
In the last chapter we discussed the secu-
rity access token, which describes the user’s

identity to the SRM. In this chapter, you’ll
learn how security descriptors define a resource’s

security. A security descriptor does several things. It
specifies the owner of a resource, allowing the SRM to
grant specific rights to users who are accessing their
own data. It also contains the discretionary access con-
trol (DAC) and mandatory access control (MAC), which
grant or deny access to users and groups. Finally, it
can contain entries that generate auditing events.
Almost every kernel resource has a security descriptor,
and user-mode applications can implement their own

5
S E C U R I T Y D E S C R I P T O R S

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

2 Chapter 5

access control through security descriptors without
needing to create a kernel resource.

Understanding the structure of security descriptors is crucial to
understanding the security of Windows, as they’re used to secure every
kernel object and many user-mode components, such as services. You’ll
even find security descriptors used across network boundaries to secure
remote resources. While developing a Windows application or research-
ing Windows security, you’ll inevitably have to inspect or create a security
descriptor, so having a clear understanding of what a security descriptor
contains will save you a lot of time. To help with this, I’ll start by describing
the structure of a security descriptor in more detail.

The Structure of a Security Descriptor
Windows stores security descriptors as binary structures on disk or in mem-
ory. While you’ll rarely have to manually parse these structures, it’s worth
understanding what they contain. A security descriptor consists of the fol-
lowing seven components:

• The revision

• Optional resource manager flags

• Control flags

• An optional owner SID

• An optional group SID

• An optional discretionary access control list

• An optional system access control list

Let’s look at each of these in turn. The first component of any security
descriptor is the revision, which indicates the version of the security descrip-
tor’s binary format. There is only one version, so the revision is always set to
the value 1. Next is an optional set of flags for use by a resource manager.
You’ll almost never encounter these flags being set; however, they are used
by Active Directory, so we’ll talk more about them in Chapter 11.

The resource manager flags are followed by a set of control flags. These
have three uses: they define which optional components of the security
descriptor are valid, how the security descriptors and components were
created, and how to process the security descriptor when applying it to an
object. Table 5-1 shows the list of valid flags and their descriptions. We’ll
cover many of the terms in this table, such as inheritance, in more detail in
the following chapter.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 3

Table 5-1: Valid Control Flags and Their Values and Descriptions

Name Value Description

OwnerDefaulted 0x0001 The owner SID was assigned through a
default method.

GroupDefaulted 0x0002 The group SID was assigned through a default
method.

DaclPresent 0x0004 The DACL is present in the security descriptor.

DaclDefaulted 0x0008 The DACL was assigned through a default method.

SaclPresent 0x0010 The SACL is present in the security descriptor.

SaclDefaulted 0x0020 The SACL was assigned through a default method.

DaclUntrusted 0x0040 When combined with ServerSecurity, the DACL
is untrusted.

ServerSecurity 0x0080 The DACL is replaced with a server ACL (more on
the use of this in Chapter 6).

DaclAutoInheritReq 0x0100 DACL auto-inheritance for child objects is
requested.

SaclAutoInheritReq 0x0200 SACL auto-inheritance for child objects is
requested.

DaclAutoInherited 0x0400 The DACL supports auto-inheritance.

SaclAutoInherited 0x0800 The SACL supports auto-inheritance.

DaclProtected 0x1000 The DACL is protected from inheritance.

SaclProtected 0x2000 The SACL is protected from inheritance.

RmControlValid 0x4000 The resource manager flags are valid.

SelfRelative 0x8000 The security descriptor is in a relative format.

After the control flags comes the owner SID, which represents the owner
of the resource. This is typically the user’s SID; however, ownership can also
be assigned to a group, such as the Administrators group. Being the owner
of a resource grants you certain privileges, including the ability to modify
the resource’s security descriptor. By ensuring the owner has this capabil-
ity, the system prevents a user from locking themselves out of their own
resources.

The group SID is like the owner SID, but it’s rarely used. It exists primar-
ily to ensure POSIX compatibility (a concern in the days when Windows still
had a POSIX subsystem) and plays no part in access control for Windows
applications.

The most important part of the security descriptor is the discretionary
access control list (DACL). The DACL contains a list of access control entries
(ACEs), which define what access a SID is given. It’s considered discretionary
because the user or system administrator can choose the level of access
granted. There are many different types of ACEs. We’ll discuss these fur-
ther in “Access Control List Headers and Entries” on page XX; for now,

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

4 Chapter 5

you just need to know that the basic information in each ACE includes the
following:

• The SID of the user or group to which the ACE applies

• The type of ACE

• The access mask to which the SID will be allowed or denied access

The final component of the security descriptor is the security access con-
trol list (SACL), which stores auditing rules. Like the DACL, it contains a list
of ACEs, but rather than determining access based on whether a defined
SID matches the current user’s, it determines the rules for generating audit
events when the resource is accessed. Since Windows Vista, the SACL has
also been the preferred location in which to store additional non-auditing
ACEs, such as the resource’s mandatory label.

Two final elements to point out in the DACL and SACL are the DaclPresent
and SaclPresent control flags. These flags indicate that the DACL and SACL,
respectively, are present in the security descriptor. Using flags allows for the
setting of a NULL ACL, where the present flag is set but no value has been
specified for the ACL field in the security descriptor. A NULL ACL indicates
that no security for that ACL has been defined and causes the SRM to effec-
tively ignore it. This is distinct from an empty ACL, where the present flag is
set and a value for the ACL is specified but the ACL contains no ACEs.

The Structure of a SID
Until now, we’ve talked about SIDs as opaque binary values or strings of
numbers. In this section, we’ll look more closely at what a SID contains. The
diagram in Figure 5-1 shows a SID as it’s stored in memory.

