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Now that you know how to compile binary 
operators, you’re going to add a whole mess 

of them (plus one more unary operator). In 
this chapter, you’ll add three logical operators: 

NOT (!), AND (&&), and OR (||). You’ll also add the 
relational operators: <, >, ==, and so on. Each of these 
operators tests some condition, resulting in a value of 1 
if that condition is true and 0 if it’s false.

The && and || operators differ from the binary operators we’ve seen so 
far because they short-circuit: if you know the result after the first operand, 
you don’t evaluate the second operand. To support short-circuiting logic, 
we’ll add new instructions to TACKY that let us skip over blocks of code. 
We’ll also introduce several new instructions in the assembly generation 
pass, including conditional assembly instructions that let us take specific 
actions only if some condition is met.

4
L O G I C A L  A N D  R E L A T I O N A L 

O P E R A T O R S
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Let’s start with a brief discussion of short-circuiting operators before 
moving on to the compiler passes.

Short-Circuiting Operators
The C standard guarantees that && and || short-circuit when you don’t  
need the second operand. For example, consider the expression (1 - 1) &&  
foo(). Because the first operand’s value is 0, the whole expression will 
 evaluate to 0 regardless of what foo returns, so we won’t call foo at all. 
Likewise, if the first operand of || is nonzero, we don’t evaluate the 
 second operand.

This isn’t just a performance optimization; the second operand might 
not change the result of the expression, but evaluating it can have visible 
side effects. For example, the foo function might perform I/O or update 
global variables. If your compiler doesn’t implement && and || as short- 
circuiting operators, some compiled programs will behave incorrectly.  
(The standard defines this behavior in section 6.5.13, paragraph 4, for the 
&& operator and in section 6.5.14, paragraph 4, for the || operator.)

Now that we’ve clarified how these operators work, you’re ready to con-
tinue coding.

The Lexer
In this chapter, you’ll add nine new tokens:

! An exclamation point, the logical NOT operator

&& Two ampersands, the logical AND operator

|| Two vertical bars, the logical OR operator

== Two equal signs, the “equal to” operator

!=  An exclamation point followed by an equal sign, the “not equal to” 
operator

< The “less than” operator

> The “greater than” operator

<= The “less than or equal to” operator

>= The “greater than or equal to” operator

Your lexer should handle these the same way as the other operators you’ve 
added so far. Remember that the lexer should always choose the longest 
possible match for the next token. For example, if your input is <=something, 
the next token the lexer emits should be <=, not <.
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T ES T T HE L E X ER

Test the lexer with the usual command:

$ ./test_compiler /path/to/your_compiler --chapter 4 --stage lex

None of this chapter’s test programs contain invalid tokens, so your lexer 
should process all of them without throwing an error .

The Parser
Next, we’ll add the new operations to the AST definition. Listing 4-1 shows 
the updated definition, with these additions bolded.

program = Program(function_definition)
function_definition = Function(identifier name, statement body)
statement = Return(exp)
exp = Constant(int)
    | Unary(unary_operator, exp)
    | Binary(binary_operator, exp, exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
                | Equal | NotEqual | LessThan | LessOrEqual
                | GreaterThan | GreaterOrEqual

Listing 4-1: The abstract syntax tree with comparison and logical operators

We also need to make the corresponding changes to the grammar, as 
shown in Listing 4-2.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" "{" <statement> "}"
<statement> ::= "return" <exp> ";"
<exp> ::= <factor> | <exp> <binop> <exp>
<factor> ::= <int> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
          | "==" | "!=" | "<" | "<=" | ">" | ">="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 4-2: The grammar with comparison and logical operators

In Listings 4-1 and 4-2, we’ve added some new operators, but we haven’t 
made any other changes. Now we’re ready to update the parsing code. First, 
update parse_factor to handle the new ! operator. It should parse ! the same 
way it parses the unary ~ and - operators.
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Next, update parse_exp to handle the new binary operators. In Chapter 3, 
we associated every binary operator with a numeric precedence value. Now 
we’ll give the new operators precedence values. These operators have lower 
precedence than the ones from Chapter 3, and they’re all left-associative. 
Among the new operators, <, <=, >, and >= have the highest precedence, 
followed by the equality operators, == and !=. The && operator has lower 
precedence than the equality operators, and || has the lowest precedence 
of all. The precedence values I’ve chosen are listed in Table 4-1, with new 
operators bolded.

Table 4-1: Precedence Values of Old and  
New Binary Operators

Operator Precedence

* 50

/ 50

% 50

+ 45

- 45

< 35

<= 35

> 35

>= 35

== 30

!= 30

&& 10

|| 5

These values are spaced far enough apart to leave room for the optional 
bitwise operators from Chapter 3. There’s also room at the bottom of the 
scale for the = and ?: operators we’ll add in the next two chapters. You don’t 
need to use the exact values in this table as long as all operators have the 
correct precedence relative to each other.

