB. For example,
a 20KB file would fill one block and two fragments. Inodes are index nodes,
special blocks that contain basic data such as a file’s size, permissions, and
the list of blocks that this file uses. Collectively, the data in an inode is known
as metadata, or data about data. This arrangement isn’t unique to FFS; other
filesystems such as NTFS use data blocks and index nodes as well. The index-
ing system used by each filesystem is largely unique, however.

218 Chap te r 8

Each filesystem has a certain number of inodes, proportional to the
filesystem size. A modern disk probably has hundreds of thousands of inodes
on each partition, which is sufficient to support hundreds of thousands of
files. If you have a truly large number of very tiny files, however, you might
need to rebuild your filesystem to support additional inodes. Use df -i to see
how many inodes remain free on your filesystem. If you must rebuild your
filesystem to increase the number of inodes, see Chapter 18.

Vnodes

Inodes and blocks worked wonderfully in Unix’s early days, when hard drives
were permanently attached to machines. As time passed, however, swapping
disks between different machines and even different operating systems became
common. CDs, with their unique read-only filesystem, became popular,
floppy disks slowly converged on the FAT32 filesystem as a standard, and
other Unix-like systems developed their own variant filesystems. Since BSD
needed to speak to all those different systems, another layer of abstraction
was needed.

That abstraction was the virtual node, or vnode. Users never manipulate
vnodes directly, but you’ll see references to them throughout the system
documentation. The vnode is a translator between the kernel and whatever
specific filesystem type you’ve mounted. Every tool that reads and writes to
disks actually does so through vnodes, which map the data to the appropriate
filesystem for the underlying media. When you write a file to an FFS filesystem,
the kernel addresses data to a vnode which, in turn, is mapped to an inode.
When you write a file to a FAT32 filesystem, the kernel addresses data to a
vnode mapped to a point in the FAT32 filesystem. You use inodes only when
dealing with FFS filesystems, but you’ll use vnodes when dealing with any
filesystem.

FFS Mount Types

Unlike Windows filesystems, FreeBSD treats FFS partitions differently
depending on how they’re mounted. The manner in which a partition is
mounted is called the mount type. If you’re mounting a partition manually,
you can specify mount options on the command line, but if you’re using
/etc/fstab to mount it, you must specify any choice in the Options column.

Use -o mounttype to specify a mount type on the command line, or specify
the option in /etc/fstab in the Options column.

Read-Only Mounts

If you want to look at the contents of a disk but not write to it, mount the
partition read-only. In most cases, this is the safest and the most useless way
to mount a disk, because you cannot alter the data on the disk or write any
new data.

Disks and F i l esys tems 219

Many system administrators mount the root partition, and perhaps even
/usr, as read-only to minimize potential system damage from a loss of power
or software problems. Even if you lose the physical hard drive due to a power
surge or other hardware failure, the data on the platters remains intact.
That’s the advantage of read-only mounts. The disadvantage is that system
maintenance becomes much more difficult because you cannot write to read-
only disks!

Read-only mounts are especially valuable when your computer is
damaged. While FreeBSD won’t let you perform a standard read-write
mount on a damaged or dirty filesystem, it can perform a read-only mount
most of the time. This gives you a chance to recover data from a dying system.

To mount a filesystem read-only, use one of the options rdonly or ro.
Both work identically.

Synchronous Mounts

Synchronous (or sync) mounts are the old-fashioned way of mounting file-
systems. When you write to a synchronously mounted disk, the kernel waits
to see whether the write is actually completed before informing the program.
If the write did not complete successfully, the program can choose to act
accordingly.

Synchronous mounts provide the greatest data integrity in the case of a
crash, but they are also slow. Admittedly, “slow” is relative today, when even a
cheap disk outperforms what was the high end several years ago. Consider
using synchronous mounting when you wish to be truly pedantic on data
integrity, but in almost all cases it’s an overkill.

To mount a partition synchronously, use the option sync.

Asynchronous Mounts

While asynchronous mounts are pretty much supplanted by soft updates,
you’ll still hear about them. For faster data access at higher risk, mount your
partitions asynchronously. When a disk is asynchronously mounted, the kernel
writes data to the disk and tells the writing program that the write succeeded
without waiting for the disk to confirm that the data was actually written.
Asynchronous mounting is fine on disposable machines, but don’t use it with
important data. The performance difference between asynchronous mounts
and noasync with soft updates is very small.

To mount a partition asynchronously, use the option async.

Noasync Mounts

Finally, we have a method that combines sync and async mounts, called
noasync. This is FreeBSD’s default. When using noasync mounts, data that
affects inodes is written to the disk synchronously, while actual data is handled
asynchronously. Combined with soft updates (see later in this chapter), a
noasync mount creates a very robust filesystem.

Noasync mounts are the default, and you don’t need to specify anything.

220 Chap te r 8

FFS Mount Options

FreeBSD supports several mount options in addition to the mount types.
These options change the behavior of mounted filesystems.

noatime

Every file in FFS includes an access-time stamp, called the atime, which
records when the file was last accessed. If you have a large number of files
and don’t need this data, you can mount the disk noatime so that FFS does
not update this timestamp. This is most useful for flash media or disks that
suffer from heavy load, such as Usenet news spool drives.

noexec

The noexec mount option prevents any binaries from being executed on this
partition. Mounting /home noexec can help prevent users from running their
own programs, but for it to be effective, be sure to also mount /tmp, /var/tmp,
and anywhere else users can write their own files noexec as well. Also note
that a noexec mount doesn’t prevent a user from running a shell script,
which is just a set of instructions for a program elsewhere in the system.
Another common use for a noexec mount is when you have on your server
binaries for a different operating system or a different hardware architecture
and you don’t want anyone to execute them.

nosuid

The nosuid option prevents setuid programs from running on your system.
Setuid programs allow users to run programs as if they’re another user. For
example, programs such as login(1) must perform actions as root but must
be run by regular users. Setuid programs obviously must be written carefully
so that intruders cannot exploit them to get unauthorized access to your
system. Many system administrators habitually disable all unneeded setuid
programs. You can use nosuid to disable setuid programs on a partition, but
script wrappers like suidperl get around this.

nosymfollow

The nosymfollow option disables symlinks, or aliases to files. Symlinks are
mainly used to create aliases to files that reside on other partitions. To create
an alias to another file on the same partition, use a regular link instead. See
ln(1) for a discussion of links.

Aliases to directories are always symlinks; you cannot use a hard link
for that.

Soft Updates and Journaling with FFS

Soft updates is a technology to organize and arrange disk writes so that file-
system metadata remains consistent at all times, giving nearly the performance
of an async mount with the reliability of a sync mount. While that doesn’t
mean that all data will be safely written to disk—a power failure at the

Disks and F i l esys tems 221

wrong moment can still lose data—soft updates prevent many problems.
If the system has a failure, soft updates can run its filesystem checks in the
background while the system runs. In my opinion, soft updates are suitable
for partitions of less than 80GB or so.

As of FreeBSD 7.0, FFS also supports journaling. A journaling filesystem
records all changes made to the filesystem on a separate part of the disk, so
that if the system shuts down unexpectedly, data changes can be recovered
from the journal automatically upon restart. This eliminates the need to run
fsck(8). Each journaled filesystem uses about 1GB for the journal, which
means that journaling is wasteful on small filesystems. However, FreeBSD’s
journaling differs from most journaled filesystems in that the journal is main-
tained in a disk layer beneath the filesystem rather than in the filesystem
itself. This journaling is brand new in FreeBSD and is still considered some-
what experimental.

For example, as of this writing, I have a logging host. Most of the par-
titions are less than 10GB, but /var is almost two terabytes. I journal /var,
but use soft updates on the other partitions. Between background fsck and
journaling, system recovery after an unexpected power outage is fast and
painless.

We’ll talk more about journaling and gjournal in Chapter 18.

Write Caching

FFS works best with SCSI and SAS drives due to the robustness of the SCSI
architecture. FFS also works as well as the ATA architecture allows, with one
critical exception: Many modern IDE drives support write caching.

Write caching IDE drives have a small onboard chip. This chip records
data that needs to be written to the drive. This can be tricky for soft updates
and for journaling, because these technologies expect honest hard drives—
when the hard drive reports the data is written to disk, the soft updates mech-
anism expects the data to actually be on that platter. But IDE write caching
reports success as soon as the data is stored in the drive’s cache, not when it
has been written to disk. It might be a second or more until that data is
actually safely stored.

While this doesn’t pose a big risk if it happens occasionally, write caching
occurs continuously on a server. Therefore, if you care about your data,
disable write caching by adding the following to /boot/loader.conf:

hw.ata.wc=0

Disabling write caching slows the IDE drive, but eliminates the risk. I use
write caching on desktop and laptop systems, where data is not being con-
tinuously written to the disk, but on servers it’s a bad idea to leave caching
on. You can either tell your management that the ATA-based server is
throttled and you need more hardware, or you can tell them that you’re
missing data because you overstressed the hardware. Personally, I prefer
the former.

222 Chap te r 8

Snapshots

FFS with soft updates can take an image of a disk at a moment in time, or a
snapshot. You’ll find these snapshots in the .snapshot directory in the root of
each partition.

While you don’t perform system administration on snapshots, various
tools take advantage of snapshots. For example, dump(8) backs up a snapshot
of each filesystem rather than the live filesystem so that you have an internally
consistent backup. Background fsck (explained later in this chapter) uses
snapshots to do its work. You can mount a snapshot and get a picture of your
filesystem at a particular instant. While this is interesting, most system admin-
istrators don’t find it terribly useful. Still, you’ll see references to snapshots
throughout working with FreeBSD.

Dirty Disks

No, disks don’t get muddy with use (although dust on a platter will quickly
damage it, and adding water won’t help). A dirty FFS partition is one that’s in
a kind of limbo; the operating system has asked for information to be written
to the disk, but the data is not yet completely written out. Part of the data
block might have been written, the inode might have been edited but the
data not written out, or any combination of the two. If the power goes out
while your disk is dirty, the system reboots with unclean disks.

FreeBSD refuses to mount unclean disks read-write; you can write them
read-only, but that’s not suitable for normal operation. You must clean
your disk.

fsck(8)

FreeBSD includes a filesystem integrity checking tool, fsck(8). When a
rebooting system finds a dirty disk, it automatically checks the filesystem and
tries to clean everything. You have already lost any data not written to disk,
but fsck(8) verifies that every file is attached to the proper inodes and in the
correct directory. If successful, everything is right where you left it—except
for that unwritten data, of course!

Failed Automatic fscks Runs

Occasionally this automated fsck-on-reboot fails to work. When you check
the console, you’ll be looking at a single-user mode prompt and a request to
run fsck(8) manually. At this point, you have a simple choice: run fsck or
not. If you enter fsck at the command prompt, fsck(8) verifies every block
and inode on the disk. It finds any blocks that have become disassociated
from their inodes and guesses how they fit together and how they should be
attached. fsck(8) might not be able to identify which directory these files
belong in, however.

fsck asks if you want to perform these reattachments. If you answer n, it
deletes the damaged files. If you answer y, it adds the lost file to a lost+found
directory in the root of the partition, with a number as a filename. For example,
the lost+found directory on your /usr partition is /usr/lost+found. If there are

Disks and F i l esys tems 223

only a few files, you can identify them manually; if you have many files and
are looking for particular ones, tools such as file(1) and grep(1) can help
you identify them by content.