...1

Revision

N Security Authority
(6 bytes)

RID count

RID-N
(32 bits)

RID-0
(32 bits)

Figure 5-1: The security identifier (SID) structure in memory

There are four components to a binary SID:

Revision A value that is always set to 1, as there is no other defined
version number

Relative identifier count The number of RIDs in the SID

Security authority A value representing the party that issued the SID

Relative identifiers Zero or more 32-bit numbers that represent the
user or group

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 5

The security authority can be any value, but Windows has predefined
some commonly used ones. All well-known authorities start with five 0 bytes
followed by a value from Table 5-2.

Table 5-2: Well-Known Authorities and Their Values

Name Final value Example name

Null 0 NULL SID

World 1 Everyone

Local 2 CONSOLE LOGON

Creator 3 CREATOR OWNER

Nt 5 BUILTIN\Users

Package 15 APPLICATION PACKAGE AUTHORITY\Your
internet connection

MandatoryLabel 16 Mandatory Label\Medium Mandatory Level

ScopedPolicyId 17 N/A

ProcessTrust 19 TRUST LEVEL\ProtectedLight-Windows

After the security authority come the relative identifiers. A SID can con-
tain one or more RIDs, with the domain RIDs followed by the user RIDs.

Let’s walk through how the SID is constructed for a well-known group,
BUILTIN\Users. Note that the domain component is separated from the
group name with a backslash. In this case, the domain is BUILTIN. This
is a predefined domain represented by a single RID, 32. Listing 5-1 builds
the domain SID for the BUILTIN domain from its components by using the
Get-NtSid PowerShell command, then uses the Get-NtSidName command to
retrieve the system-defined name for the SID.

PS> $domain_sid = Get-NtSid -SecurityAuthority Nt -RelativeIdentifier 32
PS> Get-NtSidName $domain_sid
Domain Name Source NameUse Sddl
------ ---- ------ ------- ----
BUILTIN BUILTIN Account Domain S-1-5-32

Listing 5-1: Querying for the BUILTIN domain SID

The BUILTIN domain’s SID is a member of the Nt security authority.
We specify this security authority using the SecurityAuthority parameter and
specify the single RID using the RelativeIdentifier parameter.

We then pass the SID to the Get-NtSidName command. The first two
columns of the output show the domain name and the name of the SID.
In this case, those values are the same; this is just a quirk of the BUILTIN
domain’s registration.

The next column indicates the location from which the name was
retrieved. In this example, the source, Account, indicates that the name was
retrieved from LSASS. If the source were WellKnown, this would indicate that
PowerShell knew the name ahead of time and didn’t need to query LSASS.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

6 Chapter 5

The fourth column, NameUse, indicates the SID’s type. In this case, it’s Domain,
which we might have expected. The final column is the SID in its SDDL
format.

Any RIDs specified for SIDs following the domain SID identify a partic-
ular user or group. For the Users group, we use a single RID with the value
545 (predefined by Windows). Listing 5-2 creates a new SID by adding the
545 RID to the base domain’s SID.

PS> $user_sid = Get-NtSid -BaseSid $domain_sid -RelativeIdentifier 545
PS> Get-NtSidName $user_sid
Domain Name Source NameUse Sddl
------ ---- ------ ------- ----
BUILTIN Users Account Alias S-1-5-32-545

PS> $user_sid.Name
BUILTIN\Users

Listing 5-2: Constructing a SID from a security authority and RIDs

The output now shows Users as the SID name. Also notice that NameUse in
this case is set to Alias. This indicates that the SID represents a local, built-
in group, as distinct from Group, which represents a user-defined group.
When we print the Name property on the SID, it outputs the fully qualified
name, with the domain and the name separated by a backslash.

You can find lists of known SIDs in Microsoft’s technical documenta-
tion and on other websites. However, Microsoft sometimes adds SIDs with-
out documenting them. Therefore, I encourage you to test multiple security
authority and RID values to see what other users and groups you can find.
Merely checking for different SIDs won’t cause any damage. For example,
try replacing the user RID in Listing 5-2 with 544. This new SID represents
the BUILTIN\Administrators group, as shown in Listing 5-3.

PS> Get-NtSid -BaseSid $domain_sid -RelativeIdentifier 32, 544
Name Sid
---- ---
BUILTIN\Administrators S-1-5-32-544

Listing 5-3: Querying the Administrators group SID using Get-NtSid

Remembering the security authority and RIDs for a specific SID can be
tricky, and you might not recall the exact name to query by using the Name
parameter, as described in Chapter 2. Therefore, Get-NtSid implements a
mode that can query a SID from a known set. For example, to query the SID
of the Administrators group, you can use the command shown in Listing 5-4.

PS> Get-NtSid -KnownSid BuiltinAdministrators
Name Sid
---- ---
BUILTIN\Administrators S-1-5-32-544

Listing 5-4: Querying the known Administrators group SID using Get-NtSid

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 7

You’ll find SIDs used throughout the Windows operating system. It’s
crucial that you understand how they’re structured, as this will allow you
to quickly assess what a SID might represent. For example, if you identify a
SID with the Nt security authority and its first RID is 32, you can be sure it’s
representing a built-in user or group. Knowing the structure also allows you
to identify and extract SIDs from crash dumps or memory in cases where
better tooling isn’t available.

Absolute and Relative Security Descriptors
The kernel supports two binary representation formats for security descrip-
tors: absolute and relative. We’ll examine both in this section, and consider
the advantages and disadvantages of each.

Both formats start with the same three values: the revision, the resource
manager flags, and the control flags. The SelfRelative flag in the control
flags determines which format to use, as shown in Figure 5-2.