You’ll also need to extend the code that converts tokens into unary 
_operator and binary_operator AST nodes. For example, the function that 
converts a + token into an Add node should also convert a == token into an 
Equal node. (The pseudocode in the last two chapters called separate func-
tions, parse_unop and parse_binop, to handle these conversions.)

Once you’ve updated your parser’s table of precedence values, parse 
_binop, and parse_unop, you’re done! The precedence climbing algorithm we 
implemented in the last chapter can handle the new operators without fur-
ther changes.
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T ES T T HE PA RSER

The parser should successfully parse every valid test case in tests/chapter_4/
valid and raise an error on every invalid test case in tests/chapter_4/invalid 
_parse . To test your parser, run:

$ ./test_compiler /path/to/your_compiler --chapter 4 --stage parse

TACKY Generation
Now that the lexer and parser are working properly, we can venture into 
less familiar territory: handling the new operators in TACKY. You can con-
vert relational operators to TACKY in the same way as the binary operators 
you’ve already implemented. For example, given the expression e1 < e2, the 
resulting TACKY looks something like Listing 4-3.

<instructions for e1>
v1 = <result of e1>
<instructions for e2>
v2 = <result of e2>
Binary(LessThan, v1, v2, result)

Listing 4-3: Implementing the < operator in TACKY

You can’t generate the && and || operators this way, though, because 
they short-circuit. The code in Listing 4-3 always evaluates both e1 and e2, 
but we need to generate code that sometimes skips e2. To support short-
circuiting operators, we’ll add an unconditional jump instruction, which lets 
us jump to a different point in the program. We’ll also add two conditional 
jump instructions, which jump only when a particular condition is met.

Adding Jumps, Copies, and Comparisons to the TACKY IR
Listing 4-4 shows the latest TACKY IR, including the new jump instructions.

program = Program(function_definition)
function_definition = Function(identifier, instruction* body)
instruction = Return(val)
            | Unary(unary_operator, val src, val dst)
            | Binary(binary_operator, val src1, val src2, val dst)
            | Copy(val src, val dst)
            | Jump(identifier target)
            | JumpIfZero(val condition, identifier target)
            | JumpIfNotZero(val condition, identifier target)
            | Label(identifier)
val = Constant(int) | Var(identifier)
unary_operator = Complement | Negate | Not
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binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
                | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 4-4: Adding comparisons, jumps, and labels to TACKY

The Jump instruction works just like goto in C: it makes the program 
jump to the point labeled with some identifier, target. The Label instruc-
tion associates an identifier with a location in the program. The snippet of 
TACKY in Listing 4-5 shows how Jump and Label instructions work together.

Unary(Negate, Constant(1), Var("tmp"))
Jump("there")
1 Unary(Negate, Constant(2), Var("tmp"))
Label("there")
Return(Var("tmp"))

Listing 4-5: A snippet of TACKY with a Jump instruction

This program stores -1 in tmp, then executes the Jump instruction, which 
jumps to the Label instruction. Next, it executes the Return instruction, which 
returns -1. The second Unary instruction 1 won’t execute at all, because we 
jumped over it.

The first conditional jump in the TACKY IR, JumpIfZero, jumps to the 
instruction indicated by target if the value of condition is 0. If condition is 
anything other than 0, we don’t jump to target; instead, we execute the next 
instruction as usual. The second conditional jump, JumpIfNotZero, does the 
opposite: we jump to target only if condition isn’t 0. We don’t really need 
both of these instructions, since any behavior you can express with one can 
be expressed with the other plus a Not instruction. But adding both lets us 
generate simpler TACKY for the && and || operations, which will ultimately 
translate into simpler, shorter assembly.

The other new instruction is Copy. Since && and || ultimately return 1 or 0, 
we use this instruction to copy 1 or 0 into the temporary variable that holds 
the result of the expression.

Besides these five additional instructions, the latest TACKY IR includes 
the new relational and logical binary operators and the unary Not operator.

Converting Short-Circuiting Operators to TACKY
Let’s use the new TACKY instructions to implement the && and || operators. 
The TACKY for the expression e1 && e2 should look like Listing 4-6.

