
I N D E X

Symbols
+ (addition) operator. See addition operator
+= (addition assignment) operator, 113
& (address) operator. See address operator
&& (AND) operator. See AND operator
= (assignment) operator. See assignment

expressions
& (bitwise AND) operator, 67
&= (bitwise AND assignment) operator, 113
~ (bitwise complement) operator. See bitwise

complement operator
| (bitwise OR) operator, 67
|= (bitwise OR assignment) operator, 113
?: (conditional) operator, 121–124. See also

conditional expressions
-- (decrement) operator, 31–32, 33, 113
* (dereference) operator. See dereference

operator
/ (division) operator. See division operator
/= (division assignment) operator, 113
== (equal to) operator. See equal to operator
> (greater than) operator. See greater than

operator
>= (greater than or equal to) operator.

See greater than or equal
to operator

++ (increment) operator, 113
<< (left shift) operator, 67
<<= (left shift assignment) operator, 67
< (less than) operator. See less than operator
<= (less than or equal to) operator. See less

than or equal to operator
* (multiplication) operator. See multiplication

operator
*= (multiplication assignment) operator, 113
- (negation) operator. See negation operator
! (NOT) operator. See NOT operator
!= (not equal to) operator. See not equal to

operator
|| (OR) operator. See OR operator
% (remainder) operator. See remainder

operator
%= (remainder assignment) operator, 113
>> (right shift) operator, 67
>>= (right shift assignment) operator, 113
. (structure member) operator. See

structure member operator

-> (structure pointer) operator. See structure
pointer operator

[] (subscript) operator. See subscript
operator

- (subtraction) operator. See subtraction
operator

-= (subtraction assignment) operator, 113
^ (XOR) operator, 67
^= (XOR assignment) operator, 113

A
ABI (application binary interface), 184.

See also System V x64 ABI
abstract declarators, 361–363

abstract array declarators,
395–396

abstract syntax tree (AST), 4, 10–14
adding loop labels, 150
adding type information, 252–253

AST typing problem, 253
additional resources, 21–22
assembly, 18, 40
constant representations in, 248,

276, 306
structure determines order of

evaluation, 49
TACKY, 36–37

add_edge function, 579–580
add instruction, 60, 62–63

emitting, 66, 270
fixing up, 64, 268

addition (+) operator, 47–50
assembly for, 60, 62–63

floating-point, 315
parsing, 50–55
pointer addition, 387–390

TACKY for, 406–408
type checking, 400, 472

TACKY for, 58
type checking, 254–255

addition assignment (+=) operator, 113
add_pseudoregisters, 632, 633, 637
AddPtr instruction, 406–408

assembly for, 414–415
omitting, 517
structure member access with,

514–517

732 Index

address (&) operator, 349, 353
assembly for, 376
constraints on, 364, 474
parsing, 354–355
TACKY for, 370–372, 374, 514, 516–517
type checking, 364–365

address-taken analysis, 600–601
AddrOf expressions, 354. See also address

operator
array decay implemented with,

398–399, 409–410, 441
addsd instruction, 311–312

fixing up, 337
Advanced Compiler Design and Implementation

(Muchnick), 669
aggregate types, 384
Aho, Alfred V., 611, 670
alias analysis, 601

additional resources, 611
aliased variables, 599–602, 609, 637
.align directive, 221, 238–239
aligned_alloc function, 461
allocated storage duration, 213, 461
AllocateStack instruction, 40, 42, 44, 268
AMD64. See x64 instruction set
AND (&&) operator, 71–77

short-circuiting, 72
TACKY for, 75–77, 259
type checking, 255, 470

and instruction, 323–325, 337, 341
Appel, Andrew, 22, 670
Apple Silicon, xxxv
application binary interface (ABI), 184.

See also System V x64 ABI
arithmetic operations. See also names of

individual operators
in assembly, 60–63
floating-point, 296

in assembly, 311–312, 315–316,
327–328

rounding behavior, 301
precedence value, 50, 55
type checking, 254–255, 476–477

arithmetic types, 347, 476–477
usual arithmetic conversions, 254,

279–280, 308, 435
ARM, xxvii, 672
array declarators, 357–358

abstract, 361–362, 395–396
parsing, 394–396

arrays, 384–399
alignment of, 415
assembly type of, 413
decay, 386–387
declaring, 384–385. See also array

declarators
element comparison, 389–390

element type, 384
complete, 471–473

function declarations, array types in,
390–391

implicit conversion to pointers. See
array-to-pointer decay

initializers, 385. See also compound
initializers

string literals as, 425–426,
437–438, 440–441

memory layout, 385–386
multidimensional, 384–385,

386–389, 393
subscripting, 408–410

type checking, 398–399, 402–405, 471,
472–473

variable-length, 391
array-to-pointer decay, 386–387

implemented with AddrOf, 398–399,
409–410, 441

sizeof operands not subject to, 462
Arrow expression, 495. See also structure

pointer operator
ASCII, 10, 204, 426–427, 449–450

values of escape sequences, 429
.ascii directive, 426–427, 449–450
.asciz directive, 426–427, 449–450
ASDL (Zephyr Abstract Syntax Description

Language), 13–14, 22, 171
field names, 14
product types, 171
sum types, 171

assembler directives, 5. See also entries for
individual directives

assemblers, xxviii, 5
GNU assembler (GAS), 268, 338
invoking, 7
LLVM assembler, 268, 338

assembly code, xxvii, 4–7
arithmetic in, 60–63

floating-point, 311–312, 315–316,
327–328

AT&T vs. Intel syntax, 6, 244, 570
bitwise complement in, 26–27, 40–41
comments in, 20
comparisons in, 78–81, 82–83, 85–86

unsigned, 283–285, 287–288
floating-point, 317, 328

debugging, 675–697
with GDB, 677–687
with LLDB, 687–698

division in, 60–63
unsigned, 286, 288

floating-point, 310–336
function calls in, 161, 184–199,

312–315, 519–528
jumps in, 83–87

Index 733

linkage in, 168–169, 220–223
long integers in, 244–246, 261–264
negation in, 26–27, 40–41, 315–316,

327–328
storage duration in, 220–223
strings in, 426–429, 450
type conversions in, 244–245, 317–324

floating-point, 317–324,
328–329, 445

sign extension, 244–245,
263, 444

truncation, 245, 263, 444
zero extension, 286–288, 443–444

assembly generation, 4, 17–19
compiler passes in, 39
reference tables, 700–701, 704–711

assembly instructions, 5–6, 17–18. See
also names of individual
instructions

in assembly AST, 18
Streaming SIMD Extension, 310–312
suffixes, 6, 269, 311, 427, 443–444

assembly types, 261–262, 265–266
Byte, 443
ByteArray, 413
Double, 324
of eightbytes, 536–537
Longword, 261
Quadword, 261
suffixes for, 269–271, 340–341, 443

assignment expressions, 94–95
AST definition, 97–98
operator, 97, 101

precedence value, 103
parsing, 100–103
resolving variables in, 107
TACKY for, 110, 371–374, 516
type checking, 256, 368, 399
validating lvalues in, 107, 399

associativity, 50–51
AST. See abstract syntax tree
AT&T syntax, 6, 244, 570
automatic storage duration, 212–213, 217

arrays with, initializing, 440
automatic variables, 208

in the symbol table, 229–230
type checking, 233, 257

AVX instruction set extension, 318

B
backend symbol table, 266–267

incomplete types in, 530, 546
register usage tracked in, 621–622,

635, 637, 647
return value passing information

tracked in, 546, 550
top-level constants in, 327, 339, 446

backward analysis, 584, 604
iterative algorithm, 607–608

.balign directive, 238–289
Ballman, Aaron, 475
base pointer, 29
basic blocks, 576–578

creating, 578–579
empty, 583
unreachable, 581–582

basic source character set, 430
basic type, 356
Bendersky, Eli, 21, 68, 222, 611
binary expressions