Revision Sbz1

Control

Absolute security
descriptor

SelfRelative
flag NOT set

8 bits 8 bits

Relative security
descriptor

SelfRelative
flag set

Figure 5-2: Selecting the security descriptor format based on the SelfRelative
control flag

The total size of the security descriptor’s header is 32 bits, split between
two 8-bit values, the revision and Sbz1, and the 16-bit control flags. The
security descriptor’s resource manager flags are stored in Sbz1; these are
only valid if the RmControlValid control flag is set, although the value will be
present in either case. The rest of the security descriptor is stored immedi-
ately after the header.

The simplest format, the absolute security descriptor, is used when the
SelfRelative flag is not set. After the common header, the absolute format
defines four pointers to reference in memory: the owner SID, the group
SID, the DACL, and the SACL, in that order, as shown in Figure 5-3.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

8 Chapter 5

Revision Sbz1

Control

Owner pointer

Group pointer

DACL pointer

SACL pointer

Owner SID

Group SID

DACL

SACL

Figure 5-3: The structure of an absolute security
descriptor

Each pointer references an absolute memory address at which the data
is stored. The size of the pointer therefore depends on whether the applica-
tion is 32- or 64-bit. It’s also possible to specify a NULL value for
the pointer to indicate that the value is not present. The owner and group
SID values are stored using the binary format defined in the previous
section.

When the SelfRelative flag is set, the security descriptor instead follows
the relative format. Instead of referencing its values using absolute memory
addresses, a relative security descriptor stores these locations as positive off-
sets relative to the start of its header. Figure 5-4 shows how a relative secu-
rity descriptor is constructed.

Revision Sbz1

Control

Owner offset

Group offset

DACL offset

SACL offset

Owner SID

Group SID

DACL

SACL

Figure 5-4: The structure of a relative security
descriptor

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 9

These values are stored in contiguous memory. The ACL format, which
we’ll explore in the following section, is already a relative format and there-
fore doesn’t require any special handling when used in a relative security
descriptor. Each offset is always 32 bits long, regardless of the system’s bit
size. If an offset is set to 0, the value doesn’t exist, as in the case of NULL
for an absolute security descriptor.

The main advantage of an absolute security descriptor is that you can
easily update its individual components. For example, to replace the owner
SID, you’d allocate a new SID in memory and assign its memory address to
the owner pointer. In comparison, modifying a relative security descriptor
in the same way might require adjusting its allocated memory if the new
owner SID structure is larger than the old one.

On the other hand, the big advantage of a relative security descriptor
is that it can be built in a single contiguous block of memory. This allows
you to serialize the security descriptor to a persistent format, such as a
file or a registry key. When you’re trying to determine the security of a
resource, you might need to extract its security descriptor from memory
or a persistent store. By understanding the two formats, you can deter-
mine how to read the security descriptor into something you can view or
manipulate.

Most APIs and system calls accept either security descriptor format,
determining how to handle a security descriptor automatically by check-
ing the value of the SelfRelative flag. However, you’ll find some excep-
tions in which an API takes only one format or another; in that case, if
you pass the API a security descriptor in the wrong format, you’ll typically
receive an error such as STATUS_INVALID_SECURITY_DESCR. Security descrip-
tors returned from an API will almost always be in relative format due
to the simplicity of their memory management. The system provides the
APIs RtlAbsoluteToSelfRelativeSD and RtlSelfRelativeToAbsoluteSD to convert
between the two formats if needed.

The PowerShell module handles all security descriptors using a
SecurityDescriptor object, regardless of format. This object is written in
.NET and converts to a relative or absolute security descriptor only when
it’s required to interact with native code. You can determine whether a
SecurityDescriptor object was generated from a relative security descriptor by
inspecting the SelfRelative property.

Access Control List Headers and Entries
The DACL and SACL make up most of the data in a security descriptor.
While these elements have different purposes, they share the same basic
structure. In this section we’ll cover how they’re arranged in memory,
leaving the details of how they contribute to the access check process to
Chapter 6.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

10 Chapter 5

The Header
All ACLs consist of an ACL header followed by a list of zero or more ACEs
in one contiguous block of memory. Figure 5-5 shows this top-level format.

...

ACL header

ACE 0

A
C

L
si

ze

ACE N – 1

C
ou

nt
 o

f N
 A

C
Es

Figure 5-5: A top-level overview of the ACL
structure

The ACL header contains a revision, the total size of the ACL in bytes,
and the number of ACE entries that follow the header. Figure 5-6 shows the
header structure.

Revision Sbz1

ACL size

8 bits

ACE count

Sbz2

8 bits

Figure 5-6: The structure of the ACL
header

The ACL header also contains two reserved fields, Sbz1 and Sbz2, both
of which should always be 0. They serve no purpose in modern versions of
Windows and are there in case the ACL structure needs to be extended.
Currently, the Revision field can have one of three values, which determine
the ACL’s valid ACEs. If an ACL uses an ACE that the revision doesn’t

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 11

support, the ACL won’t be considered valid. Windows supports the follow-
ing revisions:

Default The default ACL revision. Supports all the basic ACE types,
such as Allowed and Denied. Specified with the Revision value 2.

Compound Adds support for compound ACEs to the default ACL
revision. Specified with the Revision value 3.

Object Adds support for object ACEs to the compound. Specified
with the Revision value 4.

The ACE List
Following the ACL header is the list of ACEs, which determines what access
the SID has. ACEs are of variable length but always start with a header
that contains the ACE type, additional flags, and the ACE’s total size. The
header is followed by data specific to the ACE type. Figure 5-7 shows this
structure.