<instructions for e1>
v1 = <result of e1>
JumpIfZero(v1, false_label)
<instructions for e2>
v2 = <result of e2>
JumpIfZero(v2, false_label)
result = 1
Jump(end)
Label(false_label)
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result = 0
Label(end)

Listing 4-6: Implementing the && operator in TACKY

We start by evaluating e1. If it’s 0, we short-circuit and set result to 0, 
without evaluating e2. We accomplish this with the JumpIfZero instruction; 
if v1 is 0, we jump straight to false_label, then set result to 0 with the Copy 
instruction. (I’ve written this out as result = 0 instead of Copy(0, result) to 
make it more readable. I’ll take similar liberties with TACKY notation in 
later chapters.) If v1 isn’t 0, we still need to evaluate e2. We handle the case 
where v2 is 0 exactly like the case where v1 is 0, by jumping to false_label 
with JumpIfZero. We reach the Copy instruction, result = 1, only if we didn’t 
take either conditional jump. That means both e1 and e2 are nonzero, so we 
set result to 1. Then, we jump over result = 0 to the end label to avoid over-
writing result.

I’ll leave it to you to translate the || operation to TACKY on your own. 
The resulting TACKY will look similar to Listing 4-6, but it will use the 
JumpIfNotZero instruction instead of JumpIfZero. That leaves ! and all the rela-
tional operations; you can convert them to TACKY in the same way as the 
unary and binary operations you added in the previous chapters.

Generating Labels
Labels, like temporary variables, must be globally unique: an instruction 
like Jump("foo") is useless if the label foo shows up in multiple places. You 
can make sure they’re unique by incorporating a global counter into labels, 
like you did with variable names in Chapter 2.

Unlike temporary variables, labels will appear in the final assembly pro-
gram, so they must be identifiers that the assembler considers syntactically 
valid. They should contain only letters, digits, periods, and underscores. 
Choose descriptive labels to make your assembly programs easier to read 
and debug. For example, you could use the string and_falseN as false_label 
in Listing 4-6, where N is the current value of a global counter.

Although labels must not conflict with each other, it’s okay for them 
to conflict with temporary variable names. It’s also okay if the labels you 
generate here conflict with user-defined function names, even though both 
autogenerated labels and function names become labels in the final assem-
bly program. We’ll mangle our autogenerated labels during code emission 
so they don’t conflict with user-defined identifiers.

T ES T T HE TACK Y GENER AT ION S TAGE

To test out TACKY generation, run:

$ ./test_compiler /path/to/your_compiler --chapter 4 --stage tacky
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Comparisons and Jumps in Assembly
Before starting on the assembly generation pass, let’s talk through the new 
assembly instructions we’ll need. First, we’ll discuss the cmp instruction, 
which compares two values, and the conditional set instructions, which set a 
byte to 1 or 0 based on the result of a comparison. We’ll use these to imple-
ment relational operators like <. Next, we’ll talk about conditional and 
unconditional jump instructions.

Comparisons and Status Flags
The “condition” that all conditional instructions depend on is the state of the 
RFLAGS register. Unlike EAX, RSP, and the other registers we’ve seen so 
far, we usually can’t directly set RFLAGS. Instead, the CPU updates RFLAGS 
automatically every time it issues an instruction. As the name suggests, each 
bit in this register is a flag that reports some fact about the last instruction 
or the status of the CPU. Different instructions update different flags: the 
add, sub, and cmp instructions update all the flags we’ll talk about in this sec-
tion, and the mov instruction doesn’t update any of them. We can ignore the 
effects of other instructions for now. Whenever I refer to the “last instruction” 
or “last result” while discussing RFLAGS, I mean the last instruction that 
affects the particular flag I’m talking about.

Right now, we care about three of these flags:

Zero flag (ZF)

ZF is set to 1 if the result of the last instruction was 0. It’s set to 0 if the 
result of the last instruction was nonzero.

Sign flag (SF)

SF is set to 1 if the most significant bit of the last result was 1. It’s set to 0 
if the most significant bit of that result was 0. Remember that in two’s 
complement, the most significant bit of a negative number is always 1, 
and the most significant bit of a positive number is always 0. Therefore, 
the sign flag tells us whether the result of the last instruction was posi-
tive or negative. (If the last result should be interpreted as an unsigned 
integer, it can’t be negative, so the sign flag is meaningless.)

Overflow flag (OF)

OF is set to 1 if the last instruction resulted in a signed integer overflow, 
and 0 otherwise. An integer overflow occurs when the result of a signed 
integer operation can’t be represented in the number of bits available. 
A positive result overflows when it’s larger than the maximum value the 
type can hold. Suppose we’re operating on 4-bit integers. The largest 
signed number we can represent is 7, or 0111 in binary. If we add one 
to it with the add instruction, the result is 1000. If we interpret this as an 
unsigned integer, its value is 8, but its value is –8 if we interpret it as a 
two’s complement signed integer. The result of the computation should 
be positive, but since it overflowed, it appears negative. This computa-
tion sets the overflow flag to 1.
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We also encounter integer overflow in the opposite situation: 
when the result should be negative, but it’s below the smallest possible 
value. For example, in ordinary math, –8 – 1 = –9. But if we use the sub 
instruction to subtract one from the 4-bit two’s complement representa-
tion of –8, which is 1000, we end up with 0111, or 7. The overflow flag is 
set to 1 in this case too.