AST definition, 48
formal grammar, 51, 52
parsing, 50–55

with precedence climbing,
51–55

with recursive descent, 50–51
operands, unsequenced, 58–59
TACKY for, 58
type checking, 254–255

binary fractions, 297
binary operators. See binary expressions and

names of individual operators
bitwise AND (&) operator, 67
bitwise AND assignment (&=) operator, 113
bitwise complement (~) operator, 26

assembly for, 26–27, 40–41
parsing, 33–34
TACKY for, 36–37
token for, 31–32
type checking, 254, 308, 369, 435

bitwise OR (|) operator, 67
bitwise OR assignment (|=) operator, 113
blocks, 132, 135

compound statements as, 132
parsing, 136
resolving variables in, 136–139

block scope declarations, 208–217. See also
scopes

invalid, 220
resolving identifiers in, 228–229
type checking, 232–233

Borgwardt, Michael, 343
break labels, 155–158
break statements, 146–148

annotating, 150, 151, 152–154
parsing, 149–150
TACKY for, 155–156

Briggs, Preston, 669
Briggs test, 656–659, 666–667

additional resources, 669–670
limits of, 661–663

.bss directive, 222
BSS section, 222
b suffix, 427, 443

734 Index

build_graph function, 631–632
.byte directive, 450

C
caller-saved and callee-saved registers, 185,

648–649
callee-saved registers in assembly AST,

620–621
in graph coloring algorithm, 645–646
saving and restoring, 187, 193–194,

196–197, 648–649
tracking callee-saved register usage,

646–647
calling convention, 161, 184. See also System

V x64 calling convention
call instruction, 186, 189–190

emitting, 201–202
generating, 198–199

calloc function, 461
case statements, 159
Cast expression, 248

implicit type conversions represented
by, 255

cast expressions. See also type conversions
parsing, 247–249, 464–466
pointer types as operands, 351–352
TACKY for, 259–260, 281–283, 309–

310, 375, 440, 479
type checking, 254, 369, 402, 471, 505
to void, 459, 471, 479

cdq instruction, 61–63, 262
emitting, 66, 269

Chaitin, Gregory, 669
Chaitin-Briggs algorithm, 669–670
character constants, 424

lexing, 429–431
parsing, 433
type of, 424
UTF–8, 424

character types, 423–424
assembly type, 443
char, 423–424
integer promotions, 424, 435
signed char, 423–424
specifiers, parsing, 433
static initializers for, 436
type conversions

assembly for, 443–445
TACKY for, 440

unsigned char, 423–424
wide, 424

char keyword, 429
char type, 423–424

signedness, 424
static initializer for, 436–438

Chu, Andy, 68
Ciechanowski, Bartosz, 345

Clang, xxxiv–xxxv, 4–5
floating-point support, 296–297,

317–318, 344
installing, xxxiv
invoking with gcc command, xxxv, 4
language extensions, 395, 401, 471
System V ABI violation, 444–445
void, treatment of, 474–475

classify_parameters function, 329–330,
534–536

classify_return_value function, 532–533,
537–538

classify_structure function, 533–534
cmp instruction, 79–80, 85–86, 262

emitting, 90, 270
fixing up, 88, 268

coalesce function, 665–666
in build-coalesce loop, 663

code emission, 4, 19–20. See also entries for
individual instructions and
language constructs

floating-point constants, 338–339
function names, 201
function prologue and epilogue,

43–44
instruction size suffixes, 269–271,

340–341, 443
local labels, 89, 339, 450
non-executable stack note, 19
@PLT suffix, 201–202
reference tables

Part I, 702–704
Part II, 711–715
Part III, 716–724

register aliases, 88, 90, 203
string literals, 449–450

color_graph function, 644–646
comisd instruction, 317, 324, 328

emitting, 341
fixing up, 337

common real type, 254–255, 279–280,
308, 435

comparisons, 78–83. See also pointer
comparisons; relational
operators

floating-point, 317, 328
unsigned, 283–286

compiler, xxvii
stages, 3–4

compiler driver, xxviii, 7–8
command line options, 8

-c, 169–170
--codegen, 8, 43
--eliminate-dead-stores, 570
--eliminate-unreachable-code, 569
--fold-constants, 569
-l, 301

Index 735

--lex, 8
--optimize, 570
--parse, 8
--propagate-copies, 569
-S, 569
--tacky, 38
--validate, 109

generating assembly files, 569
generating object files, 169
linking shared libraries, 301

Compiler Explorer (Godbolt), xxxvi
Compilers: Principles, Techniques, and Tools,

2nd edition (Aho et al.),
611, 670

complete types, 461–462
required, 471–473, 477–478, 488, 491
structure types, 486–487

compound assignment operators, 113–114
compound initializers, 385

assembly for, 413, 418–419
AST definition, 393
not implemented, 391–392
parsing, 396
static, 404–405, 509–511
for structures, 492
TACKY for, 406, 410–411, 517–518
type checking, 403–405, 509–511

compound literals, 391
compound statements, 131

as blocks, 132
parsing, 135–136
resolving variables in, 136–139
scope determined by, 131–134
TACKY for, 140

concrete syntax tree, 14
conditional (?:) operator, 121–124
conditional expressions, 117

delimiter tokens, 118
parsing, 121–125
resolving variables in, 125–126
TACKY for, 127, 479–480
type checking, 256, 368, 467, 470,

476, 508
void operands, 459, 476

conditional jump instructions. See jump
instructions (assembly);
jump instructions
(TACKY)

conditional set instructions, 82–83
emitting, 88–90
generating, 85–86
SetCC, 85–86

condition codes, 85–86, 285, 287–288
suffixes for, 90, 291

conservative_coalesceable function,
666–667

conservative coalescing, 653, 656, 670

constant folding, 561, 573–576
combining with other

optimizations, 569
constant propagation, 563
constant strings, 425–426

in assembly, 428, 446
emitting, 449–451
in the symbol table, 437–439, 441
in TACKY, 441–442
type checking, 436, 437–439

constant tokens, 8–10
character, 429–431
floating-point, 302–303

rounding, 300
long integer, 247
regular expressions, 304
unsigned integer, 275
unsigned long integer, 275

continue labels, 155–158
continue statements, 146–150

annotating, 150, 151, 152–154
parsing, 149–150
TACKY for, 155–156

control-flow graphs, 570, 576–581
control-flow protection, 5
controlling expression, 118–119

loops, 144–145
type checking, 352, 470

control structures, 117
conversion ranks, 279
convert_by_assignment function, 368, 469,

504–505
convert_function_call function, 197–199,

263, 331–333, 538–541
convert_unop function, 37–38
convert_val function, 198
Cooper, Keith, 669–670
copy_bytes_from_reg function,

543–544
copy_bytes_to_reg function, 541–543
CopyFromOffset instruction, 512–513

assembly for, 532, 548
structure member access with,

513–514, 516
Copy instruction, 75–77, 110

assembly for, 86
with non-scalar operands, 531

type conversions with, 282, 574
copy propagation, 563–564, 585–602.