ACE type ACE flags

ACE size

ACE type-specific data

A
C

E header A
C

E size

8 bits 8 bits

Figure 5-7: The ACE structure

The ACE header is common to all ACE types. This allows an applica-
tion to safely access the header when processing an ACL. The ACE type
value can then be used to determine the exact format of the ACE’s type-
specific data. If the application doesn’t understand the ACE type, it can use
the size field to skip the ACE entirely (we’ll discuss how types affect access
checking in Chapter 7).

Table 5-3 lists the supported ACE types, the minimum ACE revision
they are valid in, and whether they are valid in the DACL or the SACL.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

12 Chapter 5

Table 5-3: Supported ACE Types, Minimum ACL Revisions, and Locations

ACE type Value Minimum revision ACL Description

Allowed 0x0 Default DACL Grants access to a resource

Denied 0x1 Default DACL Denies access to a resource

Audit 0x2 Default SACL Audits access to a resource

Alarm 0x3 Default SACL Alarms upon access to a resource;
unused

AllowedCompound 0x4 Compound DACL Grants access to a resource during
impersonation

AllowedObject 0x5 Object DACL Grants access to a resource with
an object type

DeniedObject 0x6 Object DACL Denies access to a resource with
an object type

AuditObject 0x7 Object SACL Audits access to a resource with
an object type

AlarmObject 0x8 Object SACL Alarms upon access with an object
type; unused

AllowedCallback 0x9 Default DACL Grants access to a resource with a
callback

DeniedCallback 0xA Default DACL Denies access to a resource with a
callback

AllowedCallbackObject 0xB Object DACL Grants access with a callback and
an object type

DeniedCallbackObject 0xC Object DACL Denies access with a callback and
an object type

AuditCallback 0xD Default SACL Audits access with a callback

AlarmCallback 0xE Default SACL Alarms upon access with a call-
back; unused

AuditCallbackObject 0xF Object SACL Audits access with a callback and
an object type

AlarmCallbackObject 0x10 Object SACL Alarms upon access with a call-
back and an object type; unused

MandatoryLabel 0x11 Default SACL Specifies a mandatory label

ResourceAttribute 0x12 Default SACL Specifies attributes for the resource

ScopedPolicyId 0x13 Default SACL Specifies a central access policy ID
for the resource

ProcessTrustLabel 0x14 Default SACL Specifies a process trust label to
limit resource access

AccessFilter 0x15 Default SACL Specifies an access filter for the
resource

While Windows officially supports all these ACE types, the kernel does
not use the Alarm types. User applications can specify their own ACE types,
but various APIs in user and kernel mode check for valid types and will gen-
erate an error if the ACE type isn’t known.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 13

An ACE’s type-specific data falls primary into one of three formats:
normal ACEs, such as Allowed and Denied; compound ACEs; and object ACEs.
A normal ACE contains the following fields after the header, with the field’s
size indicated in parentheses:

Access mask (32-bit) The access mask to be granted or denied based
on the ACE type

SID (variable size) The SID, in the binary format described earlier in
this chapter

Compound ACEs are for use during impersonation. These ACEs can
grant access to both the impersonated caller and the process user at the
same time. The only valid type for them is AllowedCompound. Even though the
latest versions of Windows still support compound ACEs, they’re effectively
undocumented and presumably deprecated. I’ve included them in this
book for completeness. Their format is as follows:

Access mask (32-bit) The access mask to be granted

Compound ACE type (16-bit) Set to 1, which means the ACE is used
for impersonation

Reserved (16-bit) Always 0

Server SID (variable size) The server SID in binary format; matches
the service user

SID (variable size) The SID in a binary format; matches the imper-
sonated user

Microsoft introduced the object ACE format to support access control
for Active Directory Services. Active Directory uses a 128-bit GUID to rep-
resent a directory service object type; the object ACE determines access for
specific types of objects, such as computers or users. For example, using a
single security descriptor, a directory could grant a SID the access needed
to create one type of object but not another. The object ACE format is as
follows:

Access mask (32-bit) The access mask to be granted or denied based
on the ACE type

Flags (32-bit) Used to indicate which of the following GUIDs are
present

Object type (16-byte) The object type GUID; present only if the flag
in bit 0 is set

Inherited object type (16-byte) The inherited object GUID; present
only if the flag in bit 1 is set

SID (variable size) The SID in a binary format

ACEs can be larger than their types’ defined structures, and they may
use additional space to stored unstructured data. Most commonly, they use
this unstructured data for the callback ACE types, such as AllowedCallback,
which defines a conditional expression that determines whether the ACE

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

14 Chapter 5

should be active during an access check. We can inspect the data
that would be generated from a conditional expression using the
ConvertFrom-NtAceCondition PowerShell command, as shown in Listing 5-5.

PS> ConvertFrom-NtAceCondition 'WIN://TokenId == "XYZ"' | Out-HexDump -ShowAll
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF

00000000: 61 72 74 78 F8 1A 00 00 00 57 00 49 00 4E 00 3A - artx.....W.I.N.:
00000010: 00 2F 00 2F 00 54 00 6F 00 6B 00 65 00 6E 00 49 - ././.T.o.k.e.n.I
00000020: 00 64 00 10 06 00 00 00 58 00 59 00 5A 00 80 00 - .d......X.Y.Z...

Listing 5-5: Parsing a conditional expression and displaying binary data

We refer to these ACEs as callback ACEs because prior to Windows 8 an
application needed to call the AuthzAccessCheck API to handle them. The API
accepted a callback function that would be invoked to determine whether
to include a callback ACE in the access check. Since Windows 8, the kernel
access check has built-in support for conditional ACEs in the format shown
in Listing 5-5, although user applications are free to specify their own for-
mats and handle these ACEs manually.