An unsigned result can also be too large or small for its type to 
represent, but I won’t refer to this as integer overflow in this book. 
Instead, I say the result wrapped around, which is more consistent with 
the terminology for unsigned operations in the C standard and in most 
discussions of x64 assembly. I draw this distinction because unsigned 
wraparound follows different rules from signed integer overflow in 
the C standard, and the CPU detects it differently. You’ll learn how to 
handle unsigned wraparound in Part II. Like SF, OF is meaningless if 
the result is unsigned.

Tables 4-2 and 4-3 summarize the cases where each kind of integer 
overflow is possible. Table 4-2 describes the results of addition.

Table 4-2: Integer Overflow and Underflow from Addition

a + b b > 0 b < 0

a > 0 Overflow from positive to negative Neither

a < 0 Neither Overflow from negative to positive

Table 4-3 describes the results of subtraction; it’s just Table 4-2 with the 
columns swapped, since a - b and a + (- b) are equivalent.

Table 4-3: Integer Overflow and Underflow from Subtraction

a - b b > 0 b < 0

a > 0 Neither Overflow from positive to negative

a < 0 Overflow from negative to positive Neither

The instruction cmp b, a computes a - b, exactly like the sub instruction, 
and has the same impact on RFLAGS, but it discards the result instead of 
storing it in a. This is more convenient when you want to subtract two num-
bers only in order to compare them and don’t want to overwrite a.

Let’s figure out the values of ZF and SF after the instruction cmp b, a:

• If a == b, then a - b is 0, so ZF is 1 and SF is 0.

• If a > b, then a - b is a positive number, so both SF and ZF are 0.

• If a < b, then a - b is a negative number, so SF is 1 and ZF is 0.

By issuing a cmp instruction and then checking ZF and SF, you can han-
dle every comparison we’re implementing in this chapter. But wait! That’s 



80   Chapter 4

not quite true, because a - b could overflow, which would flip SF. Let’s con-
sider how that impacts each case:

• If a == b, then a - b can’t overflow because it’s 0.

• If a > b, then a - b could overflow when a is positive and b is negative. 
The correct result in this case is positive, but if it overflows, the result 
will be negative. In that case, SF will be 1, and OF will be too.

• If a < b, then a - b could overflow when a is negative and b is positive. In 
this case, the correct result is negative, but the actual result will be posi-
tive. That means SF will be 0, but OF will be 1.

Table 4-4 gives the values of these flags in every case we’ve considered.

Table 4-4: Impact of cmp Instruction on Status Flags

ZF OF SF

a == b 1 0 0

a > b, no overflow 0 0 0

a > b, overflow 0 1 1

a < b, no overflow 0 0 1

a < b, overflow 0 1 0

You can tell whether a or b is larger by checking whether SF and OF are 
the same. If they are, we know that a ≥ b. Either both are 0, because we got a 
positive (or 0) result with no overflow, or both are 1, because we got a large 
positive result that overflowed until it became negative. If SF and OF are 
different, we know that a < b. Either we got a negative result with no over-
flow, or we got a negative result that overflowed and became positive.

UNDEF INED BEH AV IOR A L ER T !

If the add and sub instructions can overflow, why didn’t we account for that 
in Chapter 3? We didn’t need to because integer overflow in C is undefined 
behavior, where the standard doesn’t tell you what should happen . Compilers 
are permitted to handle undefined behavior however they want—or not handle 
it at all .

When an expression in C overflows, for example, the result usually wraps 
around like the examples we saw earlier . However, it’s equally acceptable for 
the program to generate a result at random, raise a signal, or erase your hard 
drive . That last option may sound unlikely, but production compilers really do 
handle undefined behavior in surprising (and arguably undesirable) ways . Take 
the following program:
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#include <stdio.h>

int main(void) {
    for (int i = 2147483646; i > 0; i = i + 1)
        printf("The number is %d\n", i);
    return 0;
}

The largest value an int can hold is 2,147,483,647, so the expression i + 1  
overflows the second time we execute it . When the add assembly instruction 
overflows, it produces a negative result, so we might expect this loop to execute 
twice, then stop because the condition i > 0 no longer holds . That’s exactly 
what happens if you compile this program without optimizations, at least with 
the versions of Clang and GCC that I tried:

$ clang overflow.c
$ ./a.out
The number is 2147483646
The number is 2147483647

But if you enable optimizations, the behavior might change completely:

$ clang -O overflow.c
$ ./a.out
The number is 2147483646
The number is 2147483647
The number is -2147483648
The number is -2147483647
The number is -2147483646
The number is -2147483645
--snip--

What happened? The compiler tried to optimize the program by removing 
conditional checks that always succeed . The initial value of i is positive, and it’s 
updated only in the expression i = i + 1, so the compiler concluded that the con-
dition i > 0 is always true . That’s correct, as long as i doesn’t overflow . It’s incor-
rect if i does overflow, of course, but that’s undefined behavior, so the compiler 
didn’t have to account for it . It therefore removed the condition entirely, resulting 
in a loop that never terminates .