See also reaching copies
analysis

additional resources, 611
combining with other

optimizations, 569
with Part II TACKY programs,

599–602
rewriting instructions, 598–599, 602

736 Index

CopyToOffset instruction, 406–407
assembly for, 414

with non-scalar operands,
531–532

initializing aggregate objects with,
410–411, 440–441, 517–518

structure member access with,
514, 516

Cordes, Peter, 445
cqo instruction, 269
C standard, xxxvi

& (address) operator applied to
dereferenced pointer, 353

array decay, 386–387
basic source character set, 430
C17, xxxvi–xxxvii, 164
C23 standard, xxxvi–xxxvii

checked integer arithmetic, 82
decimal floating-point types, 300
empty initializers, 519
empty parameter lists, 164
memset_explicit, 565
old-style function definitions

removed, 164
u8 character constants, 424

declarators, 358
escape sequences, 429
evaluation order, 59

short-circuiting operators, 72
floating-point types, 296
for loops, missing controlling

expression in, 158
implementation-defined behavior, 245
incomplete types, 461
linkage, 167–168, 210–212
lvalues, 348
observable behavior, 560
preprocessing tokens, 303
return statements, missing, 111–112
storage duration, 212
strict aliasing rules, 352
structure member declarations,

488–489
temporary lifetimes, 508
type conversions, 244, 274
types of integer constants, 278
type specifiers, 278
undefined behavior, 80, 91, 107, 112
unsigned wraparound, 285
usual arithmetic conversions, 254,

279–280
void, 458, 473–475

.cstring directive, 428, 450
Cuoq, Pascal, 344
cvtsi2sd instruction, 320–321, 324, 329

in character type conversions, 445
fixing up, 337

cvttsd2si instruction, 317–318, 324
in character type conversions, 445
fixing up, 337

D
dangling else ambiguity, 120–121
data-flow analysis, 563, 584–585

additional resources, 611
liveness analysis, 604–609

of assembly programs, 633–636
reaching copies analysis, 589–598

Data operand, 236–238
for constants, 326, 339
offset, 529, 550, 551

data section, 221
Dawson, Bruce, 344
dead store elimination, 564–565,

603–609
combining with other

optimizations, 569
liveness analysis, 604–609

iterative algorithm, 607–608
meet operator, 606–607
transfer function, 605–606

with Part II TACKY programs,
608–609

security impact, 566
DeallocateStack instruction, 194–195,

198–199, 202, 264
debuggers, xxxiv, 675–698

GDB (GNU debugger), xxxiv–xxxv,
677–687

LLDB (LLVM debugger), xxxv,
687–698

declarations, 94, 162–163, 208–220. See
also function declarations;
variable declarations

vs. definitions, 214–216
hidden, 133
linkage, 166–168, 209–212
scope, 131–134, 208–209
vs. statements, 98–99
structure type, 486–491

declarators, 356–361
abstract, 361–363, 395–396
array, 357–358, 394–396
in C standard, 358
function, 357
parsing, 358–361, 362–363, 394–396
pointer, 356, 361

decrement (--) operator, 31–32, 33, 113
default statements, 159
degree, 638
degree < k rule, 638
dereference (*) operator, 349–350

& operator applied to result, 353
parsing, 354–355

Index 737

pointers to void as operands,
473–475

TACKY for, 371–374
type checking, 364–365

DereferencedPointer construct, 372–374,
408, 410, 515–517

derived types, 354
disjoint-set data structures, 663–664
div instruction, 286, 287–288

fixing up, 290
division (/) operator, 47–48

assembly for, 60–63
floating-point, 315, 327
unsigned, 286, 288

parsing, 50–55
TACKY for, 58
type checking, 254–255, 369

division assignment (/=) operator, 113
divsd instruction, 315

DivDouble, 324–325
fixing up, 337

do statements, 144, 148–151, 152–155, 156
Dot operator, 495. See also structure member

operator
.double directive, 312, 338–339
double extended precision floating-point

format, 299
double-precision floating-point format,

297–299
double rounding error, 306

additional resources, 344
type conversion with, 320–323

DoubleToInt instruction, 309–310
assembly for, 317–318

DoubleToUInt instruction, 309–310
assembly for, 318–320

double type, 295–301. See also floating-point
constants; floating-point
operations

alignment, 336
assembly type, 324
conversions. See conversions to and

from double under integer
types; double under type
conversions

in function calls, 312–315,
329–333

representation, 297–299
precision, 301

rounding, 299–301
size, 336
specifier, 302, 305, 306–307
static initializers for, 308–309, 340
type checking, 308–309

Drysdale, David, 21
D’Silva, Vijay, 611
dynamic linkers, 202

E
EAX register, 5–6, 40–41, 60–62, 185,

193, 525
EBNF. See Extended Backus-Naur Form

notation
EDX register, 60–64, 185, 525
effective type, 352
Elements of Computing Systems, The (Nisan

and Schocken), 45
ELF (Executable and Linkable Format), 201
else clause, 118–121, 126–127

dangling else ambiguity, 120–121
Engineering a Compiler, 2nd edition

(Cooper and Torczon),
669–670

equal to (==) operator, 71–74
assembly for, 85–87

floating-point, 317, 328
pointer comparisons, 352
TACKY for, 75–76, 77
type checking, 254–255, 366–367,

476–477
escape sequences, 429–431

in assembly, 449–450
Executable and Linkable Format (ELF), 201
executable stacks, 19

additional resources, 22
expect function, 16
expressions, 14

converting to TACKY, 38
full, 374
lvalue vs. non-lvalue, 348
parsing, 34. See also precedence

climbing
resolving variables in, 107
type checking, 251–256

result types, 251
void, 459–460

expression statements, 95, 98, 110
Extended Backus-Naur Form (EBNF)

notation, 15
optional sequences, 101
repeated sequences, 100

at least once, 225
external linkage, 167–168, 209–211
external variables, 208

resolving, 227–229
extern specifier, 207, 208, 210–212, 213,

214–217
on declarations with incomplete types,

474, 505
in identifier resolution, 228–229
parsing, 225–226
in the type checker, 230–233

extra credit features, xxxii–xxxiii
bitwise operators, 67
case statements, 159

738 Index

extra credit features (continued)
compound assignment operators,

113–114
decrement (--) operator, 113
default statements, 159
goto statements, 128
increment (++) operator, 113
labeled statements, 128
NaN, 342–343
switch statements, 159
union types, 552–553

F
fetch-execute cycle, 84
file scope, 207–208
file scope variable declarations,

208–217
resolving identifiers in, 227–228
type checking, 231–232

Finley, Thomas, 45
floating-point constants

assembly for, 311–312
emitting, 338–339
generating, 324–327
local labels, 312, 326–327, 339

AST representation, 305–306
hexadecimal, 302, 338–339, 345
lexing, 302–304
rounding decimal constants to,

300, 306
floating-point formats, 296–299

decimal, 300
double extended precision, 299
double-precision, 297–298
IEEE 754, 296–299
single-precision, 299

The Floating-Point Guide (website), 343
floating-point instructions. See Streaming