The primary use of the ACE flags is to specify inheritance rules for the
ACE. Table 5-4 shows the defined ACE flags.

Table 5-4: ACE Flags with Values and Descriptions

ACE flag Value Description

ObjectInherit 0x1 The ACE can be inherited by an object.

ContainerInherit 0x2 The ACE can be inherited by a container.

NoPropagateInherit 0x4 The ACE’s inheritance flags are not propagated
to children.

InheritOnly 0x8 The ACE is used only for inheritance, and not for
access checks.

Inherited 0x10 The ACE was inherited from a parent container.

Critical 0x20 The ACE is critical and can’t be removed. Applies
only to allow ACEs.

SuccessfulAccess 0x40 An audit event should be generated for a successful
access.

FailedAccess 0x80 An audit event should be generated for a failed
access.

TrustProtected 0x40 When used with an AccessFilter ACE, this flag
prevents modification.

The inheritance flags take up only the lower 5 bits, leaving the top
3 bits for ACE-specific flags.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 15

Constructing and Manipulating Security Descriptors
Now that you’re familiar with the structure of a security descriptor, let’s
look at how to construct and manipulate them using PowerShell. By far the
most common reason to do this is to view a security descriptor’s contents
so you can understand the access applied to a resource. Another important
use case is if you need to construct a security descriptor to lock down a
resource. The PowerShell module used in this book aims to make construct-
ing and viewing security descriptors as simple as possible.

Creating a New Security Descriptor
To create a new security descriptor, you can use the New-NtSecurityDescriptor
command. By default, it creates a new SecurityDescriptor object with no
owner, group, DACL, or SACL set. You can use the command’s parameters
to add these parts of the security descriptor, as shown in Listing 5-6.

PS> $world = Get-NtSid -KnownSid World
PS> $sd = New-NtSecurityDescriptor -Owner $world -Group $world -Type File
PS> $sd | Format-Table
Owner DACL ACE Count SACL ACE Count Integrity Level
----- -------------- -------------- ---------------
Everyone NONE NONE NONE

Listing 5-6: Creating a new security descriptor with a specified owner

We first get the SID for the World group. When calling New-NtSecurity
Descriptor to create a new security descriptor, we use this SID to specify
its Owner and Group. We also specify the name of the kernel object type this
security descriptor will be associated with; this step makes some of the later
commands easier to use. In this case, we’ll assume it’s a File object’s security
descriptor.

We then display the security descriptor, formatting the output as a
table. As you can see, the Owner field is set to Everyone. The Group value isn’t
printed by default, as it’s not as important. Neither a DACL nor a SACL is
currently present in the security descriptor, and there is no integrity level
specified.

To add some ACEs, we can use the Add-NtSecurityDescriptorAce com-
mand. For normal ACEs, we need to specify the ACE type, the SID, and the
access mask. Optionally, we can also specify the ACE flags. The script in
Listing 5-7 adds some ACEs to our new security descriptor.

1 PS> $user = Get-NtSid
2 PS> Add-NtSecurityDescriptorAce $sd -Sid $user -Access WriteData, ReadData
PS> Add-NtSecurityDescriptorAce $sd -KnownSid Anonymous -Access GenericAll
-Type Denied
PS> Add-NtSecurityDescriptorAce $sd -Name "Everyone" -Access ReadData
3 PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access Delete
-Type Audit -Flags FailedAccess
4 PS> Set-NtSecurityDescriptorIntegrityLevel $sd Low
5 PS> Set-NtSecurityDescriptorControl $sd DaclAutoInherited, SaclProtected

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

16 Chapter 5

6 PS> $sd | Format-Table
Owner DACL ACE Count SACL ACE Count Integrity Level
----- -------------- -------------- ---------------
Everyone 3 2 Low

7 PS> Get-NtSecurityDescriptorControl $sd
DaclPresent, SaclPresent, DaclAutoInherited, SaclProtected

8 PS> Get-NtSecurityDescriptorDacl $sd | Format-Table
Type User Flags Mask
---- ---- ----- ----
Allowed GRAPHITE\user None 00000003
Denied NT AUTHORITY\ANONYMOUS LOGON None 10000000
Allowed Everyone None 00000001

9 PS> Get-NtSecurityDescriptorSacl $sd | Format-Table
Type User Flags Mask
---- ---- ----- ----
Audit Everyone FailedAccess 00010000
MandatoryLabel Mandatory Label\Low Mandatory Level None 00000001

Listing 5-7: Adding ACEs to the new security descriptor

We start by getting the SID of the current user with Get-NtSid 1. We
use this SID to add a new Allowed ACE to the DACL 2. We also add a Denied
ACE for the anonymous user by specifying the Type parameter, followed by
another Allowed ACE for the Everyone group. We then modify the SACL to
add an audit ACE 3 and set the mandatory label to the Low integrity level 4.
To finish creating the security descriptor, we set the DaclAutoInherited and
SaclProtected control flags 5.

We can now print details about the security descriptor we’ve just cre-
ated. Displaying the security descriptor 6 shows that the DACL now con-
tains three ACEs and the SACL two, and the integrity level is Low. We also
display the control flags 7 and the lists of ACEs in the DACL 8 and
SACL 9.