I used Clang for this example because GCC produced completely dif-
ferent, even less intuitive behavior . You may well see different results if you 
compile this program on your own machine . Try it out with a few different opti-
mization levels, and see what happens .

Note that setting the overflow flag in assembly doesn’t necessarily indicate 
overflow in the source program . For example, when we implement an expres-
sion like a < 10 with cmp, that cmp instruction may set the overflow flag . But the 
result of a < 10 is either 0 or 1—both of which are in the range of int—so the 

(continued)
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expression itself does not overflow . This expression won’t produce undefined 
behavior, regardless of how we implement it in assembly .

C has a bunch of different kinds of undefined behavior; integer overflow is 
just one example . It’s a particularly ugly example, though, because it’s difficult 
to avoid and can have dire consequences, including security vulnerabilities . To 
address this long-standing problem, the next version of the C standard, C23, 
adds a few standard library functions that perform checked integer operations . 
If you use the new ckd_add, ckd_sub, and ckd_mul functions instead of the +, -, 
and * operators, you’ll get an informative return code instead of undefined 
behavior when the result is out of bounds . To learn more about these new 
library functions, see Jens Gustedt’s blog post titled “Checked Integer Arithmetic 
in the Prospect of C23” (https://gustedt.wordpress.com/2022/12/18/checked 
-integer-arithmetic-in-the-prospect-of-c23/) .

Undefined behavior is different from unspecified behavior . If some aspect 
of a program’s behavior is unspecified, there are several possible ways it could 
behave, but it can’t behave totally unpredictably . For example, in Chapter 3, 
we learned that the operands in a binary expression are unsequenced (or inde-
terminately sequenced, if either is a function call), so their evaluation order is 
unspecified . This doesn’t mean the expression’s behavior is undefined . When 
we evaluate the expression printf("Hello, ") + printf("World!"), the program 
can print either "Hello, " or "World!" first, but it can’t go off and do something 
else entirely . Unsequenced operations can produce undefined behavior under 
certain circumstances—say, if you perform two unsequenced updates to the 
same variable—but performing unsequenced or indeterminately sequenced 
operations is not an undefined behavior in and of itself .

Unspecified behavior is a normal part of any C program . It’s a problem 
only if your program relies on a particular behavior that the standard doesn’t 
specify, like in the Hello, World! example . Undefined behavior, on the other 
hand, is always a problem; if it occurs anywhere in your program, you can’t 
count on any part of the program to work correctly .

To learn more about undefined behavior, and the trail of chaos and 
destruction it leaves in its wake, see “Additional Resources” on page 91 .

Now that you understand how to set ZF, OF, and SF, let’s take a look at a 
few instructions that depend on those flags.

Conditional Set Instructions
To implement a relational operator, we first set some flags using the cmp 
instruction, then set the result of the expression based on those flags. We 
perform that second step with a conditional set instruction. Each conditional 
set instruction takes a single register or memory address as an operand, 
which it sets to 0 or 1 based on the state of RFLAGS. The conditional set 
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instructions are all identical, except that they test for different conditions. 
Table 4-5 lists the conditional set instructions we need in this chapter.

Table 4-5: Conditional Set Instructions

Instruction Meaning Flags

sete Set byte if a == b ZF set

setne Set byte if a != b ZF not set

setg Set byte if a > b ZF not set and SF == OF

setge Set byte if a ≥ b SF == OF

setl Set byte if a < b SF != OF

setle Set byte if a ≤ b ZF set or SF != OF

Unlike the other instructions we’ve seen so far, conditional set instruc-
tions take only 1-byte operands. For example, sete %eax is not a valid instruc-
tion, because EAX is a 4-byte register. The instruction sete %al, however, 
is valid; this sets the AL register, the least significant byte of EAX. To con-
ditionally set the whole EAX register to 0 or 1, you need to zero out EAX 
before you set AL, because the conditional set instruction won’t clear its 
upper bytes. For example, if EAX is

11111111111111111111111111111011

and you run

movl    $2, %edx
cmpl    $1, %edx
sete    %al

then the new value in EAX is

11111111111111111111111100000000

which is, of course, not 0. The sete instruction zeroed out the last byte of 
EAX, but not the rest of it.