SIMD Extension instructions
floating-point operations

arithmetic operations, 296
in assembly, 311–312, 315–316,

327–328
rounding behavior, 301

comparisons
in assembly, 317, 328
with NaN, 299, 317, 342
with negative zero, 298, 317

with Streaming SIMD Extension
instructions, 310–312

type conversions
in assembly, 317–324, 328–329, 445
rounding behavior, 300–301
in TACKY, 309–310, 440

floating-point registers. See XMM registers
floating-point values

assembly type, 324

in function calls, 312–315, 329–333
representation, 297–299

gaps between, 300–301,
322, 344

normalized floating-point
numbers, 298

precision, 301
special values, 298–299

infinity, 298
NaN, 299, 342–343
negative zero, 298
subnormal numbers, 298

float type, 295, 299
Fog, Agner, 553–554
formal grammar, 14–15

ambiguity, 50, 120
for binary expressions, 51, 52
left recursion, 50
for unary expressions, 33, 397, 465

for statements, 144–145, 148–151, 152, 154,
157–158

headers, restrictions on, 172, 220
missing controlling expression in, 158

forward data-flow analysis, 584
free function, 460–461
Friedl, Steve, 358
frontend symbol table, 266. See also symbol

table internal to compiler
full expressions, 374
FunCall instruction, 182–183

assembly for. See in assembly under
function calls

in liveness analysis, 605–606
optional destination, 479, 482
in reaching copies analysis, 591–592,

601–602
function calls, 165

arguments, 165
in assembly, 161, 184–194, 197–199

with floating-point values,
312–315, 329–333

with quadword arguments, 263
with structures, 519–528,

532–544
with void return type, 482

AST definition, 171
parsing, 172–173
resolving identifiers in, 175–176
TACKY for, 182–183, 479
type checking, 179, 181–182, 256

function declarations, 162–163
array types in, 390–391
AST definition, 171, 224,

247–248
in identifier resolution, 174,

176–178
incomplete types in, 505

Index 739

linkage, 166–169, 209–212
parsing, 172–173, 226–227
type checking, 179–181, 230–231, 257,

402–403
with void parameters, 466

function definitions, 162–163
in assembly, 195

accessing function parameters,
195–197

allocating stack space, 200
converting to TACKY, 110–111,

182–183
nested, 163
old-style, 164

function pointers, 164, 359–361, 364
function prologue and epilogue, 26–27,

29–31
emitting, 43–44

functions, 161–169
arguments, 165
calling convention, 161, 184–194,

312–315, 519–528
declarators, 357
parameters, 162–163, 165, 177
types, 178–179, 247–248
variadic, 191
with void return types, 458, 469–470,

479, 482

G
GAS (GNU assembler), 268, 338
GCC, xxxiv–xxxv, 4–5

floating-point support, 296–297,
317–318, 344

implementation-defined type
conversion in, 245

installing, xxxiv–xxxv
language extensions, 395, 401, 471
narrow arguments, treatment of, 445
optimizations, 27, 558–559
UndefinedBehaviorSanitizer, 672
void, treatment of, 474–475

gcc command, 4–5
invoking Clang with, xxxv, 4

GDB (GNU debugger)
debugging assembly code, 677–687
installing, xxxiv–xxxv

general-purpose registers, 311
George, Lal, 670
George test, 659–663

additional resources, 670
limits of, 661–663

GetAddress instruction, 370–372, 374
alias analysis and, 599–601
assembly for, 376

get_common_pointer_type function,
366–368, 468

get_common_type function, 254–255, 280,
308, 435

Ghuloum, Abdulaziz, xxvi
Gibbons, Phillip, 611, 670
global offset table (GOT), 223
global symbol, 5, 168–169
.globl directive, 5, 20, 168–169, 221, 238
GNU assembler (GAS), 268, 338
Goldberg, David, 343
goto statements, 128
graph coloring, 622–646

algorithm, 638–646
degree < k rule, 638
optimistic coloring, 669
spilling registers, 627–630,

642–644, 646
greater than (>) operator, 71–74

assembly for, 85–87
floating-point, 317, 328
unsigned, 287–288

pointer comparisons, 389–390
TACKY for, 75–76, 77
type checking, 254–255, 401

greater than or equal to (>=) operator,
71–74

assembly for, 85–87
floating-point, 317, 328
unsigned, 287–288

pointer comparisons, 389–390
TACKY for, 75–76, 77
type checking, 254–255, 401

H
Hailperin, Max, 670
“Hello, World!” program, 204, 451–453
hexadecimal floating-point constant, 302,

338–339, 345
Hilfinger, Paul, 611
Hyde, Randall, 199

I
identifier resolution, 174–178, 227–229, 364.

See also variable resolution
renamed from variable resolution, 174
structure tags, 498–500

identifiers, 8
autogenerated, 37–38, 105–106
lexing, 8–10
linkage of, 167–169, 209–212
scope of, 131–134, 208–209
structure tags, 486–488, 489–490
in the symbol table, 179–181, 229–233,

257–258
type of, 178–179

idiv instruction, 60–65, 262
emitting, 66, 270

740 Index

IEEE 754 standard, 296–299
additional resources, 343–344
double-precision format, 297–299
floating-point formats, 296–299
rounding modes, 299

if statements, 117–121
AST definition, 118–119
parsing, 118–121

dangling else ambiguity, 120–121
resolving variables in, 125–126
TACKY for, 126–127

immediate values, 18, 268
as function arguments, 198–199
size inferred, 266

Imm operand, 18–20
implementation-defined behavior, 245–246

char signedness, 424
ptrdiff_t, 400
rounding behavior, 307
size_t, 460
source character set, 430
type conversions, 245, 352

imul instruction, 60, 62–63
emitting, 66, 270
fixing up, 64–65, 268

incomplete types, 461–462
in backend symbol table, 530, 546
in function declarations, 505
pointers to, 461–462, 471–472,

473, 505
structure types, 486–487, 505–506
type checking, 471–473, 505–506

increment (++) operator, 113
indeterminately sequenced evaluations,

58–59, 82
indexed addressing, 412
Indexed operand, 412–415

emitting, 419
initializers, 94. See also compound

initializers; static initializers
array, 385, 425, 440

string literals as, 425–426,
437–438, 440–441

invalid, 220
resolving identifiers in, 105–106
structure type, 492
TACKY for, 110, 440–441
using variables in their own, 106–107

instruction fix-up pass, 42–43
scratch registers, 42, 64–65, 325, 337

instruction pointer (IP), 84. See also RIP
register

instruction register, 84
INTEGER class, 519
integer constants, 6, 8. See also character

constants
parsing, 250–251, 278

regular expressions for, 304
representation in the abstract syntax

tree, 248, 276
tokens for, 8, 247, 275, 304

integer overflow, 78–82
integer promotions, 424, 435
integer types

common real type, 254–255, 279–280
conversions between, 244–245,

274–275, 279–280
in assembly, 244–245, 263,

286–288, 443–444
conversion rank, 279
in TACKY, 259–260, 281–283

conversions to and from double
in assembly, 317–324,

328–329, 445
rounding behavior, 300–301
in TACKY, 309–310, 440

parsing specifiers, 249–250, 277–278
Intel 64 Software Developer’s Manual,

xxxvi, 344
Intel syntax, 6
interactive devices, 560
intermediate representations (IRs),

35–36
control-flow graphs, 570, 576–581

internal linkage, 209–212
interprocedural optimizations, 570
intraprocedural optimizations, 570
IntToDouble instruction, 309–310

assembly for, 320
int type

alignment of, 246
size of, 244
static initializer for, 257

IP (instruction pointer), 84
iterated register coalescing, 663
iterative algorithms, 585

copy propagation, 593–599
dead store elimination, 607–608

J
je instruction, 84–85
JmpCC instruction, 85–86, 89
jmp instruction, 83–84, 85
jne instruction, 85
Jones, Joel, 21
JumpIfNotZero instruction, 75–76
JumpIfZero instruction, 75–76
Jump instruction, 75–76
jump instructions (assembly), 83–85

in assembly generation, 85–87
conditional, 84–85
emitting, 89
je, 84–85
jmp, 83–84, 85