Ordering the ACEs
Because of how access checking works, there is a canonical ordering to
the ACEs in an ACL. For example, all Denied ACEs should come before
any Allowed ACEs, as otherwise the system might grant access to a resource
improperly, based on which ACEs come first. The SRM doesn’t enforce this
canonical ordering; it trusts that any application has correctly ordered the
ACEs before passing them for an access check. ACLs should order their
ACEs according to the following rules:

 1. All Denied-type ACEs must come before Allowed types.

 2. The Allowed ACEs must come before Allowed object ACEs.

 3. The Denied ACEs must come before Denied object ACEs.

 4. All non-inherited ACEs must come before ACEs with the Inherited
flag set.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 17

In Listing 5-7, we added a Denied ACE to the DACL after we added an
Allowed ACE, failing the first order rule. We can ensure the DACL is canoni-
calized by using the Edit-NtSecurity command with the CanonicalizeDacl
parameter. We can also test whether a DACL is already canonical by using
the Test-NtSecurityDescriptor PowerShell command with the DaclCanonical
parameter. Listing 5-8 illustrates the use of both commands.

PS> Test-NtSecurityDescriptor $sd -DaclCanonical
False

PS> Edit-NtSecurityDescriptor $sd -CanonicalizeDacl
PS> Test-NtSecurityDescriptor $sd -DaclCanonical
True

PS> Get-NtSecurityDescriptorDacl $sd | Format-Table
Type User Flags Mask
---- ---- ----- ----
Denied NT AUTHORITY\ANONYMOUS LOGON None 10000000
Allowed GRAPHITE\user None 00000003
Allowed Everyone None 00000001

Listing 5-8: Canonicalizing the DACL

If you compare the list of ACEs in Listing 5-8 with the list in Listing 5-7,
you’ll notice that the Denied ACE has been moved from the middle to the
start of the ACL. This ensures that it will be processed before any Allowed
ACEs.

Formatting Security Descriptors
You can print the values in the security descriptor manually, though the
Format-Table command, but this is time-consuming. Another problem with
manual formatting is that the access masks won’t be decoded, so instead of
ReadData, for example, you’ll see 00000001. It would be nice to have a simple
way of printing out the details of a security descriptor and formatting them
based on the object type. That’s what Format-NtSecurityDescriptor is for. You
can pass it a security descriptor, and the command will print it to the con-
sole. Listing 5-9 provides an example.

PS> Format-NtSecurityDescriptor $sd -ShowAll
Type: File
Control: DaclPresent, SaclPresent

<Owner>
 - Name : Everyone
 - Sid : S-1-1-0

<Group>
 - Name : Everyone
 - Sid : S-1-1-0

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

18 Chapter 5

<DACL> (Auto Inherited)
- Type : Denied
 - Name : NT AUTHORITY\ANONYMOUS LOGON
 - SID : S-1-5-7
 - Mask : 0x10000000
 - Access: GenericAll
 - Flags : None

 - Type : Allowed
 - Name : GRAPHITE\user
 - SID : S-1-5-21-2318445812-3516008893-216915059-1002
 - Mask : 0x00000003
 - Access: ReadData|WriteData
 - Flags : None

 - Type : Allowed
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00000001
 - Access: ReadData
 - Flags : None

<SACL> (Protected)
 - Type : Audit
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00010000
 - Access: Delete
 - Flags : FailedAccess

<Mandatory Label>
 - Type : MandatoryLabel
 - Name : Mandatory Label\Low Mandatory Level
 - SID : S-1-16-4096
 - Mask : 0x00000001
 - Policy: NoWriteUp
 - Flags : None

Listing 5-9: Displaying the security descriptor using Format-NtSecurityDescriptor

We pass the ShowAll parameter to Format-NtSecurityDescriptor to ensure
that it displays the entire contents of the security descriptor; by default it
won’t output the SACL or less common ACEs, such as ResourceAttribute.
Note that the output kernel object type matches the File type we specified
when creating the security descriptor in Listing 5-6. Specifying the kernel
object type allows the formatter to print the decoded access mask for the
type rather than a generic hex value.

The next line in the output shows the current control flags. These are
calculated on the fly based on the current state of the security descrip-
tor; later, we’ll discuss how to change these control flags to change the
security descriptor’s behavior. The control flags are followed by the owner
and group SIDs and the DACL, which account for most of the output. Any

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 19

DACL-specific flags appear next to the header; in this case, these indicate
that we set the DaclAutoInherited flag. Next, the output lists each of the ACEs
in the ACL in order, starting with the type of ACE. Because the command
knows the object type, it prints the decoded access mask for the type as well
as the original access mask in hexadecimal.

Next is the SACL, which shows our single audit ACE as well as the
SaclProtected flag. The final component shown is the mandatory label. The
access mask for a mandatory label is the mandatory policy, and it’s decoded
differently from the rest of the ACEs that use the type-specific access rights.
The mandatory policy can be set to one or more of the bit flags shown in
Table 5-5.

Table 5-5: Mandatory Policy Values

Name Value Description

NoWriteUp 0x00000001 A lower integrity level caller can’t write to this
resource.

NoReadUp 0x00000002 A lower integrity level caller can’t read this resource.

NoExecuteUp 0x00000004 A lower integrity level caller can’t execute this
resource.

By default, Format-NtSecurityDescriptor can be a bit verbose. To shorten
its output, specify the Summary parameter, which will remove as much
data as possible while keeping the important information. Listing 5-10
demonstrates.