Turning Off the fsck Prompt

If your server was in the middle of a very busy operation when it became
dirty, you could end up with many disassociated files. Instead of spending an
hour at the console typing y over and over again to tell fsck to reassemble
these files, type fsck -y at the single-user prompt. This makes fsck(8) believe
that you’re answering yes to every question.

You can set your system to automatically try fsck -y on boot. I don’t
recommend this, however, because if there’s the faintest chance my file-
system will wind up in digital nirvana I want to know about it. I want to type
the offending command myself and feel the trepidation of watching fsck(8)
churn my hard drives. Besides, it’s always unpleasant to discover that your
system is trashed without having the faintest clue of how it got that way. If
you’re braver than I, you can set fsck_y_enable="YES" in rc.conf.

Avoiding fsck -y

What options do you have if you don’t want to use fsck -y? Well, fsdb(8) and
clri(8) allow you to debug the filesystem and redirect files to their proper
locations. You can restore files to their correct directories and names. This is
difficult,2 however, and is recommended only for Secret Ninja Filesystem
Masters.

Background fsck

Background fsck gives FFS some of the benefits of a journaled filesystem
without using all the disk required by journaling. When FreeBSD sees that a
background fsck is in process after a reboot, it mounts the dirty disk read-
write. fsck(8) runs in the background while the server is running, identifying
loose bits of files and tidying them up behind the scenes.

A background fsck actually has two major stages. When FreeBSD finds
dirty disks during the initial boot process, it runs a preliminary fsck(8) assess-
ment of the disks. fsck(8) decides if the damage can be repaired while the

2 In the first edition of this book, I said using fsdb(8) and clri(8) was like climbing Mount Everest
in sandals and shorts. Since writing that, I’ve tried them more than once and discovered that I
was wrong. You don’t get the shorts.

D A N G E R !

Running fsck -y is not guaranteed safe. At times, when running experimental file-
systems on -current or when doing other daft things, I’ve had the entire contents of a
partition migrate to /usr/lost+found and /var/lost+found thanks to fsck -y. Recovery
becomes difficult at that point. Having said that, in a production system running
FreeBSD-stable with a standard UFS filesystem, I’ve never had a problem.

224 Chap te r 8

system is running, or if a full single-user mode fsck run is required. Most
frequently, fsck thinks it can proceed and lets the system boot. After the
system reaches single-user mode the background fsck runs at a low priority,
checking the partitions one by one. The results of the fsck process appear in
/var/log/messages.

You can expect performance of any applications requiring disk activity to
be lousy during a background fsck. fsck(8) occupies a large portion of the
disk’s possible activity. While your system might be slow, it will at least be up.

You must check /var/log/messages for errors after a background fsck.
The preliminary fsck assessment can make an error, and perhaps a full single-
user mode’s fsck on a partition really is required. If you find such a message,
schedule downtime within a few hours to correct the problem. While incon-
venient, having the system down for a scheduled period is better than the
unscheduled downtime caused by a power outage and the resulting single-
user mode’s fsck -y.

Forcing Read-Write Mounts on Dirty Disks
If you really want to force FreeBSD to mount a dirty disk read-write without
using a background fsck, you can. You will not like the results. At all. But, as
it’s described in mount(8), some reader will think it’s a good idea unless they
know why. Use the -w (read-write) and -f (force) flags to mount(8).

Mounting a dirty partition read-write corrupts data. Note the absence of
words like might and could from that sentence. Also note the absence of words
like recoverable. Mounting a dirty filesystem may panic your computer. It might
destroy all remaining data on the partition or even shred the underlying file-
system. Forcing a read-write mount of a dirty filesystem is bad juju. Don’t do it.

FFS Syncer at Shutdown
When you shut down your FreeBSD system the kernel synchronizes all its
data to the hard drive, marks the disks clean, and shuts down. This is done
by a kernel process called the syncer. During a system shutdown, the syncer
reports on its progress in synchronizing the hard drive.

You’ll see odd things from the syncer during shutdown. The syncer doesn’t
actually go down the list of inodes and blocks that need updating on the hard
drive; it walks the list of vnodes that need synchronizing. Thanks to soft updates,
writing one vnode to disk can generate another dirty vnode that needs
updating. You can see the number of buffers being written to disk rapidly
drop from a high value to a low value, and perhaps bounce between zero and
a low number once or twice as the system really synchronizes the hard drive.

T H E R E A L D E T A I L S O N F F S

If you really want to know more about FFS, you can download a large diagram of
the kernel internals of FFS at http://phk.freebsd.dk/misc/ufs.pdf. You’ll need a large
engineering or architectural printer, or 18 sheets of regular paper and a lot of
clear tape.

Disks and F i l esys tems 225

Background fsck, fsck -y, Foreground fsck, Oy Vey!

All these different fsck(8) problems and situations can occur, but when does
FreeBSD use each command? FreeBSD uses the following conditions to decide
when and how to fsck(8) on a filesystem:

� If the filesystem is clean, it is mounted without fsck(8).

� If a filesystem without soft updates is dirty at boot, FreeBSD runs fsck on
it. If the filesystem damage is severe, FreeBSD stops the fsck and requests
your intervention. You can either run fsck -y or manually check each
reconnection.

� If a filesystem with soft updates is dirty at boot, FreeBSD performs a very
basic fsck(8) check. If the damage is mild, FreeBSD uses a background
fsck(8) in multi-user mode. If the damage is severe, FreeBSD interrupts
the boot and requests your intervention with either fsck -y or approval
or rejection of each filesystem problem.

� If a journaled filesystem is dirty at boot, FreeBSD recovers the data from
the journal and continues the boot. A journaled filesystem rarely needs
fsck(8).

Using Foreign Filesystems

For our purposes, any partition or disk that isn’t FFS is a foreign filesystem.
FreeBSD includes extensive support for foreign filesystems, with the caveat
that only those functions supported by the filesystem work. Microsoft’s
FAT32 doesn’t support filesystem permissions, for example, and Linux
filesystems don’t support BSD-style file flags.

Each foreign filesystem needs support in the FreeBSD kernel. To make
your life a little easier, mount(8) automatically loads the proper kernel
modules on demand.

To mount any foreign filesystem, you need the same information
needed to mount an FFS filesystem: a device name and a mount point. You’ll
also need the type of filesystem, although you might figure that out by trial
and error. For example, FreeBSD provides a /cdrom mount point for CDs.
The first IDE CD on your system is /dev/acd0. CDs use the ISO 9660 filesystem,
and FreeBSD mounts them with mount -t cd9660(8). Here we mount our CD
on /cdrom:

mount -t cd9660 /dev/acd0 /cdrom

You can now go to the /cdrom directory and view the contents. Simple
enough, eh?

If you try to mount a disk using the wrong mount command for its
filesystem, you’ll get an error. For example, any floppy disk in my house has
either a FAT32 or an FFS filesystem on it; /dev/fd0 is the proper device node
for floppy disks, and /media is their standard mount point.

226 Chap te r 8

mount /dev/fd0 /media
mount: /dev/fd0 on /media: incorrect super block

This floppy has a FAT32 filesystem. Had I tried mount -t msdosfs first, it
would have worked.

You can unmount any filesystem with umount(8):

umount /cdrom

umount(8) doesn’t care about the filesystem type. It just disconnects the
disk partition.

Supported Foreign Filesystems
Here are some of the most commonly used foreign filesystems, along with a
brief description of each and the appropriate mount command.

FAT (MS-DOS)

FreeBSD includes extensive support for FAT, the DOS/Windows 9x File
Allocation Table filesystem, commonly used on removable media and
some dual-boot systems. This support covers the FAT12, FAT16, and FAT32
varieties. You can format a floppy disk with an FFS filesystem, however, so
do not blindly assume that all floppy disks are FAT-formatted. As the most
common use for a floppy these days is transferring files between machines,
however, most are FAT32. The mount type is msdosfs (mount -t msdosfs).

If you handle a lot of FAT32 disks, investigate /usr/ports/tools/mtools, a
collection of programs for working with FAT filesystems that offer greater
flexibility than the default FreeBSD tools.

ISO 9660

ISO 9660 is the standard CD filesystem. FreeBSD supports reading CDs and
writing them as well if you have a CD burner. Just about every CD you encoun-
ter is formatted with ISO 9660. The mount command is mount -t cd9660.

cdrtools, in /usr/ports/sysutils/cdrtools, contains many helpful tools for
working with CD images, including tools that build an ISO image from files
on disk.

UDF

UDF, or Universal Data Format, is a replacement for ISO 9660. You’ll find
UDF on some DVDs and on flash/USB devices larger than the 32GB sup-
ported under FAT32. As the capacity of removable media increases, you’ll
see more and more UDF filesystems. The mount command is mount -t udf.

NTFS

The Windows NT/2000/XP filesystem, NTFS, is tightly integrated with
Microsoft’s proprietary kernel. To write to an NTFS partition, you must have
extensive knowledge of how the filesystem works. Since Microsoft does not

Disks and F i l esys tems 227

make that information available, FreeBSD can safely mount NTFS partitions
read-only but has limited read-write functionality. The mount command is
mount -t ntfs.

I find NTFS mounts most useful when migrating from Windows systems to
FreeBSD systems; just remove the hard drive from the old Windows machine,
mount it in the FreeBSD machine, and copy your data from one to the other.
NTFS support is also useful for dual-boot laptops.

As the NTFS filesystem has a closed specification and contains data
encoded in a proprietary manner, FreeBSD’s NTFS read support is not
guaranteed to work.

ext2fs and ext3fs

The standard Linux filesystems, ext2fs and ext3fs, support many of the same
features as the FreeBSD filesystem and can be safely written to and read from
without any problems. Like the NTFS mounts, mounting Linux filesystems is
most useful for disaster recovery or dual-boot systems. Despite the name,
mount -t ext2fs supports mounting both ext2fs and ext3fs.

Linux filesystem users might find the tools in /usr/ports/sysutils/e2fsprogs
useful. They let you fsck(8) and assess Linux filesystems, among other things.

ReiserFS

ReiserFS is a filesystem with a small percentage of devotees amidst Linux
users. FreeBSD supports read-only ReiserFS partitions. Support for mounting
ReiserFS is implemented directly in mount(8); just run mount -t reiserfs
partition mountpoint.

XFS

FreeBSD supports reading from SGI’s XFS partitions, but writing to XFS
is available on an experimental basis as of this writing. XFS is the oldest
journaling filesystem in existence and has a well-debugged codebase. XFS
is licensed under the GPL, however, which makes it a poor candidate for
inclusion in the FreeBSD base system. If you’re interested in journaling,
please check out gjournal in Chapter 18.

Programs for formatting, mounting, and managing XFS partitions can
be found in /usr/ports/sysutils/xfsprogs.