Index 741

JmpCC, 85–86, 89
jne, 85
unconditional jump instructions, 83

jump instructions (TACKY), 75–77,
126–127, 155–158

assembly, converting to, 86–87, 328
conditional, 75–76
constant folding, 561, 573–576
removing useless, 582–583
unconditional jump instructions,

75–76

K
k -colorable graphs, 622, 624–625, 627
Kell, Stephen, 474
keywords, 9–10
killed copy, 587
killed variable, 603
Korn, Jeff, 22

L
labeled statements, 128
labels (assembly), 5, 83–87

emitting, 88–89
local, 89, 326–327, 450
for static variables, 221–222

labels (TACKY), 75–77, 86, 126–127,
155–158

avoiding naming conflicts, 77
removing useless, 582–583

lazy binding, 202
lea (load effective address) instruction,

376–379
left-associative operations, 50, 53
left shift (<<) operator, 67
left shift assignment (<<) operator, 67
less than (<) operator, 71–74

assembly for, 85–87
floating-point, 317, 328
unsigned, 287–288

pointer comparisons, 389–390
TACKY for, 75–76, 77
type checking, 254–255, 401

less than or equal to (<=) operator, 71–74
assembly for, 85–87

floating-point, 317, 328
unsigned, 287–288

pointer comparisons, 389–390
TACKY for, 75–76, 77
type checking, 254–255, 401

Levien, Raph, 91
lexer, 4, 8–10. See also tokens
lifetime of an object, 212–213, 461, 508
linemarkers, 7
linkage, 166–168, 209–212

in assembly, 168–169, 220–221

conflicting, 176, 217–219, 228–229,
230–232

external, 167–168, 209–211
identifier resolution and, 175–177,

227–229
internal, 209–212
type checking and, 229–233

linkers, xxviii, 5–6
additional resources, 21
dynamic, 202
and identifier linkage, 168–169
invoking, 7
relocation, 6
and shared libraries, 202, 301
symbol resolution, 6, 174
symbols, 5
symbol table, 5, 89

.literal8 directive, 312

.literal16 directive, 312
little-endian, 86
liveness analysis, 584

of assembly programs, 633–636
meet operator, 633–634
transfer function, 634–636

for dead store elimination, 604–609
iterative algorithm, 607–608
meet operator, 606–607
transfer function, 605–606

live ranges, 625–626
Linux, xxxiv

.align directive on, 221
local label prefix, 89
procedure linkage table (PLT), 201
read-only data section, 339
setup instructions, xxxiv–xxxv

LLDB, xxxv, 687–698
LLVM compiler framework, 36, 599

assembler, 268, 338
Clang, xxxiv–xxxv, 4
copy propagation, 611
intermediate representation, 599
LLDB, xxxv, 687–698

load effective address (lea) instruction,
376–379

Load instruction, 370–371, 374–375
assembly for, 376, 531

local labels, 89
for assembly constants, 312, 326–327,

339, 450
local variables, 93–95. See also variable

declarations
assignment, 94–95, 107, 110
declarations, 94, 98, 105–106, 110
initializers, 94, 106–107, 110
linkage, 167–168, 209
resolving, 104–108, 136–139, 178,

228–229

742 Index

local variables (continued)
on the stack, 29
storage duration, 214
undefined behavior, 96

logical operators, 71. See also names of
individual operators

parsing, 73–75
precedence values, 74
short-circuiting, 72
TACKY for, 75–77, 259
tokens for, 72
type checking, 255, 369, 470

.long directive, 221
long double type, 295, 299
long integers, 243. See also long type

in assembly, 244–246, 261–264
assembly type, 261

unsigned long type, 273–281
long keyword, 247
long type, 243

alignment, 246
constants of, 247–248, 250–251, 254
conversions, 244–245, 274–275
size, 244
static initializer, 257–258

Longword assembly type, 261–262
longwords, 6, 244, 267, 270

l suffix, 60
loops, 144–148

analysis, 638, 670
do, 144–146, 148–151, 154, 156
effect on spill cost, 638
enclosing loops, 146, 151, 153
for, 144–145, 148–151, 152, 154,

157–158
labeling, 150, 152–155
resolving variables in, 151–152
TACKY for, 155–158
while, 144, 148–150, 151–155, 157

.L prefix, 89. See also local labels
lvalues, 95, 348, 349–350

conversion, 348, 350
string literals, 425, 436
structure members, 491,

507–508
in TACKY, 371–374, 515–517
validating, 107, 364, 365, 399, 436,

507–508
and void, 474–475

M
machine-dependent optimizations, 558
machine-independent optimizations,

557–558
constant folding, 561, 573–576
copy propagation, 563–564,

585–602

dead store elimination, 564–565,
603–609

unreachable code elimination,
561–562, 581–584

machine instruction, 5–6
Mach-O file format, 201
macOS, xxxiv

local label prefix, 89
platform-specific directives, 221,

238–239, 312, 339, 428, 450
prefix for user-defined names, 19,

201, 238
setup instructions, xxxiv–xxxv

main function, 4, 6, 169
make_tacky_variable function, 261
make_temporary function, 37–38
malloc function, 460
mantissa, 297
meet operator, 585

liveness analysis, 606–607
of assembly programs, 633–634

reaching copies analysis, 592–593
member access operators. See structure

member operator; structure
pointer operator

MEMORY class, 519
memory management functions, 457–458,

460–461
aligned_alloc, 461
calloc, 461
free, 460–461
malloc, 460
realloc, 461

Memory operands, 375–379
mov instruction, 5–6, 18, 261–262

emitting, 20
fixing up, 42, 268, 270

movsd instruction, 311–312
movsx instruction, 244–245, 261, 263, 444

emitting, 269, 450–451
fixing up, 267
sign extension with, 263

MovZeroExtend instruction, 287–289,
443–444

in conversions to double, 329, 445
emitting, 450–451
fixing up, 290, 449

movz instruction, 443, 449
Muchnick, Steven, 669
mulsd instruction, 315

emitting, 341–342
fixing up, 337

multidimensional arrays, 384–385,
386–389, 393

multiplication (*) operator, 47–48
assembly for, 60, 62–63

floating-point, 315, 327

Index 743

parsing, 50–55
TACKY for, 58
type checking, 254–255, 369

multiplication assignment (*=) operator, 113
Myers, Joseph, 218

N
NaNs (not-a-number), 299, 342–343

comparing, 299, 317, 342
extra credit, 342
quiet, 299
signaling, 299

negation (-) operator, 26
assembly for, 26–27, 40–41

floating-point, 315–316, 327–328
parsing, 33–34
TACKY for, 36–38
token for, 31–32
type checking, 254, 369, 435

negative infinity, 298
negative zero, 298, 317, 326, 340
neg instruction, 26–27, 40–41, 44

emitting, 44, 270
nested function definitions, 163
Nisan, Noam, 45
non-scalar types, 470–471
non-terminal symbols, 15
NOT (!) operator, 71–74

assembly for, 86, 328
TACKY for, 75–76, 77
type checking, 254, 369, 470

not equal to (!=) operator, 71–74
assembly for, 85–87

floating-point, 317, 328
pointer comparisons, 352
TACKY for, 75–76, 77
type checking, 254–255, 366–367

not instruction, 26–27, 40–41
emitting, 44, 270

null pointers, 351–352
comparisons, 352
constants, 351, 366–368, 401
as static initializers, 369

null statements, 98, 110

O
object code, xxviii
object files, xxviii, 5

generating, 169–170
sections of, 5

BSS, 222, 340, 418
data, 221–222
read-only data, 311–312, 339
text, 5

objects, 348
lifetime of, 212–213, 461, 508

observable behavior, 558–560
OF. See overflow flag
optimistic coloring, 669
optimization pipeline, 570–573, 600–601
optimizations. See also machine-independent

optimizations and entries for
individual optimizations

constant folding, 561, 573–576
copy propagation, 563–564, 585–602
dead store elimination, 564–565,