PS> Format-NtSecurityDescriptor $sd -ShowAll -Summary
<Owner> : Everyone
<Group> : Everyone
<DACL>
<DACL> (Auto Inherited)
NT AUTHORITY\ANONYMOUS LOGON: (Denied)(None)(GenericAll)
GRAPHITE\user: (Allowed)(None)(ReadData|WriteData)
Everyone: (Allowed)(None)(ReadData)
<SACL> (Protected)
Everyone: (Audit)(FailedAccess)(Delete)
<Mandatory Label>
Mandatory Label\Low Mandatory Level: (MandatoryLabel)(None)(NoWriteUp)

Listing 5-10: Displaying the security descriptor in summary format

I mentioned in Chapter 2 that for ease of use the PowerShell module
used in this book uses simple names for most common flags, but that you
can display the full SDK names if you prefer (for example, to compare the
output with native code). To display SDK names when viewing the contents
of a security descriptor with Format-NtSecurityDescriptor, use the SDKName
property, as shown in Listing 5-11.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

20 Chapter 5

PS> Format-NtSecurityDescriptor $sd -SDKName -SecurityInformation Dacl
Type: File
Control: SE_DACL_PRESENT|SE_SACL_PRESENT|SE_DACL_AUTO_INHERITED|SE_SACL_PROTECTED
<DACL> (Auto Inherited)
 - Type : ACCESS_DENIED_ACE_TYPE
 - Name : NT AUTHORITY\ANONYMOUS LOGON
 - SID : S-1-5-7
 - Mask : 0x10000000
 - Access: GENERIC_ALL
 - Flags : NONE

 - Type : ACCESS_ALLOWED_ACE_TYPE
 - Name : GRAPHITE\user
 - SID : S-1-5-21-2318445812-3516008893-216915059-1002
 - Mask : 0x00000003
 - Access: FILE_READ_DATA|FILE_WRITE_DATA
 - Flags : NONE

 - Type : ACCESS_ALLOWED_ACE_TYPE
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00000001
 - Access: FILE_READ_DATA
 - Flags : NONE

Listing 5-11: Formatting a security descriptor with SDK names

One quirk of File objects is that their access masks have two naming
conventions, one for files and one for directories. You can request that
Format-NtSecurityDescriptor print the directory version of the access mask by
using the Container parameter, or more generally, by setting the Container
property of the security descriptor object to True. Listing 5-12 shows the
impact of setting the Container parameter on the output.

PS> Format-NtSecurityDescriptor $sd -ShowAll -Summary -Container
<Owner> : Everyone
<Group> : Everyone
<DACL>
NT AUTHORITY\ANONYMOUS LOGON: (Denied)(None)(GenericAll)
1 GRAPHITE\user: (Allowed)(None)(ListDirectory|AddFile)
Everyone: (Allowed)(None)(ListDirectory)
—snip—

Listing 5-12: Formatting the security descriptor as a container

Note how the output line changes from ReadData|WriteData to
ListDirectory|AddFile 1 when we format it as a container. The File type is
the only object type with this behavior in Windows. This is important to
security, as you could easily misinterpret File access rights if you formatted
the security descriptor for a directory as a file, or vice versa.

If a GUI is more your thing, you can start a viewer using the following
Show-NtSecurityDescriptor command:

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 21

PS> Show-NtSecurityDescriptor $sd

Running the command should open the dialog shown in Figure 5-8.

Figure 5-8: A GUI displaying the security descriptor

The dialog summarizes the security descriptor’s important data. At the
top are the owner and group SIDs resolved into names, as well as the secu-
rity descriptor’s integrity level and mandatory policy. These match the val-
ues we specified when creating the security descriptor. In the middle is the
list of ACEs in the DACL (left) or SACL (right), depending on which tab
you select, with the ACL flags at the top. Each entry in the list includes the
type of ACE, the SID, the access mask in generic form, and the ACE flags.
At the bottom is the decoded access. The list populates when you select an
ACE in the ACL list.

Converting to and from a Relative Security Descriptor
We can convert a security descriptor object to a byte array in the relative
format using the ConvertFrom-NtSecurityDescriptor command. We can then
print its contents to see what the underlying structure really is, as shown in
Listing 5-13.

PS> $ba = ConvertFrom-NtSecurityDescriptor $sd
PS> $ba | Out-HexDump -ShowAll
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

22 Chapter 5

00000000: 01 00 14 A4 98 00 00 00 A4 00 00 00 14 00 00 00 -
00000010: 44 00 00 00 02 00 30 00 02 00 00 00 02 80 14 00 - D.....0.........
00000020: 00 00 01 00 01 01 00 00 00 00 00 01 00 00 00 00 -
00000030: 11 00 14 00 01 00 00 00 01 01 00 00 00 00 00 10 -
00000040: 00 10 00 00 02 00 54 00 03 00 00 00 01 00 14 00 -T.........
00000050: 00 00 00 10 01 01 00 00 00 00 00 05 07 00 00 00 -
00000060: 00 00 24 00 03 00 00 00 01 05 00 00 00 00 00 05 - ..$.............
00000070: 15 00 00 00 F4 AC 30 8A BD 09 92 D1 73 DC ED 0C -0.....s...
00000080: EA 03 00 00 00 00 14 00 01 00 00 00 01 01 00 00 -
00000090: 00 00 00 01 00 00 00 00 01 01 00 00 00 00 00 01 -
000000A0: 00 00 00 00 01 01 00 00 00 00 00 01 00 00 00 00 -

Listing 5-13: Converting an absolute security descriptor to relative format and displaying
its bytes

We can convert the byte array back to a security descriptor object using
New-NtSecurityDescriptor and the Byte parameter:

PS> New-NtSecurityDescriptor -Byte $ba

As an exercise, I’ll leave it to you to pick apart the hex output to find
the various structures of the security descriptor based on the descriptions
provided in this chapter. To get you started, Figure 5-9 highlights the major
structures.