ZFS

As of 7.0, FreeBSD includes experimental support for ZFS, ported from
OpenSolaris. While the installer doesn’t support ZFS, if you need the
advanced ZFS features you can use them. ZFS’s license is not suitable for
making it the primary FreeBSD filesystem, but its high-end features can be
very useful for certain applications on multiterabyte filesystems and on 64-bit
systems. ZFS on 32-bit systems suffers from memory problems, but ZFS has a
good reputation on 64-bit systems.

228 Chap te r 8

Permissions and Foreign Filesystems

The method used to mount a filesystem, and the person who mounts it,
control the permissions of the mounted filesystem. For example, ext3fs and
XFS store permissions in the filesystem and map them to UIDs. Since their
permissions behave much like FFS, and all the permissions information
needed is available within the filesystem and the kernel, FreeBSD respects
the permissions on these filesystem.

NTFS has its own permission system. Since that system bears only a
coincidental resemblance to that used by Unix-like systems, permissions are
discarded when a NTFS partition is mounted on a FreeBSD system, and it’s
treated much like a CD or a floppy disk.

By default, only root can mount filesystems, and root owns all non-Unix
filesystems. If that’s not your preference, you can use the -u and -g flags to
set the user ID and group ID of the owner when you’re mounting a FAT32,
NTFS, or ISO 9660 filesystem. For example, if you’re mounting a FAT32 USB
device for the user cstrzelc and want her to be able to edit the contents, use
this command:

mount -t msdosfs -u cstrzelc -g cstrzelc /dev/da0 /mnt

The user cstrzelc now owns the files on the device.
You might get sick of mounting media for your users, especially in a

facility with dozens of machines. To let a user mount a filesystem, set the
sysctl vfs.usermount to 1. The user can then mount any filesystem she wants
on any mount point she owns. While cstrzelc couldn’t mount the removable
device on /mnt, she could mount it on /home/cstrzelc/mnt.

Removable Media Filesystems

Removable media has boomed in the last few years. While once we only had
to worry about floppy disks, we now have CDs and USB devices. You must be
able to manage any removable media that might wander in through the door
of your data center. We’ll discuss dealing with filesystems on floppy disks, USB
devices, and CDs.

I recommend not plugging removable media willy-nilly into your
production servers, for security reasons if nothing else. Who knows what’s
actually on that vendor’s USB device? I prefer to mount those devices on my
workstation, examine the contents, and then copy the desired data over to
the FreeBSD machine. Removable media is just too easy for certain appli-
cations, however, and of course the rules change when it’s my personal
USB device.

Formatting FAT32 Media
Both floppy disks and USB media use the FAT32 filesystem. USB media uses
the FAT32 filesystem, but usually comes preformatted. As USB media has a
limited number of reads and writes, do not reformat it capriciously. That

Disks and F i l esys tems 229

leaves floppies, which frequently need reformatting if used heavily. What
most Windows users think of as “formatting a floppy” is actually a multistage
process that includes formatting the disk, giving it a disk label, and creating
a filesystem. You must perform all of these operations to use a floppy in
FreeBSD.

Low-Level Formatting

First, perform a low-level format with fdformat(1). This program only
requires two arguments: the floppy’s size and the device name.

fdformat -f 1440 /dev/fd0
Format 1440K floppy '/dev/fd0.1440'? (y/n): y

When you type y, fdformat(1) runs a low-level format to prepare the disk
to receive a filesystem. Low-level formatting is the slowest part of making a
floppy usable. Windows performs this sort of formatting when you request a
complete format.

Creating an FFS Filesystem

After the low-level format, if you want to use FFS on your floppy, label the
disk with disklabel(8). This writes basic identification information to the
floppy, sets partition information, and can even mark a disk as bootable.
Marking a disk as bootable doesn’t actually put any programs on the disk; it
simply puts a marker on the disk so the hardware BIOS identifies this disk as
bootable. If you need an actual FreeBSD boot floppy, just copy the provided
disk image from the installation media. Here, we’ll install a plain disklabel
without any special characteristics:

disklabel -r -w /dev/fd0 fd1440

The -r option in this example tells disklabel to access the raw disk, because
there is no filesystem on it yet. The -w option says to write to the disk. We’re
writing to /dev/fd0 and installing a standard 1.44MB floppy disk label. You can
find a full list of floppy disk labels in /etc/disktab, as well as labels for many
other types of drives, as discussed in Chapter 10.

Finally, newfs(8) the disk to create a filesystem.

newfs /dev/fd0

You’ll see a few lines of newfs output and then get a command
prompt back.

N O N S T A N D A R D F L O P P I E S

We’ll assume that you have a standard 1.44MB floppy disk, which has been the stand-
ard on x86 hardware for almost two decades. If you have a disk drive of 800KB or
another uncommon size, you’ll have to modify this process somewhat, but the general
steps are the same.

230 Chap te r 8

Note that using FFS on a floppy wastes space and does not provide the
protection many people expect it would. While permission information is
stored on the floppy, the system owner can override those privileges easily.
Also, remember that FFS reserves 8 percent of disk space for its own overhead
and bookkeeping. Do you really need a 1.32MB floppy? FFS is nifty, but FAT32
is a better choice for floppy disks.

Creating a FAT32 Filesystem

To swap data between a wide range of hardware, use the FAT32 filesystem on
your floppy. While you still need to low-level format the floppy as discussed
earlier, you don’t need to disklabel it. Just use newfs_msdos(8):

newfs_msdos /dev/fd0

You’ll get a couple lines of output, and your floppy is done.

Using Removable Media

Handling removable media is just like working with fixed media such as hard
drives. You must know the filesystem on the device, the device node where
the device appears, and assign a mount point.

CDs use the ISO 9660 filesystem, while DVDs use either a UDF or a com-
bination of ISO 9660 and UDF. USB devices and floppy disks are usually
FAT32. Very new USB devices might be UDF. I expect UDF to become more
common, especially as flash devices become larger.

The device node varies with the device type. IDE CDs are /dev/acd0,
while SCSI CDs appear at /dev/cd0. Floppy disks are at /dev/fd0. USB devices
appear as the next available unit of /dev/da. When you insert a USB device,
a message giving the device node and type appears on the console and in
/var/log/messages.

Finally, you need a mount point. By default, FreeBSD includes a /cdrom
mount point for CD and DVD media. You’ll also find a /media mount point
for general removable media mounts. You can create additional mount points
as you like—they’re just directories. For miscellaneous short-term mounts,
FreeBSD offers /mnt.

So, to mount your FAT32 USB device /dev/da0 on /media, run:

mount -t msdosfs /dev/da0 /media

Occasionally you’ll find a USB device that has an actual slice table on it,
and those devices will insist you mount /dev/da0s1 rather than /dev/da0. This
depends on how the device is formatted, not on anything in FreeBSD.

One annoyance with CD drives is that SCSI CD and ATA CD drives offer
different interfaces to software. Much software is written to only use the SCSI
interface, as SCSI is generally considered more reliable. If you encounter such
a piece of software, check out atapicam(4) kernel module which provides a
SCSI emulation layer to your ATA CD devices.

Disks and F i l esys tems 231

Ejecting Removable Media

To disconnect removable media from your FreeBSD system, you must
unmount the filesystem. Your CD tray won’t open until you unmount the
CD, and the floppy drive won’t eject your disk. You can probably forcibly
remove a USB dongle, but doing so while the filesystem is mounted panics
the server and might damage data on the device. Use umount(8) just as you
would for any other filesystem:

umount /cdrom

Removable Media and /etc/fstab

You can update /etc/fstab with entries for removable media to make system
maintenance a little easier. If a removable filesystem has an entry in /etc/fstab,
you can drop both the filesystem and the device name when mounting it.
This means that you don’t have to remember the exact device name or
filesystem to mount the device. You probably already have an /etc/fstab’s
entry for your CD device.

/dev/acd0 /cdrom cd9660 ro,noauto 0 0

While I’m sure you’ve already memorized the meaning of every column
in /etc/fstab, we’ll remind you that entry means “mount /dev/acd0 on /cdrom,
using the ISO 9660 filesystem, read-only, and do not mount it automatically
at boot.” Using this as a template, make similar entries for USB devices and
floppy disks.

/dev/fd0 /mnt msdosfs rw,noauto 0 0
�/dev/da0 /medi msdosfs rw,�noauto 0 0

FreeBSD doesn’t provide these by default, but I find having them to be
much easier on systems where I use removable media regularly. Confirm that
your next available da device is /dev/da0 �, as trying to mount a hard drive
that’s already mounted won’t work.

When listing removable media in /etc/fstab, be sure to include the noauto�
flag. Otherwise, whenever you don’t have the removable media in place, your
boot will stop in single-user mode because a filesystem is missing.

Other FreeBSD Filesystems

In addition to FFS and non-FreeBSD filesystems, FreeBSD supports several
special-purpose filesystems. Some of these are interesting but not generally
useful, such as mount_umapfs(8), while others are very useful or even
required in certain circumstances. We’ll talk about memory filesystems, a
popular optimization for certain environments; building filesystems on files;
as well as the procfs and fdescfs filesystems occasionally required by software
packages.

232 Chap te r 8

Memory Filesystems

In addition to using disks for partitions, FreeBSD lets you create partitions
from files, from pure RAM, and from a combination of the two. One of the
most popular uses of this is for memory filesystems, or memory disks. Reading and
writing files to and from memory is much faster than accessing files on disk,
which makes a memory-backed filesystem a huge optimization for certain
applications. As with everything else in memory, however, you lose the
contents of your memory disk at system shutdown.

Memory Disk /tmp

The most common place a memory filesystem is used is for /tmp. This is so
common that FreeBSD includes specific rc.conf support for it. Look for the
following rc.conf variables:

� tmpmfs="YES"

� tmpsize="20m"

� tmpmfs_flags="-S"

By setting tmpmfs� to YES, you’re telling FreeBSD to automatically create
a memory-based /tmp filesystem at boot. Specify the size of your new /tmp with
the tmpsize � variable. We’ll discuss the flags � a little later in this section.

If this is all you want to use a memory filesystem for, you’re done.
To create and use special memory devices with mdmfs(8), read on.

Memory Disk Types

Memory disks come in three types: malloc-backed, swap-backed, and vnode-
backed.

Malloc-backed disks are pure memory. Even if your system runs short on
memory, FreeBSD won’t swap out the malloc-backed disk. Using a large
malloc-backed disk is a great way to make your system run out of free memory
and panic. This is most useful for embedded devices with no swap, as we’ll
see in Chapter 20.

Swap-backed disks are mostly memory, but they also access the system swap
partition. If the system runs out of memory, it moves the least recently used
parts of memory to swap as discussed in Chapter 19. Swap-backed disks are
the safest way to use a memory filesystem.

Vnode-backed disks are files on disk. While you can use a file as backing for
your memory disk, this is really only useful for filesystem developers who
want to perform tests or for mounting a disk image.

Your application dictates the type of memory disk you need. If your system
has no swap space and a read-only filesystem, a malloc-backed disk is your
only choice. If you’re running a workstation or a server and want a piece of
fast filesystem for scratch space, you want a swap-backed disk. You only need
a vnode-backed memory disk to mount a disk image.

Once you know what you want to do, use mdmfs(8) to perform the action.