603–609
interprocedural, 570
intraprocedural, 570
machine-dependent, 558
safety of, 558
security impact, 564–565
unreachable code elimination,

561–562, 581–584
optimize function, 570–573, 601

termination, 572–573
OR (||) operator, 71–77

short-circuiting, 72
TACKY for, 75–77, 259
type checking, 255, 470

or instruction, 323–325, 337, 341
overflow, 78–82
overflow flag (OF), 78–80, 83

not applicable, 284–285, 317

P
packed operands, 310, 316
parameter-passing registers, 185, 312
parameters, 162–163, 165, 177, 195–197
parity flag (PF), 342
parse_exp function, 16, 34, 51–57,

101–102, 124
parser generators, 11
parsers, 4, 10–17. See also recursive descent

parsing
handwritten, 11
precedence climbing, 51–57
predictive, 16

parse_type function, 249–250, 277, 307,
433, 466

pattern matching, xxxiii–xxxiv
Payer, Mathias, 611
PF (parity flag), 342
phase ordering problem, 573
PlainOperand construct, 372–374
PLT (procedure linkage table), 201–202
pointer analysis, 601
pointer arithmetic, 387–390

addition, 387–390
assembly for, 414–415
relationship to subscript operator,

387–389
subtraction, 388–390

744 Index

pointer arithmetic (continued)
TACKY for, 406–408
type checking, 400–401, 472
undefined behavior, 388, 390

pointer comparisons, 352–353, 389–390
assembly for, 377, 415
type checking, 366–367, 401
TACKY for, 375, 408

pointers, 347, 349–353. See also null
pointers

conversions to and from, 351–352, 460
pointers to void, 467–469
TACKY for, 375
type checking, 367–369, 467–469

declarators, 356, 361
dereferencing, 349–350
to incomplete types, 461–462, 471–472,

473, 505
operations on, 349–353
PointerInit, 437, 450
referenced types, 354
static initializers for, 369–370, 428–429,

437, 438–439
type checking, 364–370, 400–402,

467–469, 471–472
types

AST definition, 354
parsing, 356–364

pop instruction, 27–28, 30–31, 620–621, 648
emitting, 44, 649

positive infinity, 298
postfix operators, 113, 396–397, 498
postorder traversals, 49
precedence climbing, 47, 51–57

additional resources, 68
combined with recursive descent

parsing, 52–53
example of, 55–57
pseudocode for, 54

with assignment operator, 102
with conditional operator, 124

right-associative operators, 101–102
precedence values

arithmetic operators, 55
assignment operator, 103
conditional operator, 123
logical operators, 74
relational operators, 74

precoloring register interference graphs, 625
predictive parsers, 16
prefix operators, 113, 396
preprocessor, xxviii, 7
pretty-printer, 17
procedure linkage table (PLT), 201–202
production rule, 15
PseudoMem operand, 412–414

replacing, 417–418

Pseudo operand, 40–42
pseudoregisters, 40–41

replacing, 42, 237, 267
push instruction, 27–30, 194–195

emitting, 43, 203
fixing up, 378–379
passing arguments with, 188–189,

198–199, 263, 332
putchar function, 204
puts function, 451–453
Python, xxxiv

Q
.quad directive, 246, 270, 428, 450
Quadword assembly type, 261–262
quadwords, 6

arguments, 263
instructions, 244, 261–262

suffix, 6, 269
pseudoregisters, 267
static, 246

R
RAX register, 5–6, 40–41, 60–62, 185,

193, 525
RBP register, 29–30, 375
RDX register, 60–64, 185, 525
reaching copies, 589
reaching copies analysis, 584, 589–599

iterative algorithm, 593–599
meet operator, 592–593
transfer function, 589–592, 601–602

read-only data section, 311–312, 339
realloc function, 461
recursive descent parsing, 15–17

with backtracking, 17
of binary operations, 50–51
combined with precedence climbing,

52–53
dangling else ambiguity handled,

120–121
of declarators, 359
precedence and associativity, issues

with, 50–51
Regan, Rick, 344–345
Regehr, John, 91
register allocation, 613–619. See also

spilling
additional resources, 669–670
graph coloring, 622–646

algorithm, 638–646
degree < k rule, 638

handling multiple types, 631, 637
register coalescing, 618–619, 651–668

iterated, 663
top-level algorithm, 630

Index 745

register coalescing, 614, 618–619, 651–653,
663–667

conservative coalescing, 653, 656, 670
Briggs test, 657–659, 661–663,

666–667, 669–670
George test, 659–663,

666–667, 670
iterated, 663
updating the graph while, 653–656,

663, 666
register interference graphs, 622–626

building, 631–637
coloring, 622–625, 638–646

precoloring, 625
detecting interference, 623–624,

626–627
updating, 653–656, 666

registers, 5–6
aliases, 40
assembly AST definition, 18, 40, 62,

620–621
parameter-passing registers, 195
RBP register, 375
RSP register, 264
XMM registers, 325

caller-saved and callee-saved, 185,
620–621, 645–646, 648–649

general-purpose, 311
instruction, 84
parameter-passing, 185, 195, 312
XMM, 311–312, 316, 325

Reg operand, 40
relational operators, 71. See also names of

individual operators
assembly for, 85–88

floating-point, 317, 328
unsigned, 285, 287–288

parsing, 73–75
precedence values, 74

pointer operands, 352, 389–390
TACKY for, 75–76
tokens for, 72
type checking, 254–255, 366–367, 401,

476–477
remainder (%) operator, 47–48

assembly for, 60–63
unsigned, 288

parsing, 50–55
TACKY for, 58
type checking, 254–255, 308, 369

remainder assignment (%=) operator, 113
replacing pseudoregisters, 42

with different types, 267
PseudoMem operands, 417–418
with static storage duration, 237

ret instruction, 6, 18
emitting, 20, 44

return statements, 4
assembly for, 18, 333, 482, 545–546
AST definition, 13–14
missing, 111–113, 458
parsing, 14–17
without return values, 458, 469–470,

479, 482
TACKY for, 36–38, 479
type checking, 256–257, 469–470

return values, 4–6, 14
absent, 458, 469–470, 479, 482
classifying, 537–538. See also classify

_return_value function
of floating-point type, 312–313, 333
of structure type, 525–528, 537–541,

545–546
rewrite_coalesced function, 667–668
RFLAGS register, 78
right-associative operators, 50, 101–102,

123–124
right shift (>>) operator, 67
right shift assignment (>>=) operator, 113
RIP register, 83–84, 189–190, 222
RIP-relative addressing, 222, 223, 311,