If its operand is a memory address, a conditional set instruction will 
update the single byte at that address. Note that a memory address can be 
a 1-byte, 4-byte, or 8-byte operand, depending on context. In sete -4(%rbp), 
the operand -4(%rbp) indicates a single byte of memory at RBP – 4; in addl $1, 
-4(%rbp), it indicates the 4 bytes of memory starting at RBP – 4.

Jump Instructions
The jmp assembly instruction takes a label as an argument and performs an 
unconditional jump to that label. Jump assembly instructions manipulate 
another special-purpose register, RIP, which always holds the address of the 
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next instruction to execute (IP stands for instruction pointer). To execute a 
sequence of instructions, the CPU carries out the fetch-execute cycle:

 1. Fetch an instruction from the memory address in RIP and store it in a 
special-purpose instruction register. (This register doesn’t have a name 
because you can’t refer to it in assembly.)

 2. Increment RIP to point to the next instruction. Instructions in x64 
aren’t all the same length, so the CPU has to check the length of the 
instruction it just fetched and increment RIP by that many bytes.

 3. Run the instruction in the instruction register.

 4. Repeat.

Normally, following these steps executes instructions in the order they 
appear in memory. But jmp puts a new value in RIP, which changes what 
instruction the CPU executes next. The assembler and linker convert the 
label in a jump instruction into a relative offset that tells you how much to 
increment or decrement RIP. Consider the snippet of assembly in Listing 4-7.

    addl    $1, %eax
    jmp     foo
    movl    $0, %eax
foo:
    ret

Listing 4-7: A snippet of assembly code with a jmp instruction

 The machine instruction for movl $0, %eax is 5 bytes long. To jump over it  
and execute the ret instruction instead, jmp needs to increment RIP by an extra 
5 bytes. The assembler and linker therefore convert jmp foo into the machine 
instruction for jmp 5. Then, when the CPU executes this instruction, it:

 1. Fetches the instruction jmp 5 and stores it in the instruction register.

 2. Increments RIP to point to the next instruction, movl $0, %eax.

 3. Executes jmp 5. This adds 5 bytes to RIP so that it points to ret.

 4. Fetches the instruction RIP points to, ret, and continues the fetch- 
execute cycle from there.

Note that labels aren’t instructions: the CPU doesn’t execute them, and 
they don’t appear in the text section of the final executable (the section 
that contains machine instructions).

A conditional jump takes a label as an argument but jumps to that label 
only if the condition holds. Conditional jumps look a lot like conditional set 
instructions; they depend on the same conditions, using the same flags in 
RFLAGS. For example, the assembly in Listing 4-8 returns 3 if the EAX and 
EDX registers are equal, and 0 otherwise.

    cmpl    %eax, %edx
    je      return3
    movl    $0, %eax
    ret
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return3:
    movl    $3, %eax
    ret

Listing 4-8: A snippet of assembly code with a conditional jump

If the values in EAX and EDX are equal, cmpl sets ZF to 1, so je jumps 
to return3. Then, the two instructions following return3 execute, so the func-
tion returns 3. If EAX and EDX aren’t equal, je doesn’t perform the jump, 
so the function returns 0. Similarly, jne jumps only if ZF is 0. There are also 
jump instructions that check other conditions, but we don’t need them in 
this chapter.

Assembly Generation
Now that you understand the new assembly instructions you’ll need, let’s 
extend the assembly AST and update each assembly generation pass. 
Listing 4-9 defines the latest assembly AST, with additions bolded.

program = Program(function_definition)
function_definition = Function(identifier name, instruction* instructions)
instruction = Mov(operand src, operand dst)
            | Unary(unary_operator, operand)
            | Binary(binary_operator, operand, operand)
            | Cmp(operand, operand)
            | Idiv(operand)
            | Cdq
            | Jmp(identifier)
            | JmpCC(cond_code, identifier)
            | SetCC(cond_code, operand)
            | Label(identifier)
            | AllocateStack(int)
            | Ret
unary_operator = Neg | Not
binary_operator = Add | Sub | Mult
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int)
cond_code = E | NE | G | GE | L | LE
reg = AX | DX | R10 | R11

Listing 4-9: The assembly AST with comparisons and conditional instructions

Since all conditional jump instructions have the same form, we rep-
resent them with a single JmpCC instruction and distinguish between them 
using different condition codes. We do the same with conditional set instruc-
tions. We also treat labels like instructions at this stage, even though Label 
isn’t really an instruction since labels aren’t executed by the CPU.
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To implement the TACKY JumpIfZero and JumpIfNotZero instructions, we 
use the new JmpCC assembly instruction. We convert

JumpIfZero(val, target)

to:

Cmp(Imm(0), val)
JmpCC(E, target)

We implement JumpIfNotZero the same way, but with NE instead of E as the 
condition code.