Disks and F i l esys tems 233

Creating and Mounting Memory Disks

The mdmfs(8) utility is a handy front end for several programs such as
mdconfig(8) and newfs(8). It handles the drudgery of configuring devices
and creating filesystems on those devices, and makes creating memory disks
as easy as possible. You only need to know the size of the disk you want to use,
the type of the memory disk, and the mount point.

Swap-backed memory disks are the default. Just tell mdmfs(8) the size of
the disk and the mount point. Here, we create an 8MB swap-backed memory
disk on /home/mwlucas/test:

mdmfs -s 8m md /home/mwlucas/test

The -s flag gives the size of the disk. If you run mount(8) without any
arguments, you’ll see that you now have the memory disk device /dev/md0
mounted on that directory.

To create and mount a malloc-backed disk, add the -M flag.
To mount a vnode-backed memory disk, use the -F flag and the path to

the image file.

mdmfs -F diskimage.file md /mnt

The md entry we’ve been using all along here means, “I don’t care what
device name I get, just give me the next free one.” You can also specify a
particular device name if you like. Here, I used /dev/md9 as the memory disk
device:

mdmfs -F diskimage.file md9 /mnt

Memory Disk Headaches

Memory disks sound too good to be true for high-performance environments.
They do have constraints that you must understand before you scurry around
and implement them everywhere.

The big issue is that system shutdown erases memory disks. While this
might not seem like a problem, I’ve been surprised more than once by losing
a file on a filesystem I had forgotten was a memory disk.

Also, malloc-backed memory disks never release memory. When you write
a file to a memory disk and then erase the file, the file still takes up memory.
With a swap-backed memory disk FreeBSD eventually writes that file to swap
as memory pressure rises. A memory disk on a long-running system will
eventually exhaust your system’s RAM.

The one way you can free this used memory is to unmount the memory
disk, destroy the disk device, and re-create the memory disk. I find that
performing this task on a monthly basis is more than sufficient, even on a
busy server.

A couple months before release, FreeBSD 7.0 added a tmpfs(5) memory
filesystem that is supposed to release memory back to the system. It’s brand
new to FreeBSD, however, and considered an experimental feature. If you’re

234 Chap te r 8

reading this a few releases into the future I’d recommend you check out
tmpfs(5), but if you’re installing 7.0 or 7.1, I’d let someone else discover the
bugs for you.

Memory Disk Shutdown

To remove a memory disk you must unmount the partition and destroy the
disk device. Destroying the disk device frees the memory used by the device,
which is useful when your system is heavily loaded. To find the disk device,
run mount(8) and find your memory disk partition. Somewhere in the
output, you’ll find a line like this:

/dev/md41 on /mnt (ufs, local, soft-updates)

Here, we see memory disk /dev/md41 mounted on /mnt. Let’s unmount it
and destroy it.

�umount /mnt

mdconfig �-d �-u 41

Unmounting with umount � is done exactly as with other filesystems.
The mdconfig(8) call is a new one, however. Use mdconfig(8) to directly
manage memory devices. The -d � flag means destroy, and the -u� gives a
device number. The above destroys the device /dev/md41, or the md device
number 41. The memory used by this device is now freed for other uses.

Memory Disks and /etc/fstab

If you list memory disks in /etc/fstab, FreeBSD automatically creates them at
boot time. These entries look more complicated than the other entries, but
aren’t too bad if you understand the mdmfs(8) commands we’ve been using
so far. To refresh your memory, here’s the top of /etc/fstab and a single
standard filesystem:

Device Mountpoint FStype Options Dump Pass#

/dev/ad4s2a / ufs rw 1 1

We’re allowed to use the word md as a device name to indicate a memory
disk. We can choose the mountpoint just as we would for any other device,
and the filesystem type is mfs. Under Options, list rw (for read-write) and the
command-line options used to create this device. To create our 8MB file-
system mounted at /home/mwlucas/test, use the following /etc/fstab entry:

md /home/mwlucas/test mfs rw,-s 8m 0 0

Looks easy, doesn’t it? The only problem is that the long line messes up
your nice and even /etc/fstab’s appearance. Well, they’re not the only things
that make this file ugly, as we’ll soon see.

Disks and F i l esys tems 235

Mounting Disk Images

Memory disks can also be used to mount and access disk images. This is most
useful for viewing the contents of CD images without burning them to disk.
Just attach a memory disk to a file with the mdconfig(8) command’s -a flag.
Here, I attach a FreeBSD ISO to a memory device:

mdconfig �-a -t �vnode -f �/home/mwlucas/7.0-CURRENT-snap.iso
�md0

We tell mdconfig(8) to attach � a vnode-backed � memory device to the
file specified �. mdconfig(8) responds by telling us the device � it’s attached
to. Now we just mount the device with the proper mount command for the
filesystem:

mount -t cd9660 /dev/md0 /mnt

One common mistake people make at this point is mounting the image
without specifying the filesystem type. You might get an error, or you might
get a successful mount that contains no data—by default, mount(8) assumes
that the filesystem is FFS!

When you’re done accessing the data, be sure to unmount the image
and destroy the memory disk device just as you would for any other memory
device. While vnode-backed memory disks do not consume system memory,
leaving unused memory devices around will confuse you months later when
you wonder why they appear in /dev. If you’re not sure what memory devices
a system has, use mdconfig -l to view all configured md(5) devices.

mdconfig -l
md0 md1

I have two memory devices? Add the -u flag and the device number to
see what type of memory device it is. Let’s see what memory device 1
(/dev/md1) is:

mdconfig -l -u 1
md1 vnode 456M /slice1/usr/home/mwlucas/iso/omsa-51-live.iso

I have an ISO image mounted on this system? Wow. I should probably
reboot some month. Nah, thats too much work, I’ll just unmount the
filesystem.

Filesystems in Files

One trick used for jails (see Chapter 9) and homebrew embedded systems
(see Chapter 20) is building complete filesystem images on a local filesystem.
In the previous section, we saw how we could use memory disks to mount
and access CD disk images. You can use the same techniques to create,

236 Chap te r 8

update, and access FFS disk images. The downside of this is that each image
takes up an amount of disk space equal to the size of the disk image. If you
create a 500MB disk image, it takes up a full 500MB of space.

To use a filesystem in a file, you must create a file of the proper size,
attach the file to a memory device, place a filesystem on the device, and
mount the device.

Creating an Empty Filesystem File

The filesystem file doesn’t initially contain any data; rather, it’s just a file
of the correct size for the desired filesystem. You could sit down and type a
whole bunch of zeroes to create the file, but FreeBSD provides a unlimited
source of nothing to save you the trouble. The /dev/zero device is chock full of
emptiness you can use to fill the file.

Use the same dd(1) command you used to copy the installation floppy
images to your filesystem file. Here we copy data from /dev/zero and to the file
filesystem.file:

dd �if=/dev/zero �of=filesystem.file �bs=1m �count=1k

1048576+0 records in

1048576+0 records out

1073741824 bytes transferred in �24.013405 secs (�44714268 bytes/sec)

We take our data from the input file /dev/zero � and dump it to the
output file filesystem.file �. Each transfer occurs in blocks of 1K �, and we
do this one million times �. This takes a few seconds � to complete, but as
/dev/zero doesn’t have to generate the next character, the file fills quickly �. If
you look in your current directory, you now have a 1GB file called filesystem.file.

One common source of confusion with dd(1) is the block size and
count. Calculating the final size of a file with dd(1) is like moving a pile of
sand; you break the job into loads and move a number of those loads. You
can use several loads with a wheelbarrow, many loads with a bucket, or lots
and lots of loads with a spoon. The size of each load is the block size, and the
number of trips is the count. Perhaps you’re using your bare hands, which
would correspond to a small block size and a high count. Maybe you have a
wheelbarrow, for a medium block size and a moderate count. Perhaps you
have a steam shovel and can do the whole job in one scoop. The larger the
block size, the more load you put on the system with each block. dd(1)
recognizes a variety of abbreviations for increasing block size and count,
as shown in Table 8-2.

Suppose you want a 1GB file. Remember that 1k is actually one kilobyte.
One megabyte is a thousand kilobytes, and one gigabyte is one thousand
megabytes. If you use a block size of 1 byte, and a count of one gig, you’re
asking your system to make 1,073,741,824 trips to the sand pile. Each trip is
very easy, but there’s an awful lot of them! On the other hand, if you select a
block size of one gig and a count of 1, you’re asking the system to pick up the

Disks and F i l esys tems 237

whole pile at once. It will not be pleased. Neither will you. Generally speaking,
a block size of 1m and a lower count produces reasonably quick results without
overburdening your system. When you use a 1m block, the count equals the
number of megabytes in the file. A count of 1k creates a 1GB filesystem, a
count of 2k creates a 2GB filesystem, a count of 32 creates a 32MB filesystem,
and so on.

Creating the Filesystem on the File

To get a filesystem on the file, you must first associate the file with a device
with a vnode-backed memory disks. We did exactly this in the last section:

mdconfig -a -t vnode -f filesystem.file
md0

Now, let’s make a filesystem on this device. This is much like creating an
FFS filesystem on a floppy disk with the newfs(8) command. We specify the
-U flag to enable soft updates on this filesystem, as soft updates are useful on
file-backed filesystems.

newfs -U /dev/md0

/dev/md0: 1024.0MB (2097152 sectors) block size 16384, fragment size 2048

 using 6 cylinder groups of 183.77MB, 11761 blks, 23552 inodes.

 with soft updates

super-block backups (for fsck -b #) at:

 160, 376512, 752864, 1129216, 1505568, 1881920

newfs(8) prints out basic information about the disk such as its size,
block and fragment sizes, and the inode count.

Now that you have a filesystem, mount it:

mount /dev/md0 /mnt

Congratulations! You now have a 1GB file-backed filesystem. Copy files to
it, dump it to tape, or use it in any way you would use any other filesystem. But
in addition to that, you can move it just like any other file. We’ll make use of
this when we talk about jails in the next chapter, and it’s a vital technique
for building your own embedded systems.

Table 8-2: dd Abbreviations

Letter Meaning Multiplier

b Disk blocks 512

k Kilo 1024

m Mega 1048576

g Giga 1073741824

w Integer However many bytes per integer on your platform

238 Chap te r 8

File-Backed Filesystems and /etc/fstab

You can mount a file-backed filesystem automatically at boot with the proper
entry in /etc/fstab, much like you can automatically mount any other memory
disk. You simply have to specify the name of the file with -F, and use -P to tell
the system to not create a new filesystem on this file but just to use the one
already there. Here we mount the file-backed filesystem we created on /mnt
automatically at boot time. (I told you we’d see /etc/fstab entries uglier than
the one we created for generic memory disks, didn’t I?)

md /mnt mfs rw,-P,-F/home/mwlucas/filesystem.file 0 0

Miscellaneous Filesystems

FreeBSD supports several lesser-known filesystems. Most of them are useful
only in bizarre circumstances, but bizarre circumstances arise daily in system
administration.

devfs(5) is the device filesystem used for /dev. You cannot store normal
files on a devfs filesystem; it only supports device nodes. The kernel and the
device filesystem daemon devd(8) directly manage the contents of a device
filesystem.

procfs(5) is the process filesystem; it contains lots of information about
processes. It’s considered a security risk and is officially deprecated on modern
FreeBSD releases. You can learn a lot about processes from a mounted process
filesystem, however. A few older applications still require a process filesystem
mounted on /proc; if a server application requires procfs, try to find a similar
application that does the job without requiring it.