376, 529
Data operand, 236–238

Ritchie, Dennis, 390
.rodata directive, 311–312, 339, 428, 450
Rosetta 2, xxxv
rounding modes, 299, 320

round-to-nearest, ties-to-even, 299,
321, 575

rounding to odd, 322–324
RSP register, 27–30, 43–44, 185, 264

S
safety of optimizations, 558
scalar types, 384, 470–471
Schocken, Shimon, 45
scopes, 131–134, 208–209

block scope, 208
compound statements determine,

131–134
file scope, 207–208
vs. storage duration, 213

.section .rodata directive, 311–312
semantic analysis, 93, 103–104

identifier resolution (aka variable
resolution), 104–109,
174–178, 227–229

loop labeling, 150, 152–155
type checking, 178–182, 251–258

Serra, Christopher, 22
SetCC instruction, 85–87

emitting, 89–90
set_up_parameters function, 544–545
SF (sign flag), 78–80, 83

746 Index

shift left (shl) instruction, 529–530,
541–543, 551

shift right (shr) instruction, 320–321,
323–325, 529

two-operand form, 529, 543, 551
short-circuiting operators, 72, 76–77
signed char type, 423–424
signed integers, 243

overflow, 78–82
representation, 26, 61, 244
type conversions, 244–246, 274–275

signed keyword, 275
SignExtend instruction, 259–260, 263,

282–283
sign extension, 61, 244–245, 275

in assembly, 263, 444
in TACKY, 259–260, 282–283

sign flag (SF), 78–80, 83
significant degree, 638
single-precision format, 299
sizeof operator, 458, 462–466, 471,

477–478, 480–481
Song, Dawn, 611
source character set, 430
source file, xxviii, 7–8, 208
special characters, 429, 450
special sequences (EBNF), 15
spilling, 616, 627–630, 642–644, 646

candidates for, 642
spill code, 616, 620
spill cost, 630–631, 638, 642, 644–645

SSA (static single assignment) form, 672
SSE. See Streaming SIMD Extension

instructions
SSE class, 519
stack, 19, 27–31

alignment, 185, 197–198, 648–649
executable, 19

additional resources, 22
frames, 29–31

allocating, 42, 197–199, 200–201
pointer, 27

stack frames, 29–31
Stack operand, 40, 42, 44

replaced with Memory operand, 375
StaticConstant construct (assembly), 324,

326, 336, 446
emitting, 340

StaticConstant construct (TACKY), 442, 446
static initializers, 213–214. See also ZeroInit

construct
in assembly, 221–222, 238–239
for characters, 436
compound, 404–405

in assembly, 418–419
for structures, 509–511

for double type, 308–309, 340

for long integers, 246, 257–258, 270
for pointers, 369–370, 428–429, 437,

438–439
null pointers as, 369

strings as, 437–439
in the symbol table, 257
type checking, 257–258
for unsigned integers, 280–281

static single assignment (SSA) form, 672
static specifier, 208, 209–211, 213, 216–217,

230–233
static storage duration, 213–214. See also

static variables
replacing pseudoregisters with, 237

StaticVariable construct (assembly),
235–236, 263–264, 413

emitting, 238–239
StaticVariable construct (TACKY),

234–235, 258–259, 406
static variables, 213–214

assembly for, 221–222, 235–239, 246
initializing, 213–214. See also static

initializers
in TACKY, 234–235
type checking, 229–230, 231–233

status flags, 78–80
carry, 284–285, 317
overflow, 78–80, 83
parity, 342
sign, 78–80, 83
zero, 78–80, 83

Sterbenz lemma, 319
storage-class specifiers, 207–208, 223

effects, 209–217
parsing, 225–226

storage duration, 207, 212–213
allocated, 213, 461
in assembly, 221–222
automatic, 212–213, 217
vs. scope, 213
static, 213–214, 237
in the symbol table, 229–230
thread, 213

Store instruction, 370–374
and liveness analysis, 609
and reaching copies analysis, 599–600,

601–602
Streaming SIMD Extension (SSE)

instructions, 310–312
arithmetic, 315–316
comparisons, 317
type conversions, 317, 320

strict aliasing rules, 352
string literals, 425–426

as array initializers, 425, 426
TACKY for, 440–441
type checking, 437–438

Index 747

in assembly, 426–429
AST definition, 324
emitting, 449–450
designating constant strings, 425–426

TACKY for, 441–442
type checking, 436, 438–439

lexing, 429–431
lvalues, 425, 436
parsing, 433

struct keyword, 494
structure member (.) operator, 491, 495

parsing, 497–498
TACKY for, 513–517
token for, 494
type checking, 506–508

structure pointer (->) operator, 491, 495
parsing, 497–498
TACKY for, 514–515, 517
token for, 494
type checking, 506–507

structure tags, 486–488, 489–490
resolving, 498–500

structure types
classifying, 519–522, 533–534
complete, 486–487, 503
copying, 531–532
declarations, 486–491
definitions, 486

in the type table, 501–502
validating, 501

in function calls, 519–528, 532–546
incomplete, 486–487, 490, 503, 505–506
initializers, 492

TACKY for, 517–518
type checking, 509–511

layout in memory, 492–494
not implemented, 490–491
operations on, 491–492. See also

structure member operator;
structure point operator

padding, 493, 510–511, 518–519
return values of, 525–528, 545–546
specifiers, 498
tags, 486–488, 489–490

resolving, 498–500
type checking, 500–511

sub instruction, 29–30, 60, 62–63
emitting, 66, 270
fixing up, 64, 268

subnormal numbers, 298
SubObject construct, 515–517
subscript ([]) operator, 389

AST definition, 393
generation, 408
parsing, 396–397
TACKY for, 408–410
type checking, 399, 401–402, 471–472

subsd instruction, 315
fixing up, 337

subtraction (-) operator, 47–48
assembly for, 60, 62–63

floating-point, 315, 327
parsing, 50–55
pointer subtraction, 388–390

TACKY for, 406–408
type checking, 400–401, 472

TACKY for, 58
type checking, 254–255

subtraction assignment (-=) operator, 113
switch statements, 159
symbols (assembly), 5

global vs. local, 168–169
symbol tables, 5, 89

symbol table internal to compiler, 174–175,
179–181. See also backend
symbol table

generating TACKY top-level definitions
from, 234–235, 442

identifier attributes in, 229–233,
257–258, 438

renamed to frontend symbol table, 266
temporary variables in, 260–261
tentative definitions in, 229–230, 235

symbol tables in object files, 5, 89
System V x64 ABI, xxxvi, 184. See also

System V x64 calling
convention

arrays, alignment of, 415
char, signedness of, 424
Clang violation of, 444–445
floating-point format, 296, 297
int and long

alignment of, 246
size of, 244

size_t, definition of, 460
structures, size and alignment of, 493

System V x64 calling convention, 184–194
additional resources, 344,

553–554
classifying values, 519
floating-point values in, 312–315
narrow arguments in, 444–445
structures in, 519–528

T
TAC (three-address code), 35–36
TACKY, 36–38

Constant operands, 36
generation, 37–38

address (&) operator, 370–372,
374, 514, 516–517

assignment expressions, 110,
371–374, 516

binary expressions, 58

748 Index

TACKY (continued)
break and continue statements,

155–156
cast expressions, 259–260,

281–283, 309–310, 375,
440, 479

compound initializers, 406,
410–411, 517–518

compound statements, 140
conditional expressions, 127,

479–480
dereference (*) operator, 371–374
function calls, 182–183, 479
function definitions, 182–183
if statements, 126–127
loops, 155–158
pointer arithmetic, 406–408
return statements, 36–38, 479
short-circuiting operators, 76–77
sizeof operator, 480–481
static variables, 234–235
structure member access

operators, 513–517
subscript ([]) operator, 408
unary expressions, 37–38

instructions, 42–43
lvalue conversion in, 371–374, 515–517
temporary variables, 36–38, 260–261
top-level constants, 442
Var operands, 36

Taylor, Ian Lance, 21, 22
temporary lifetimes, 508
temporary variables, 36–38

naming, 38
on the stack, 29
in the symbol table, 260–261

tentative definitions, 215–216
converting to TACKY, 235
in the symbol table, 229–230, 235, 411
type checking, 231–232
undefined behavior, 219–220

terminal symbols, 15
ternary operators, 121. See also conditional

expressions
.text directive, 238
text section, 5, 283
thread storage duration, 213
three-address code (TAC), 35–36. See also