Similarly, we implement all the relational operators using conditional 
set instructions. For example, the TACKY instruction

Binary(GreaterThan, src1, src2, dst)

becomes:

Cmp(src2, src1)
Mov(Imm(0), dst)
SetCC(G, dst)

For all the other relational operators, replace G with the appropriate 
condition code. Remember to zero out the destination before the condi-
tional set instruction, since it sets only the lowest byte. It’s safe to perform a 
mov right after the cmp instruction because mov doesn’t change RFLAGS. One 
potential wrinkle is that SetCC needs a 1-byte operand, but dst is 4 bytes; 
luckily, we can account for this in the code emission pass. If dst is a location 
in memory, SetCC sets the first byte at that location, which is the behavior 
we want. (Because x64 processors are little-endian, the first byte is the least 
significant, so setting that byte to 1 sets the whole 32-bit value to 1.) If dst is 
a register, we’ll use the corresponding 1-byte register name when we emit 
SetCC during code emission. Registers in the assembly AST are size agnostic, 
so for now we represent dst the same way whether we’re using it as a 4-byte 
or 1-byte operand.

Because !x is equivalent to x == 0, we also implement the unary ! opera-
tor with a conditional set instruction. We convert the TACKY instruction

Unary(Not, src, dst)

into:

Cmp(Imm(0), src)
Mov(Imm(0), dst)
SetCC(E, dst)

The remaining TACKY instructions—Jump, Label, and Copy—are easy. 
A TACKY Jump becomes an assembly Jmp, Label becomes Label, and Copy 
becomes Mov. Tables 4-6 and 4-7 summarize how to convert each new 
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TACKY construct to assembly. Note that these tables include only new con-
structs, unlike the equivalent tables in Chapters 2 and 3.

Table 4-6 shows how to convert the new Copy, Label, and conditional and 
unconditional jump instructions to assembly, as well as Unary instructions 
with the new Not operator and Binary instructions with the new relational 
operators.

Table 4-6: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Unary(Not, src, dst) Cmp(Imm(0), src) 
Mov(Imm(0), dst) 
SetCC(E, dst)

Binary(relational_operator, src1, src2, dst) Cmp(src2, src1) 
Mov(Imm(0), dst) 
SetCC(relational_operator, dst)

Jump(target) Jmp(target)

JumpIfZero(condition, target) Cmp(Imm(0), condition) 
JmpCC(E, target)

JumpIfNotZero(condition, target) Cmp(Imm(0), condition) 
JmpCC(NE, target)

Copy(src, dst) Mov(src, dst)

Label(identifier) Label(identifier)

Table 4-7 gives the corresponding condition code for each relational 
operator in TACKY.

Table 4-7: Converting TACKY Comparisons to Assembly

TACKY comparison Assembly condition code

Equal E

NotEqual NE

LessThan L

LessOrEqual LE

GreaterThan G

GreaterOrEqual GE

From now on, the tables describing each chapter’s conversion from 
TACKY to assembly will show only what’s changed from the chapter before. 
Appendix B includes two sets of tables giving the complete conversion from 
TACKY to assembly: one shows the conversion at the end of Part I, and the 
other shows the conversion at the end of Part II.

Replacing Pseudoregisters
Update this pass to replace any pseudoregisters used by the new Cmp and 
SetCC instructions with stack addresses, just like you did for all the other 
instructions.
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Fixing Up the cmp Instruction
The cmp instruction, much like mov, add, and sub, can’t use memory addresses 
for both operands. We rewrite it in the usual way, turning

cmpl    -4(%rbp), -8(%rbp)

into:

movl    -4(%rbp), %r10d
cmpl    %r10d, -8(%rbp)

The second operand of a cmp instruction can’t be a constant. This sort 
of makes sense if you remember that cmp follows the same form as sub; the 
second operand of a sub, add, or imul instruction can’t be a constant either, 
since that operand holds the result. Even though cmp doesn’t produce a 
result, the same rules apply. We rewrite

cmpl    %eax, $5

as:

movl    $5, %r11d
cmpl    %eax, %r11d

Following the convention from the previous chapter, we use R10 to fix a 
cmp instruction’s first operand and R11 to fix its second operand.