If you’re using Linux mode (see Chapter 12), you might need the Linux
process filesystem linprocfs(5). Much Linux software requires a process
filesystem, and FreeBSD suggests installing linprocfs at /compat/linux/proc
when you install Linux mode. I’d recommend only installing linprocfs if a
piece of software complains it’s not there.

fdescfs(5), the file descriptor filesystem, offers a filesystem view of file
descriptors for each process. Some software is written to require fdescfs(5).
It’s less of a security risk than procfs, but still undesirable.

Wiring Down Devices

SCSI disks don’t always power up in the same order, but FreeBSD num-
bers SCSI drives in the order that they appear on the SCSI bus. As such, if
you change the devices on your SCSI bus, you change the order in which
they’re probed. What was disk 0 when you installed FreeBSD could become
disk 1 after you add a new disk drive. This change would cause partitions to
be mounted on the wrong mount points, possibly resulting in data damage.
You can have similar problems with SCSI buses—if you add another SCSI

Disks and F i l esys tems 239

interface, your buses can be renumbered! What was /dev/da0 when you
installed FreeBSD could become /dev/da1 or even /dev/da17 after you add
a new tape drive. This causes FreeBSD to mount partitions on the wrong
mount points.

To prevent this problem, you can hard-code disk numbering into the
kernel, a process called wiring down the SCSI devices. To wire down the device
you need the SCSI ID, SCSI bus number, and LUN (if used) of each device
on your SCSI chain, available in /var/run/dmesg.boot. For example, on a test
system I have the following dmesg entries for my SCSI adapter:

ahc0: <Adaptec 2940B Ultra2 SCSI adapter> port 0xe000-0xe0ff mem 0xe8042000-
0xe8042fff irq 11 at device 20.0 on pci0
aic7890/91: Ultra2 Wide Channel A, SCSI Id=7, 32/253 SCBs

The first line shows that the main SCSI card is an Adaptec 2940B Ultra2
adapter. The second line gives us more information about the chipset on this
card. This is really only one physical card. The host adapter is using SCSI ID 7,
and no LUN.

A little later in dmesg.boot I have entries for all SCSI disks. While these
entries include things such as disk capacity, model, speed, and features, the
first line for each disk looks much like these:

�da0 at �ahc0 �bus 0 �target 8 �lun 0

da1 at ahc0 bus 0 �target 9 lun 0

da2 at ahc0 bus 0 target 10 lun 0

...

This tells us that the disk da0 � is on SCSI card ahc0 �, on SCSI bus 0 �,
at SCSI ID 8 �, at LUN 0 �. Disk da1 is on the same card and bus, at SCSI
ID 9 �.

To wire down a drive, tell the kernel exactly what SCSI bus number to
attach to which SCSI card, and then the SCSI ID and LUN of each disk. Do
this with kernel hints in /boot/device.hints:

hint.�scbus.�0.at="�ahc0"

hint.�da.0.at="�scbus0"

hint.da.0.target="�8"

hint.da.1.at="scbus0"

hint.da.1.target="�9"

Here, we’ve told FreeBSD to attach SCSI bus � number 0 � to card
ahc0 �. Disk da0 � is attached to SCSI bus 0 � at SCSI ID 8 �, and disk da1
is attached to the same bus at SCSI ID 9 �. On your next reboot the drives
will be numbered as you configured. If you add another SCSI card, or more
SCSI hard drives, FreeBSD configures the new drives and buses with unit num-
bers other than those you’ve reserved for these devices. You can also use lun
hints if you have targets with multiple LUNs.

240 Chap te r 8

Adding New Hard Disks
Before you can use a new hard drive, you must slice it, create filesystems,
mount those filesystems, and move data to them. While FreeBSD has
command-line tools that can handle all this for you, the simplest and fastest
way is with sysinstall(8). We’ll assume that you are adding disks to an existing
system, and that your eventual goal is to move a part of your data to this disk.

Creating Slices
Your first task in preparing your new hard disk is to create a slice and
partition it. Follow these steps:

1. Become root and start sysinstall(8). Choose Configure, and then Disk.

2. This menu should look somewhat familiar; you used it when you installed
FreeBSD. (You can see screenshots in Figure 2-4 in Chapter 2.) You’ll see
your existing FreeBSD disks and your new disk. Choose the new disk.

3. If this disk is recycled from another server, you might find that it has a
filesystem on it. It’s usually simplest to remove the existing partitions and
start over. Use the arrow keys to move to any existing partitions, and
press D to delete them.

4. Either create a slice by pressing C, or just use the whole disk by pressing A.
In a server, you almost certainly want to use the entire disk. When you’ve
chosen your slices, make the changes effective immediately by pressing W.
You’ll see a warning like this:

WARNING: This should only be used when modifying an EXISTING installation.
If you are installing FreeBSD for the first time then you should simply
type Q when you're finished here and your changes will be committed in one
batch automatically at the end of these questions. If you're adding a
disk, you should NOT write from this screen, you should do it from the
label editor.

5. Are you absolutely sure you want to do this now?

6. Yes, you’re absolutely sure. Tab over to Yes and hit ENTER.

7. You’ll then be asked if you want to install a boot manager on this disk.
Additional disks don’t need boot managers, so arrow down to Standard
and press the spacebar. The sysinstall program tells you that it has written
out the fdisk information successfully. You now have a FreeBSD slice on
the disk. Hit Q to leave the fdisk part of sysinstall.

B A C K U P , B A C K U P , B A C K U P !

Before doing anything with disks, be sure that you have a complete backup. A single
dumb fat-finger mistake in this process can destroy your system! While you rarely
plan to reformat your root filesystem, if it happens you want to recover really, really
quickly.

Disks and F i l esys tems 241

Creating Partitions

To create partitions on your disk, follow these steps:

1. Choose the Label option of sysinstall(8), on the same submenu as
FDISK. Select your new disk to reach the disklabel editor. Here you can
create a new partition with the C command, specifying its size in either
megabytes, gigabytes, disk blocks, or disk cylinders. You can also decide
if each new partition will be a filesystem or swap space. When you’re
asked for a mount point, use /mnt for the moment. Sysinstall temporarily
mounts the new partition at that location.

2. When the disk is partitioned as you need, press W to commit the
changes. You’ll get the same warning you saw in the fdisk menu, and
then messages from newfs(8).

Once newfs(8) finishes, exit sysinstall.

Configuring /etc/fstab

Now tell /etc/fstab about your new disks. The configuration differs depending
on whether the new partition is a filesystem or swap space. Every swap space
entry in /etc/fstab looks like this:

devicename none swap sw 0 0

If your new swap partition is /dev/da10s1b, you would add this line to
/etc/fstab:

/dev/da10s1b none swap sw 0 0

Upon your next reboot, FreeBSD will recognize this swap space. You can
also use swapon -a devicename to activate new swap without rebooting.

If you created a data partition, add a new entry as described earlier in
this chapter, much like this:

/dev/da10s1d /usr/obj ufs rw 2 2

Now you can just unmount the new partition from its temporary location,
run mount /usr/obj, and your new disk is ready for files.

Installing Existing Files onto New Disks

Chances are that you intend your new disk to replace or subdivide an
existing partition. You’ll need to mount your new partition on a temporary
mount point, move files to the new disk, then remount the partition at the
desired location.

242 Chap te r 8

In our example above, we’ve mounted our new partition on /mnt. Now
you just need to move the files from their current location to the new disk
without changing their permissions. This is fairly simple with tar(1). You can
simply tar up your existing data to a tape or a file and untar it in the new
location, but that’s kind of clumsy. You can concatenate tar commands to
avoid that middle step, however.

tar cfC - /old/directory . | tar xpfC - /tempmount

If you don’t speak Unix at parties, this looks fairly stunning. Let’s
dismantle it. First, we go to the old directory and tar up everything. Then
pipe the output to a second command, which extracts the backup in the new
directory. When this command finishes, your files are installed on their new
disk. For example, to move /usr/src onto a new partition temporarily mounted
at /mnt, you would do this:

tar cfC - /usr/src . | tar xpfC - /mnt

Check the temporary mount point to be sure that your files are actually
there. Once you’re confident that the files are properly moved, remove the
files from the old directory and mount the disk in the new location. For
example, after duplicating your files from /usr/src, you would run:

rm -rf /usr/src/*

umount /mnt

mount /usr/src

Stackable Mounts
Suppose you don’t care about your old data; you simply want to split an exist-
ing disk to get more space and you plan to recover your data from backup.
Fair enough. All FreeBSD filesystems are stackable. This is an advanced idea
that’s not terribly useful in day-to-day system administration, but it can bite
you when you try to split one partition into two.

Suppose, for example, that you have data in /usr/src. See how much space
is used on your disk, and then mount a new empty partition on /usr/src. If you
look in the directory afterwards, you’ll see that it’s empty.

Here’s the problem: The new partition is mounted “above” the old disk,
and the old disk still has all that data on it. The old partition has no more
free space than before you moved the data. If you unmount the new partition

M O V I N G L I V E F I L E S

You cannot safely move files that are changing as you copy. For example, if you’re
moving your email spool to a new partition, you must shut down your mail server
first. Otherwise, files change as you’re trying to copy them. Tools such as rsync (/usr/
ports/net/rsync) can help reduce outage duration, but an interruption is still necessary.

Disks and F i l esys tems 243

and check the directory again, you’ll see the data miraculously restored! The
new mount obscured the lower partition.

Although you cannot see the data, data on the old disk still takes up
space. If you’re splitting a disk to gain space, and you just mount a new disk
over part of the old, you won’t free any space on your original disk. The
moral is: Even if you are restoring your data from backup, make sure that
you remove that data from your original disk to recover disk space.

Network Filesystems
A network filesystem allows accessing files on another machine over the
network. The two most commonly used network filesystems are the original
Network File System (NFS) implemented in Unix, and the CIFS (aka SMB)
filesystem popularized by Microsoft Windows. We’ll touch on both of these,
but start with the old Unix standard of NFS.

Sharing directories and partitions between Unix-like systems is perhaps
the simplest Network File System you’ll find. FreeBSD supports the Unix
standard Network File System out of the box. Configuring NFS intimidates
many junior system administrators, but after setting up a file share or two
you’ll find it not so terribly difficult.

Each NFS connection uses a client-server model. One computer is the
server; it offers filesystems to other computers. This is called NFS exporting,
and the filesystems offered are called exports. The clients can mount server
exports in a manner almost identical to that used to mount local filesystems.

One interesting thing about NFS is its statelessness. NFS does not keep
track of the condition of a connection. You can reboot an NFS server and the
client won’t crash. It won’t be able to access files on the server’s export while
the server is down, but once it returns, you’ll pick up right where things left
off. Other network file sharing systems are not always so resilient. Of course,
statelessness also causes problems as well; for example, clients cannot know
when a file they currently have open is modified by another client.