TACKY
tokens, 3, 8–10

constants, 8–10
character, 429
floating-point, 302–304
integer, 8, 247, 275, 304

identifiers, 8–10
string literals, 429

Torczon, Linda, 669–670

transfer functions, 584–585
liveness analysis, 605–606

for assembly code, 634–636
with Part II types, 608–609

reaching copies analysis, 589–592
with Part II types, 601–602

translation units, 167, 208
Truncate instruction, 259–260, 263, 282
two’s complement, 26, 45, 78, 274
type checking, 178–182, 251–258

arrays, 398–399, 402–405, 471,
472–473

compound initializers, 403–405,
509–511

declarations, 179–181, 230–233,
257–258, 402–403

double, 308–309
expressions, 253–256

arithmetic operators, 254–255,
369, 435, 476–477

assignment, 256, 368, 399
bitwise complement (~) operator,

308, 369, 435
cast, 254, 369, 402, 471, 505
conditional, 256, 368, 467, 470,

476, 508
logical operators, 254–255, 470
pointer arithmetic, 400–401, 472
relational operators, 254–255,

366–367, 401, 476–477
remainder (%) operator, 254–255,

308, 369
sizeof operator, 477–478
structure member access

operators, 506–507
subscript ([]) operator, 399,

401–402, 471–472
file scope variable declarations,

231–232
function calls, 179, 181–182, 256
incomplete types, 471–473, 505–506
pointers, 364–370, 400–402, 467–469,

471–472
return statements, 256–257, 469–470
string literals, 436–439
structure types, 500–511
type errors, 174

type conversions
in assembly, 244–245, 317–324

floating-point, 317–324,
328–329

sign extension, 244–245, 444
truncation, 245, 263, 444
zero extension, 286–288, 443–444

character, 443–445
double, 317–324

to and from character types, 445

Index 749

rounding behavior, 300–301
undefined, 308, 371

implementation-defined, 245, 352
implicit, 254–255, 279, 351, 467–469

as if by assignment, 368, 468–469,
504–505

Cast expression representing, 255
usual arithmetic conversions,

254–255, 279–280, 308, 435
integer, 244–245, 274–275
pointer, 351–352, 460
in TACKY, 259–260, 281–283, 309–310

Copy, 259–260
to and from double, 309–310
SignExtend, 259–260
Truncate, 259–260
ZeroExtend, 281–283

typedef declarations, 108–109
type errors, 174. See also type checking
type names, 361–363, 462, 465–466
types, 178–179. See also character types;

integer types; void type
aggregate, 384
arithmetic, 347, 476–477
array, 384–392
derived, 354
on exp nodes, 252–253
floating-point, 295–299
function, 178–179, 247–248
incomplete, 461–462
non-scalar, 470–471
pointer, 347, 349–353
scalar, 384, 470–471

type specifiers
char, 429
character, 433
double, 302, 306–307
int, 8
integer, 249–250, 277–278
long, 247
signed, 275
structures, 498
unsigned, 275
void, 8

type table, 500–502, 503–504, 506–507,
509–511, 515, 517–518

U
UIntToDouble instruction, 309–310

assembly for, 320–324
Ullman, Jeffrey, 611
unary expressions, 25–27, 31–38

AST definition, 33
parsing, 33–34

formal grammar, 33, 397, 465
TACKY for, 36–38
type checking, 254

unary operators. See unary expressions and
names of individual operators

unconditional jump instructions. See jump
instructions (assembly);
jump instructions (TACKY)

undeclared variables, 104, 107, 134
undefined behavior, 80–82

additional resources, 91
conflicting linkage, 218–219
handling safely, 672
integer overflow, 80–82
missing return statement, 111–112
modifying objects, 425–426, 508
out-of-range type conversions, 308, 317
pointer arithmetic, 388, 390
pointer dereferences, 351–352
tentative definitions, 219–220
variable accesses, 96, 106–107

UndefinedBehaviorSanitizer, 672
union types, 552–553
universal character names, 10
unreachable code elimination, 561–562,

581–584
combining with other

optimizations, 569
unsequenced evaluations, 58–59, 82
unsigned char type, 424
unsigned integers, 273–289

in assembly, 283–289
assembly type, 287
unsigned comparisons, 283–285,

287–288
unsigned division, 286, 288

constants, 275–278
regular expression for, 304

static initializers for, 280–281
type conversions, 274–275, 279–280,

282–283
unsigned int type, 273–281
unsigned long type, 273–281
wraparound, 79, 285–286, 575

unsigned keyword, 275
usual arithmetic conversions, 254–255,

279–280, 308, 435

V
values, 348
variable declarations, 94–95, 208–220

of array type, 384–385
AST definition, 98, 171
linkage, 209–212
parsing, 100–101, 224–227
resolving identifiers in, 105–106,

138–139, 227–229
scopes, 131–134, 208–209

block scope, 208
file scope, 208

750 Index

variable declarations (continued)
storage duration, 212–214
type checking, 179–180, 231–233,

257–258
variable resolution, 104–108, 136–139,

227–229
conditional expressions, 125–126
if statements, 125–126
loops, 151–152
multiple scopes, 136–139
renamed identifier resolution, 174

variables, 93–97, 208–222. See also
static variables

aliased, 599–602, 609, 637
automatic, 208
external, 208, 227–229
live, 603
local, 93–95
resolving, 104–107, 227–229
scopes, 131–134, 208–209
in TACKY, 36–38, 110

temporary, 36–38, 260–261
type checking, 181, 253
variable resolution, 107

variadic functions, 191
void expressions, 459
void keyword, 8–9

as parameter list, 162, 459, 466–467
void type, 458–460

casts to, 459, 471, 479
conditional expressions with, 459, 476,

479–480
in C standard, 458, 474–475
functions returning, 458, 469–470,

479, 482
pointers to, 460–461, 475

conversions to and from, 467–469
restrictions on, 473–476
when valid, 473–475

volatile objects, 560

W
Wang, Daniel, 22
while statements, 144, 148–150, 151–155, 157
whitespace, 9–10
wide character types, 424
Windows Subsystem for Linux (WSL), xxxiv
w suffix, 28

X
x64 instruction set, xxvii. See also assembly

code and names of individual
instructions

AT&T vs. Intel syntax, 6, 244, 570
documentation, xxxvi
Streaming SIMD Extension

instructions, 310–312
x64 processor, xxxiv

little-endian, 86
memory address size, 28

x86-64. See x64 instruction set; x64
processor

Xcode, xxxiv–xxxv
XMM registers, 311–312, 325

allocating, 631
building register interference

graph, 637
in function calls, 312–315, 329–333,

519, 532–541, 545–546
zeroing, 316

XOR (^) operator, 67
XOR assignment (^=) operator, 113
xorpd instruction, 316, 324–325, 328

emitting, 341
fixing up, 337

Y
Yang, Edward, 253
Yang, Zhaomo, 611

Z
Zephyr Abstract Syntax Description

Language. See ASDL
.zero directive, 222
ZeroExtend instruction, 281–283, 288
zero extension, 274, 281–282, 286–288,

443–444
zero flag (ZF), 78–80, 83

comisd, set by, 317
in unsigned comparisons, 284–285

ZeroInit construct, 405
emitting, 418–419
initializing padding, 510–511
initializing scalar variables, 405
initializing tentatively defined

arrays, 411