T ES T T HE A SSEMBLY GENER AT ION S TAGE

To test the assembly generation stage, run:

$ ./test_compiler /path/to/your_compiler --chapter 4 --stage codegen

Code Emission
We’ve generated a valid assembly program, and we’re ready to emit it. Code 
emission is slightly more complicated in this chapter, for two reasons. First, 
we’re dealing with both 1-byte and 4-byte registers. We’ll print out a differ-
ent name for a register depending on whether it appears in a conditional 
set instruction, which takes 1-byte operands, or any of the other instruc-
tions we’ve encountered so far, which take 4-byte operands.

The second issue is emitting labels. Some assembly labels are autogen-
erated by the compiler, while others—function names—are user-defined 
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identifiers. Right now, the only function name is main, but eventually we’ll 
compile programs with arbitrary function names. Because labels must be 
unique, autogenerated labels must not conflict with any function names 
that could appear in a program.

We’ll avoid conflicts by adding a special local label prefix to our auto-
generated labels. The local label prefix is .L on Linux and L on macOS. On 
Linux, these labels won’t conflict with user-defined identifiers because iden-
tifiers in C can’t contain periods. On macOS, they won’t conflict because we 
prefix all user-defined names with underscores (so that main becomes _main, 
for example).

Local labels are handy for another reason: they won’t confuse GDB or 
LLDB when you need to debug this code. The assembler puts most labels 
in the object file’s symbol table, but it leaves out any that start with the local 
label prefix. If your autogenerated labels were in the symbol table, GDB and 
LLDB would mistake them for function names, which would cause problems 
when you tried to disassemble a function or view a stack trace.

Aside from those two issues, code emission is pretty straightforward. 
Tables 4-8 through 4-10 summarize the changes to this pass. From this 
point forward, the code emission tables will show only what’s changed from 
the previous chapter, much like the tables describing the conversion from 
TACKY to assembly. See Appendix B for a complete overview of the code 
emission pass; it includes three sets of tables showing how this pass will look 
at the end of Part I, Part II, and Part III.

Table 4-8 shows how to print out this chapter’s new assembly instructions. 
It uses the .L prefix for local labels; if you’re on macOS, use an L prefix with-
out a period instead.

Table 4-8: Formatting Assembly Instructions

Assembly instruction Output

Cmp(operand, operand) cmpl    <operand>, <operand>

Jmp(label) jmp     .L<label>

JmpCC(cond_code, label) j<cond_code>      .L<label>

SetCC(cond_code, operand) set<cond_code>    <operand>

Label(label) .L<label>:

The cmp instruction gets an l suffix to indicate that it operates on 4-byte 
values. Conditional set instructions don’t take a suffix to indicate the oper-
and size, because they support only 1-byte operands. Jumps and labels also 
don’t use operand size suffixes, since they don’t take operands. However, 
conditional jump and set instructions do need suffixes to indicate what 
condition they test. Table 4-9 gives the corresponding suffix for each condi-
tion code.
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Table 4-9: Instruction Suffixes for  
Condition Codes

Condition code Instruction suffix

E e

NE ne

L l

LE le

G g

GE ge

Finally, Table 4-10 gives the 1-byte and 4-byte aliases for each register. 
The 4-byte aliases are the same as in the previous chapter; the new 1-byte 
aliases are bolded.

Table 4-10: Formatting Assembly Operands

Assembly operand Output

Reg(AX) 4-byte %eax

1-byte %al

Reg(DX) 4-byte %edx

1-byte %dl

Reg(R10) 4-byte %r10d

1-byte %r10b

Reg(R11) 4-byte %r11d

1-byte %r11b

Emit the 1-byte names for registers when they appear in SetCC and the 
4-byte names anywhere else.

T ES T T HE W HOL E COMPIL ER

To check that you’re compiling every test program correctly, run:

$ ./test_compiler /path/to/your_compiler --chapter 4

Once all the tests pass, you’re ready to move on to the next chapter .

Summary
Your compiler can now handle relational and logical operators. In this 
chapter, you added conditional jumps to TACKY to support short-circuiting 
operators, and you learned about several new assembly instructions. You 
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also learned how the CPU keeps track of the current instruction and records 
the results of comparisons. The new TACKY and assembly instructions you 
introduced in this chapter will eventually help you implement complex con-
trol structures like if statements and loops. But first, you’ll implement one 
of the most essential features of C: variables!

Additional Resources
For more in-depth discussions of undefined behavior, see these blog posts:

• “A Guide to Undefined Behavior in C and C++, Part 1” by John Regehr 
is a good overview of what undefined behavior means in the C standard 
and how it impacts compiler design (https://blog.regehr.org/archives/213).

• “With Undefined Behavior, Anything Is Possible” by Raph Levien 
explores some sources of undefined behavior in C and the history  
of how it got into the standard to begin with (https://raphlinus.github.io/
programming/rust/2018/08/17/undefined-behavior.html).