Both NFS servers and clients require kernel options, but the various NFS
commands dynamically load the appropriate kernel modules. FreeBSD’s
GENERIC kernel supports NFS, so this isn’t a concern for anyone who
doesn’t customize their kernel.

NFS is one of those topics that have entire books written about them.
We’re not going to go into the intimate details about NFS, but rather focus

N F S I N T E R O P E R A B I L I T Y

Every NFS implementation is slightly different. You’ll find minor NFS variations between
Solaris, Linux, BSD, and other Unix-like systems. NFS should work between them all,
but might require the occasional tweak. If you’re having problems with another
Unix-like operating system, check the FreeBSD-net mailing list archive; the issue has
almost certainly been discussed there.

244 Chap te r 8

on getting basic NFS operations working. If you’re deploying complicated
NFS setups, you’ll want to do further research. Even this basic setup lets you
accomplish many complicated tasks.

Enabling the NFS Server

Turn on NFS server support with the following rc.conf options. While not all
of these options are strictly necessary for all environments, turning them all
on provides the broadest range of NFS compatibility and decent out-of-the-
box performance.

� nfs_server_enable="YES"

� rpcbind_enable="YES"

� mountd_enable="YES"

� rpc_lockd_enable="YES"

� rpc_statd_enable="YES"

First, tell FreeBSD to load the nfsserver.ko � kernel module, if it’s not
already in the kernel. rpcbind(8) � maps remote procedure calls (RPC) into
local network addresses. Each NFS client asks the server’s rpcbind(8) daemon
where it can find a mountd(8) daemon to connect to. mountd(8) � listens
to high-numbered ports for mount requests from clients. Enabling the NFS
server also starts nfsd(8), which handles the actual file request. rpc.lockd(8) �
ensures smooth file locking operations over NFS, and rpc.statd(8) � monitors
NFS clients so that the NFS server can free up resources when the host
disappears.

While you can start all of these services at the command line, if you’re
just learning NFS it’s best to reboot your system after enabling NFS server.
Afterwards, you’ll see rpc.lockd, rpc.statd, nfsd, mountd, and rpcbind listed
in the output of sockstat(1). If you don’t see all of these daemons listening
to the network, check /var/log/messages for errors.

Configuring NFS Exports

Now tell your server what it can share, or export. We could just export all
directories and filesystems on the entire server, but any competent security
administrator would have a (justified) fit. As with all server configurations,
permit as little access as possible while still letting the server fulfill its role.
For example, in most environments clients have no need to remotely mount
the NFS server’s root filesystem.

Define which clients may mount which filesystems and directories in
/etc/exports. This file takes a separate line for each disk device on the server
and each client or group of clients that access that device. Each line has up to
three parts:

� Directories or partitions to be exported (mandatory)
� Options on that export
� Clients that can connect

Each combination of clients and a disk device can only have one line in
the exports file. This means that if /usr/ports and /usr/home are on the same
partition, and you want to export both of them to a particular client, they

Disks and F i l esys tems 245

must both appear in the same line. You cannot export /usr/ports and /usr/home
to one client with different permissions. You don’t have to export the entire
disk device, mind you; you can export a single directory within a partition.
This directory cannot contain either symlinks or double or single dots.

Of the three parts of the /etc/exports entry, only the directory is mandatory.
If I wanted to export my home directory to every host on the Internet, I could
use an /etc/exports line consisting entirely of this:

/home/mwlucas

We show no options and no host restrictions. This would be foolish,
of course, but I could do it.3

After editing the exports file, tell mountd to reread it:

/etc/rc.d/mountd restart

mountd(8) logs any problems in /var/log/messages. The log messages
are generally enigmatic: While mountd(8) informs you that a line is bad, it
generally doesn’t say why. The most common errors I experience involve
symlinks.

Enabling the NFS Client

Configuring the client is much simpler. In /etc/rc.conf, put:

nfsclient="YES"

Then, reboot or run /etc/rc.d/nfsclient start. Either will enable NFS
client functions.

Now we can mount directories or filesystems exported by NFS servers.
Instead of using a device name, use the NFS server’s host name and the
directory you want to mount. For example, to mount the directory /home/
mwlucas from my server sardines onto the directory /mnt, I would run:

mount sardines:/home/mwlucas /mnt

Afterwards, test your mount with df(1).

df

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad4s1a 1012974 387450 544488 42% /

devfs 1 1 0 100% /dev

/dev/ad4s1f 109009798 12959014 87330002 13% /usr

/dev/ad4s1e 1012974 42072 889866 5% /var

sardines:/home/mwlucas 235492762 150537138 66116204 69% /mnt

3 Why is there no safeguard against shooting yourself in the foot like this? Well, Unix feels that
anyone dumb enough to do this doesn’t deserve to be its friend. Various people keep trying to
put Unix in therapy for this type of antisocial behavior, but it just isn’t interested.

246 Chap te r 8

The NFS-mounted directory shows up as a normal partition, and I can
read and write files on it as I please. Well, maybe not entirely as I please . . .

NFS and Users

File ownership and permissions are tied to UID numbers. NFS uses UID to
identify the owner. For example, on my laptop the user mwlucas has the UID
of 1001. On the NFS server, mwlucas also has the UID 1001. This makes my life
easy, as I don’t have to worry too much about file ownership; I have the same
privileges on the server as on my laptop. This can be a problem on a large
network, where users have root on their own machines. The best way around
this is to create a central repository of authorized users via Kerberos. On a
small network or on a network with a limited number of NFS users, this usually
isn’t a problem; you can synchronize /etc/master.passwd on your systems or just
assign the same UID to each user on each system.

The root user is handled slightly differently, however. An NFS server
doesn’t trust root on other machines to execute commands as root on the
server. After all, if an intruder breaks into an NFS client you don’t want the
server to automatically go down with it. You can map requests from root to
any other username. For example, you might say that all requests from root
on a client will run as the user nfsroot on the server. With careful use of
groups, you could allow this nfsroot user to have limited file access. Use the
-maproot option to map root to another user. Here, we map UID 0 (root) on
the client to UID 5000 on the server:

/usr/home/mwlucas -maproot=5000

If you really want the root user on the client to have root privileges on
the server, you can use -maproot to map root to UID 0. This might be suitable
on your home network or on a test system.

If you do not use a maproot statement, the NFS maps a remote root account
to nobody:nobody by default.

Don’t forget to restart mountd(8) after editing the exports file.

Exporting Multiple Directories

Many directories under /usr would make sensible exports. Good candidates
include /usr/src, /usr/obj, and /usr/ports/distfiles. List all directories of the
same partition on the same line in /etc/exports, right after the first exported
directory, separated by spaces. My /etc/exports now looks like this:

/usr/home/mwlucas /usr/src /usr/obj /usr/ports/distfiles -maproot=5000

There are no identifiers, separators, or delimiters between the parts of
the line. Yes, it would be easier to read if we could put each shared directory
on its own line, but we can’t; they’re all on the same partition. The FreeBSD
team could rewrite this so that it had more structure, but then FreeBSD’s
/etc/exports would be incompatible with that from any other Unix.

Disks and F i l esys tems 247

As with many other configuration files, you can use a backslash to break
a single line of configuration into multiple lines. You might find the above
configuration more readable as:

/usr/home/mwlucas \

 /usr/src \

 /usr/obj \

 /usr/ports/distfiles \

 -maproot = 5000

Restricting Clients

To allow only particular clients to access an NFS export, list them at the end
of the /etc/exports entry. Here, we restrict our share above to one IP address:

/usr/home/mwlucas /usr/src /usr/obj /usr/ports/distfiles \
 -maproot=5000 192.168.1.200

You can also restrict file shares to clients on a particular network by using
the -network and -mask qualifiers:

/usr/home/mwlucas /usr/src /usr/obj /usr/ports/distfiles \
 -maproot=5000 -network 192.168.0 -mask 255.255.255.0

This lets any client with an IP address beginning in 192.168.0 access your
NFS server. I use a setup much like this to upgrade clients quickly. I build a
new world and kernel on the NFS server, then let the clients mount those
partitions and install the binaries over NFS.

Combinations of Clients and Exports

Each line in /etc/exports specifies exports from one partition to one host or set
of hosts. Different hosts can have entirely different export statements.

/usr/home/mwlucas /usr/src /usr/obj /usr/ports/distfiles \

 -maproot=5000 192.168.1.200

/usr -maproot=0 192.168.1.201

Here, I’ve exported several subdirectories of /usr to the NFS client at
192.168.1.200. The NFS client at 192.168.1.201 gets to mount the whole of
/usr, and may even do so as root.

NFS Performance and Options

FreeBSD uses conservative NFS defaults, so that it can work well with any other
Unix-like operating system. If you’re working in a pure FreeBSD environ-
ment or if your environment only contains higher-end Unix systems, you can
improve NFS performance with mount options.

First of all, NFS defaults to running over UDP. The tcp or -T option tells
the client to request a mount over TCP.

248 Chap te r 8

Programs expect the filesystem to not disappear, but when you’re using
NFS it’s possible that the server will vanish from the network. This makes
programs on the client trying to access the NFS filesystem hang forever. By
making your NFS mount interruptible, you will be able to interrupt processes
hung on unavailable NFS mount with CTRL-C. Set interruptibility with intr.

FreeBSD can tell clients if and when a filesystem is no longer accessible.
Programs will fail when trying to access the filesystem, instead of hanging
forever.

Finally, you can set the size of read and write requests. The defaults are
well-suited to networks of the early 1990s, but you can set the read and write
size to more modern values with the -r and -w options. I find that 32768 is a
good value for both. So, putting this all together, I could have my client
mount an NFS file system like this:

mount -o tcp,intr,soft,-w=32768,-r=32768 server:/usr/home/mwlucas /mnt

The same entry in /etc/fstab looks like this:

server:/usr/home/mwlucas /mnt nfs rw,-w=32768,-r=32768,tcp,soft,intr 0 0

This general NFS configuration gives me good throughput speed on a
local network, limited only by hardware quality.

While NFS is pretty straightforward for simple uses, you can spend many
hours adjusting, tuning, and enhancing it. If you wish to build a complicated
NFS environment, don’t rely entirely on this brief introduction but spend
time with a good book on the subject.

FreeBSD and CIFS

If you’re on a typical office network, the standard network file sharing
protocol is Microsoft’s Common Internet File Sharing, or CIFS. (CIFS was
once known as Server Message Block, or SMB.) This is the “Network
Neighborhood” that Windows users can access. While originally provided
only by Microsoft Windows systems, this protocol has become something of
a standard. Thankfully, today there’s an open source CIFS file sharing server
called Samba. Many commercial products provide services via this protocol.
FreeBSD includes kernel modules to support the filesystem and programs to
find, mount, and use CIFS shares.

Prerequisites

Before you begin working with Microsoft file shares, gather the following
information about your Windows network:

� Workgroup or Windows domain name

� Valid Windows username and password

� IP address of the Windows DNS server

Disks and F i l esys tems 249

Kernel Support
FreeBSD uses several kernel modules to support CIFS. The smbfs.ko module
supports basic CIFS operations. The libmchain.ko and libiconv.ko modules pro-
vide supporting functions and load automatically when you load smbfs.ko. You
can compile these statically in your kernel as:

options NETSMB

options LIBMCHAIN

options LIBICONV

options SMBFS

Of course, you can load these at boot time with the appropriate entries
in /boot/loader.conf.

Configuring CIFS
CIFS relies on a configuration file, either $HOME/.nsmbrc or /etc/nsmb.conf.
All settings in /etc/nsmb.conf override the settings in user home directories.
The configuration file is divided into sections by labels in square brackets.
For example, settings that apply to every CIFS connection are in the [default]
section. Create your own sections to specify servers, users, and shares, in one
of the following formats:

[servername]
[servername:username]
[servername:username:sharename]

Information that applies to an entire server goes into a section named
after the server. Information that applies to a specific user is kept in a
username section, and information that applies to only a single share is
kept in a section that includes the share name. You can lump the information
for all the shares under a plain [servername] entry if you don’t have more
specific per-user or per-share information.

Configuration entries use the values from the CIFS system—for example,
my Windows username is lucas_m, but my FreeBSD username is mwlucas, so
I use lucas_m in nsmb.conf.

nsmb.conf Keywords
Specify a nsmb.conf configuration with keywords and values under the
appropriate section. For example, servers have IP addresses and users don’t,
so you would only use an IP address assignment in the server section. To use
a keyword, assign a value with an equal sign, as in keyword=value. Here are
the common keywords; for a full list, see nsmb.conf(5).

workgroup=string

The workgroup keyword specifies the name of the Windows domain or work-
group you want to access. This is commonly a default setting used for all
servers.

250 Chap te r 8

addr=a.b.c.d

The addr keyword sets the IP address of a CIFS server. This keyword can only
appear under a plain [servername] label.

nbns=a.b.c.d

The nbns keyword sets the IP address of a NetBIOS (WINS) nameserver. You
can put this line in the default section or under a particular server. If you
have Active Directory (which is based on DNS), you can use DNS host names.
Adding a WINS server won’t hurt your configuration, however, and helps in
testing basic CIFS setup.

password=string

The password keyword sets a clear-text password for a user or a share. If you
must store passwords in /etc/nsmb.conf, be absolutely certain that only root
can read the file. Storing a password in $HOME/.nsmbrc is a bad idea on a
multi-user system.

You can scramble your Windows password with smbutil crypt, generating
a string that you can use for this keyword. The scrambled string has double
dollar signs ($$) in front of it. While this helps prevent someone accidentally
discovering the password, a malicious user can unscramble it easily.

CIFS Name Resolution

Let’s build a basic nsmb.conf file. As an absolute minimum, we first need to
find hosts, which means we need a workgroup name. We’ll set the domain
controller as the WINS server. I also have a user set up on the Windows-based
servers to share files, so I’m going to use that as a default in nsmb.conf.

[default]

workgroup=BIGLOSER

nbns=192.168.1.66

username=unix

Armed with this information, we can perform basic SMB name queries.

smbutil lookup ntserv1

Got response from 192.168.1.66

IP address of ntserv1: 192.168.1.4

If this works, you have basic CIFS functionality.

Other smbutil(1) Functions

Before you can mount a filesystem from a Windows host, you must log into
the host. Only root can perform this operation.

smbutil login //unix@ntserv1
Password:

Disks and F i l esys tems 251

So, our configuration is correct. Let’s see what resources this server
offers with smbutil’s view command.

smbutil view //unix@ntserv1

Password:

Share Type Comment

IPC$ pipe Remote IPC

ADMIN$ disk Remote Admin

C$ disk Default share

unix disk

4 shares listed from 4 available

You’ll get a list of every shared resource on the CIFS server. Now,
assuming you’re finished, log out of the server.

smbutil logout //unix@ntserv1

Mounting a Share

Now that you’ve finished investigating, let’s actually mount a share with
mount_smbfs(8). The syntax is as follows:

mount_smbfs //username@servername/share /mount/point

I have a share on this Windows box called MP3 that I want to access
from my FreeBSD system. To mount this as /home/mwlucas/smbmount, I would
do this:

mount_smbfs //unix@ntserv1/MP3 /home/mwlucas/smbmount

mount(8) and df(1) show this share attached to your system, and you
can access documents on this server just as you could any other filesystem.

Other mount_smbfs Options

mount_smbfs includes several options to tweak the behavior of mounted
CIFS filesystems. Use the -f option to choose a different file permission
mode and the -d option to choose a different directory permission mode.
For example, to set a mount so that only I could access the contents of the
directory, I would use mount_smbfs -d 700. This would make the FreeBSD
permissions far more stringent than the Windows privileges, but that’s
perfectly all right with me. I can change the owner of the files with the -u
option, and the group with the -g option.

Microsoft filesystems are case-insensitive, but Unix-like operating systems
are case sensitive. CIFS defaults to leaving the case as it finds it, but that may
not be desirable. The -c flag makes mount_smbfs(8) change the case on the
filesystem: -c l changes everything to lowercase and -c u changes everything
to uppercase.

252 Chap te r 8

Sample nsmb.conf Entries

Here are samples of nsmb.conf entries for different situations. They all assume
they’re part of a configuration where you’ve already defined a workgroup,
NetBIOS nameserver, and a username with privileges to access the CIFS
shares.

Unique Password on a Standalone System

You would use something like the following if you have a machine named
desktop with a password-protected share. Many Windows 9x systems have this
sort of password-protection feature.

[desktop:shareusername]
password=$$1789324874ea87

Accessing a Second Domain

In this example, we’re accessing a second domain, named development.
This domain has a username and password different from those at our
default domain.

[development]

workgroup=development

username=support

CIFS File Ownership

Ownership of files between Unix-like and Windows systems can be problem-
atic. For one thing, your FreeBSD usernames probably won’t map to Windows
usernames, and Unix has a very different permissions scheme compared to
Windows.

Since you’re using a single Windows username to access the share, you
have whatever access that account has to the Windows resources, but you must
assign the proper FreeBSD permissions for that mounted share. By default,
mount_smbfs(8) assigns the new share the same permissions as the mount
point. In our earlier example, the directory /home/mwlucas/smbmount is owned
by the user mwlucas and has permissions of 755. These permissions say that
mwlucas can edit what’s in this directory, but nobody else can. Even though
FreeBSD says that this user can edit those files, Windows might still not let
that particular user edit the files it’s sharing out.

Serving CIFS Shares

Just as FreeBSD can access CIFS shares, it can also serve them to CIFS clients
with Samba. You can find Samba in /usr/ports/net/samba3. You’ll find the
Samba website at http://www.samba.org, along with many useful tutorials.
Serving CIFS shares from FreeBSD is much more complicated than accessing
them, so we’ll end our discussion here before this book grows even thicker.

Disks and F i l esys tems 253

devfs
devfs(5) is a dynamic filesystem for managing device nodes. Remember, in a
Unix-like operating system everything is a file. This includes physical hardware.
Every device on the system has a device node under /dev.

Once upon a time, the system administrator was responsible for making
these device node files. Lucky sysadmins managed an operating system that
came with a shell script to handle device node creation and permissions. If the
OS authors had not provided such a shell script, or if the server had unusual
hardware not included in that shell script, the sysadmin had to create the node
with black magic and mknod(8). If any little thing went wrong, the device
would not work. The other option was to ship the operating system with
device nodes for every piece of hardware imaginable. System administrators
could be confident—well, mostly confident—that the desired device nodes
were available, somewhere, buried within the thousands of files under /dev.

Of course, the kernel knows exactly what characteristics each device node
should have. With devfs(5), FreeBSD simply asks the kernel what device nodes
the kernel thinks the system should have and provides exactly those—and no
more. This works well for most people. You and I are not “most people,”
however. We expect odd things from our computers. Perhaps we need to
make device nodes available under different names, or change device node
ownership, or configure our hardware uniquely. FreeBSD breaks the problem
of device node management into three pieces: configuring devices present at
boot, global availability and permissions, and configuring devices that appear
dynamically after boot with devd(8).

devfs at Boot: devfs.conf
The big problem sysadmins have with a dynamic devfs is that any changes
made to it disappear on reboot. When device nodes were permanent files on
disk, the sysadmin could symlink to those nodes or change their permissions
without worrying that his changes would vanish. With an automated, dynamic
device filesystem, this assurance disappears. (Of course, you no longer have
to worry about occult mknod(8) commands either, so you’re better off in the
long run.) The device node changes could include, for example:

� Making device nodes available under different names

� Changing ownership of device nodes

� Concealing device nodes from users

D E V I C E M A N A G E M E N T A N D S E R V E R S

For the most part, device node management on servers works without any adjustment
or intervention. The place I most often need to muck with device nodes is on laptops
and the occasional workstation. FreeBSD’s device node management tools are very
powerful and flexible, and include support for things I wouldn’t expect to use in a
century. We’ll only touch upon the basics. Don’t think that you must master devfs(5)
to get your server running well!

254 Chap te r 8

At boot time, devfs(8) creates device nodes in accordance with the rules
in /etc/devfs.conf.

devfs.conf

The /etc/devfs.conf file lets you create links, change ownership, and set per-
missions for devices available at boot. Each rule has the following format:

action realdevice desiredvalue

The valid actions are link (create a link), perm (set permissions), and own
(set owner). The realdevice entry is a preexisting device node, while the last
setting is your desired value. For example, here we create a new name for a
device node:

�link �acd0 �cdrom

We want a symbolic link � to the device node /dev/acd0� (an ATAPI CD
drive), and we want this link to be named /dev/cdrom�. If we reboot with this
entry in /etc/devfs.conf, our CD device at /dev/acd0 also appears as /dev/cdrom,
as many desktop multimedia programs expect.

To change the permissions of a device node, give the desired permissions
in octal form as the desired value:

perm acd0 666

Here, we set the permissions on /dev/acd0 (our CD device, again) so that
any system user can read or write to the device. Remember, changing the
permissions on the /dev/cdrom link won’t change the permissions on the
device node, just the symlink.

Finally, we can also change the ownership of a device. Changing a device
node’s owner usually indicates that you’re solving a problem the wrong way
and that you may need to stop and think. FreeBSD happily lets you mess up
your system if you insist, however. Here, we let a particular user have absolute
control of the disk device /dev/da20 :

own da20 mwlucas:mwlucas

This might not have the desired effect, however, as some programs still
think that you must be root to carry out operations on devices. I’ve seen
more than one piece of software shut itself down if it’s not run by root,
without even trying to access its device nodes. Changing the device node
permissions won’t stop those programs’ complaints when they are run by a
regular user.

Configuration with devfs.conf(5) solves many problems, but not all. If
you want a device node to simply be invisible and inaccessible, you must use
devfs rules.

Disks and F i l esys tems 255

Global devfs Rules

Every devfs(5) instance behaves according to the rules defined in devfs.rules.
The devfs rules apply to both devices present at boot and devices that appear
and disappear dynamically. Rules allow you to set ownership and permissions
on device nodes and make device nodes visible or invisible. You cannot create
symlinks to device nodes with devfs rules.

Similar to /etc/rc.conf and /etc/defaults/rc.conf, FreeBSD uses /etc/devfs.rules
and /etc/defaults/devfs.rules. Create an /etc/defvs.rules for your custom rules and
leave the entries in the defaults file alone.

devfs Ruleset Format

Each set of devfs rules starts with a name and a ruleset number between
square brackets. For example, here are a few basic devfs rules from the
default configuration:

[�devfsrules_hide_all=�1]
�add hide

The first set of rules is called devf s_hide_all� and is ruleset number 1 �.
This ruleset contains only one rule �.

Ruleset Content

All devfs rules (in files) begin with the word add, to add a rule to the ruleset.
You then have either a path keyword and a regex of device names, or a type
keyword and a device type. At the end of the rule, you have an action, or a
command to perform. Here’s an example of a devfs rule:

add path da* user mwlucas

This rule assigns all device nodes with a node name beginning with da to
the ownership of mwlucas. On a multi-user system, or a system with SCSI
hard drives, this would be a bad idea. On a laptop, where the only device
nodes beginning with da are USB storage devices, it’s not such a bad idea.

Devices specified by path use standard shell regular expressions. If you
want to match a variety of devices, use an asterisk as a wildcard. For example,
path ad1s1 matches exactly the device /dev/ad1s1, but path ad*s* matches
every device node with a name beginning with ad, a character, the letter s,
and possibly more characters. You could tell exactly what devices are matched
by a wildcard by using it at the command line.

ls /dev/ad*s*

This lists all slices and partitions on your ATA hard drives, but not the
devices for the entire drive.

256 Chap te r 8

The type keyword indicates that you want the rule to apply to all devices
of a given type. Valid keywords are disk (disk devices), mem (memory devices),
tape (tape devices), and tty (terminal devices, including pseudoterminals).
The type keyword is rarely used exactly because it’s so sweeping.

If you include neither a path nor a type, devfs applies the action at the
end of the rule to all device nodes. In almost all cases, this is undesirable.

The ruleset action can be any one of group, user, mode, hide, and unhide.
The group action lets you set the group owner of the device, given as an
additional argument. Similarly, the user action assigns the device owner.
Here, we set the ownership of da disks to the username desktop and the
group usb:

add path da* user desktop
add path da* group usb

The mode action lets you assign permissions to the device in standard
octal form:

add path da* mode 664

The hide keyword lets you make device nodes disappear, and unhide
makes them reappear. Since no program can use a device node if the device
is invisible, this is of limited utility except when the system uses jail(8). We’ll
look at that specific use of hide and unhide in the next chapter.

Once you have a set of devfs rules you like, enable them at boot in
/etc/rc.conf. Here, we activate the devfs ruleset named laptoprules:

devfs_system_rulesets="laptoprules"

Remember, devfs rules apply to the devices in the system at boot and
the devices configured dynamically after startup. To finish up, let’s look at
dynamic devices.

Dynamic Device Management with devd(8)

Hot-swappable hardware is much more common now than it was even ten
years ago. In the last century, laptop network cards were considered cutting-
edge. While you might drop a new CD into the workstation’s cup holder, you
wouldn’t hot-plug a whole CD drive into your desktop. Today, that’s entirely
different. Flash drives are essentially USB-based hard drives that you can
attach and detach at will, and other USB hardware lets you add keyboards,
mice, and even network cards on a whim.

FreeBSD’s devfs dynamically creates new device nodes when this hardware
is plugged in and erases the nodes when the hardware is removed, making
using these dynamic devices much simpler. devd(8) takes this a step further
by letting you run userland programs when hardware appears and disappears.

Disks and F i l esys tems 257

devd Configuration

devd(8) reads its configuration from /etc/devd.conf and any file under
/usr/local/etc/devd/. I recommend placing your local rules in /usr/local/etc/
devd/devd.conf to simplify upgrades. You could also add different rules files
for different types of devices, if you find your devd(8) configuration
becoming very complicated. You’ll find four types of devd(8) rules: attach,
detach, nomatch, and notify.

attach rules are triggered when matching hardware is attached to the
system. When you plug in a network card, an attach rule configures the card
with an IP address and brings up the network.

detach rules trigger when matching hardware is removed from the system.
detach rules are uncommon, as the kernel automatically marks resources
unavailable when the underlying hardware disappears, but you might find
uses for them.

The nomatch rules triggers when new hardware is installed but not
attached to a device driver. These devices do not have device drivers in the
current kernel.

devd(8) applies notify rules when the kernel sends a matching event notice
to userland. For example, the console message that a network interface has
come up is a notify event. Notifications generally appear on the console or in
/var/log/messages.

devd(8) rules also have priority, with 0 being the lowest. Only the highest
matching rule is processed, while lower-priority matching rules are skipped.
Here’s a sample devd(8) rule:

�notify �0 {

 match "system" �"IFNET";

 match "type" �"ATTACH";

 action �"/etc/pccard_ether $subsystem start";

};

This is a notify � rule, which means it activates when the kernel sends a
message to userland. As a priority 0 � rule, this rule can only be triggered
if no rule of higher-priority matches the criteria we specify. This rule only
triggers if the notification is on the network system IFNET� (network), and
only if the notification type is ATTACH �—in other words, when a network
interface comes up. Under those circumstances, devd(8) takes action and
runs a command to configure the network interface �.

devd(8) supports many options to handle all sorts of different situations.
If you want to automatically mount a particular USB flash disk on a certain
mount point, you can do that by checking the serial number of every USB
device you put in. If you want to configure Intel network cards differently
than 3Com network cards, you can do that too. We’ll do enough with devd(8)
to introduce you to its abilities, mainly through examples, but we won’t delve
deeply into it.

258 Chap te r 8

devd(8) Example: Laptops

I use my laptop both at work and at home. At work I use a wired connection,
while at home I use wireless. Both require very particular setups, different DNS
servers, and different configurations all around. I could cheat by renumbering
my home network to match my work network, but experience tells me that my
home network will last much longer than my attachment to any one job.
(Maybe I’m wrong.4) I want the laptop to configure itself for home when I
plug in my wireless card. I want the laptop to configure itself for work when
I plug in the CAT5 cable to the integrated network interface.

If a wired interface is configured to use DHCP, plugging in the cable
tells FreeBSD to start dhclient(8) and configure the network. When I plug
in a wireless card, FreeBSD checks for a configuration and tries to start the
network. Here’s my wireless configuration from /etc/rc.conf (this is all one
line in the configuration, but it is broken to fit in this book):

ifconfig_wi0="inet dhcp ssid WriteFaster wepkey
0xdeadbeefbadc0decafe1234567 weptxkey 1 wepmode on channel 1"

When I insert my wireless card, the kernel attaches the card to the driver
wi0. This is an attach event, and devd(8) searches its configuration for a
corresponding rule. The following entry in /etc/devd.conf matches:

�attach �0 {

�media-type "802.11";

�action "/etc/pccard_ether $device-name start";

};

We inserted a card into the laptop, and FreeBSD attached the wi(4)
driver to it. This is an attach � event. This rule has a priority of 0 �, so any
other matching rule will run before this default rule. Anything with a media
type of 802.11 � (wireless) matches this rule. When an attach event matches
this rule, FreeBSD runs a command � to configure the network. I could run
a custom script instead of using the built-in FreeBSD support, but why bother
when the default configuration does everything I need?

Unlike the wireless I use at home, the Ethernet interface I use at work is
always attached to my system. The interface might not be plugged into a
network, but the card itself is always attached. I don’t want to configure this
interface every time the system boots, because if the interface isn’t plugged
in I’ll have a long delay while my laptop’s SSH daemon and other services
time out on DNS queries. At work I have a variety of NFS mounts, as well as
custom client/server settings not available from the DHCP server.

4 It would be nice, some day, to have employment that didn’t end with four corporate security
gorillas dragging me to the door in chains, with my new ex-boss screeching in the background
about federal regulators, crème brûlée, and caffeinated lemurs. I’m certain this is just coincidence,
mind you, as nobody’s ever pressed charges.

Disks and F i l esys tems 259

This means that I need to run a custom shell script to configure my
network for work, but only when the network cable is plugged in. I want
devd to watch for a notification that the interface has come up and then
run my custom shell script. I’ve written the custom entry below and placed
it in /usr/local/etc/devd/devd.conf:

�notify �10 {

match "system" �"IFNET";

match "type" �"LINK_UP";

media-type �"ethernet";

�# action "/etc/rc.d/dhclient start $subsystem";

�action "/home/mwlucas/bin/jobnetwork.sh";

};

This is a notification � rule, which means it triggers when the kernel
sends a matching notification message to the system. It also has a priority of
10 �, so it runs before any of FreeBSD’s default rules. This rule triggers on
the network � system, when a link comes up � (i.e., when we plug in a
network cable), if the link is Ethernet �. When all of these conditions are
met, FreeBSD runs a shell script � in my home directory.

Note that this rule has a commented-out line �. When I said I wrote
this rule, I lied. I actually copied the default entry from /etc/devd.conf and
modified it slightly. FreeBSD already has rules for handling network interfaces
coming up, but I wanted to do something a little different. Instead of coming
up with all these conditions myself, I found a entry that was almost right and
modified it. I suggest you do the same. Just be sure to give your customized
rule a higher priority than the default rule, so FreeBSD uses your rule instead
of its own.

Another devd Example: Flash Drives

Copying an entry is cheating, I hear you cry. Well, let’s try an example where
FreeBSD doesn’t have any infrastructure in place. On my laptop, I want any
USB storage mounted on /media automatically. The first USB storage device
plugged into a laptop shows up in FreeBSD as /dev/da0, but the device name is
umass0. (If you already have other USB or SCSI devices, these numbers will
differ for you.) Generally speaking, all flash media is formatted with the FAT32
fileystem, so you would use mount -t msdosfs to mount it.

When the device is plugged in, FreeBSD attaches it to the kernel, so we
use an attach rule:

attach 10 {

 match "device-name" �"umass0";

 action "/home/mwlucas/bin/mountusb.sh";

};

260 Chap te r 8

I assign this rule a priority of 10, so it overrides any new priority 0
functions FreeBSD might install during an upgrade. (If FreeBSD grows the
ability to do this automatically, I’ll probably use that instead, but I don’t want
an upgrade to change my system behavior unless I know about it.) Here, we
match on the device name �. When the device appears, a shell script in my
directory runs.

Why not just run the mount(8) command? USB devices need a moment
or two to warm up and stabilize before they can be accessed. Also, some USB
flash drives need to be poked before they really start to work. The shell script
I use here is terribly simpleminded, but it suffices:

#!/bin/sh

sleep 2

/usr/bin/true > /dev/da0

/sbin/mount -t msdosfs /dev/da0s1 /media

While this handles mounting the device for me, devd(8) won’t unmount
the device. FreeBSD expects the sysadmin to unmount filesystems before
removing the underlying devices. It’s no different from unmounting a CD
or floppy disk before ejecting it.

While devd(8) has many more advanced features, these two examples
cover all the features I’ve needed or wanted to use in several years. Please
read the manual page if you seek further enlightenment. Now that you have
a little bit too much understanding of FreeBSD filesystems, let’s look at its
more advanced security features.