01 00 14 A4 98 00 00 00 A4 00 00 00 14 00 00 00
44 00 00 00 02 00 30 00 02 00 00 00 02 80 14 00
00 00 01 00 01 01 00 00 00 00 00 01 00 00 00 00
11 00 14 00 01 00 00 00 01 01 00 00 00 00 00 10
00 10 00 00 02 00 54 00 03 00 00 00 01 00 14 00
00 00 00 10 01 01 00 00 00 00 00 05 07 00 00 00
00 00 24 00 03 00 00 00 01 05 00 00 00 00 00 05
15 00 00 00 F4 AC 30 8A BD 09 92 D1 73 DC ED 0C
EA 03 00 00 00 00 14 00 01 00 00 00 01 01 00 00
00 00 00 01 00 00 00 00 01 01 00 00 00 00 00 01
00 00 00 00 01 01 00 00 00 00 00 01 00 00 00 00

SACL

Control flags:
SelfRelative set

SD version

DACL

Group

Owner

Figure 5-9: An outline of the major structures in the relative security descriptor hex output

You’ll need to refer to the layout of the ACL and SID structures to man-
ually decode the rest.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 23

The Security Descriptor Definition Language
In Chapter 2, we discussed the basics of the Security Descriptor Definition
Language (SDDL) format for representing SIDs. The SDDL format can rep-
resent the entire security descriptor, too. As the SDDL version of a security
descriptor uses ASCII text, it’s somewhat human readable, and unlike the
binary data shown in Listing 5-13, it can be easily copied. Because it’s com-
mon to see SDDL strings used throughout Windows, let’s look at how to rep-
resent a security descriptor in SDDL and how you can read it.

You can convert a security descriptor to SDDL format by specifying the
ToSddl parameter to Format-NtSecurityDescriptor. This is demonstrated in
Listing 5-14, where we pass the security descriptor we built in the previous
section. You can also create a security descriptor from an SDDL string using
New-NtSecurityDescriptor with the -Sddl parameter.

PS> $sddl = Format-NtSecurityDescriptor $sd -ToSddl -ShowAll
PS> $sddl
O:WDG:WDD:AI(D;;GA;;;AN)(A;;CCDC;;;S-1-5-21-2318445812-3516008893-216915059-
1002)(A;;CC;;;WD)S:P(AU;FA;SD;;;WD)(ML;;NW;;;LW)

Listing 5-14: Converting a security descriptor to SDDL

The SDDL version of the security descriptor contains four optional
components. You can identify the start of each component by looking for
the following prefixes:

O: Owner SID

G: Group SID

D: DACL

S: SACL

In Listing 5-15, we split the output from Listing 5-14 into its compo-
nents to make it easier to read.

PS> $sddl -split "(?=O:)|(?=G:)|(?=D:)|(?=S:)|(?=\()"
O:WD
G:WD
D:AI
 (D;;GA;;;AN)
 (A;;CCDC;;;S-1-5-21-2318445812-3516008893-216915059-1002)
 (A;;CC;;;WD)
S:P
 (AU;FA;SD;;;WD)
 (ML;;NW;;;LW)

Listing 5-15: Splitting up the SDDL components

The first two lines represent the owner and group SIDs in SDDL for-
mat. You might notice that these don’t look like the SDDL SIDs we’re used
to seeing, as they don’t start with S-1-. That’s because these strings are two-
character aliases that Windows uses for well-known SIDs to reduce the size

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

24 Chapter 5

of an SDDL string. For example, the owner string is WD, which we could con-
vert back to the full SID using Get-NtSid (Listing 5-16).

PS> Get-NtSid -Sddl "WD"
Name Sid
---- ---
Everyone S-1-1-0

Listing 5-16: Converting an alias to a name and SID

As you can see, the WD alias represents the Everyone group. Table 5-6
shows the aliases for a few well-known SIDs. You can find a more compre-
hensive list of all supported SDDL aliases in Appendix B.

Table 5-6: Examples of Well-Known SIDs and Their Aliases

SID alias Name SDDL SID

AU NT AUTHORITY\Authenticated Users S-1-5-11

BA BUILTIN\Administrators S-1-5-32-544

IU NT AUTHORITY\INTERACTIVE S-1-5-4

SY NT AUTHORITY\SYSTEM S-1-5-18

WD Everyone S-1-1-0

If a SID has no alias, Format-NtSecurityDescriptor will emit the SID in
SDDL format, as shown in Listing 5-15. Even SIDs without aliases can have
names defined by LSASS. For example, the SID in Listing 5-15 belongs to
the current user, as shown in Listing 5-17.

PS> Get-NtSid -Sddl "S-1-5-21-2318445812-3516008893-216915059-1002" -ToName
GRAPHITE\user

Listing 5-17: Looking up the name of the SID

Next in Listing 5-15 is the representation of the DACL. After the D: pre-
fix, the ACL in SDDL format looks as follows:

ACLFlags(ACE0)(ACE1)...(ACEn)

The ACL flags are optional; the DACL’s are set to AI and the SACL’s are
set to P. These values map to security descriptor control flags and can be
one or more of the strings in Table 5-7.

Table 5-7: ACL Flag Strings Mapped to Security Descriptor Control Flags

ACL flag string DACL control flag SACL control flag

P DaclProtected SaclProtected

AI DaclAutoInherited SaclAutoInherited

AR DaclAutoInheritReq SaclAutoInheritReq

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 25

I’ll describe the uses of these three control flags in Chapter 6. Each
ACE is enclosed in parentheses and is made up of multiple strings sepa-
rated by semicolons, following this general format:

(Type;Flags;Access;ObjectType;InheritedObjectType;SID[;ExtraData])

The Type is a short string that maps to an ACE type. Table 5-8 shows
these mappings. Note that SDDL format does not support certain ACE
types, so they’re omitted from the table.

Table 5-8: Mappings of Type Strings to ACE Types

ACE type string ACE type

A Allowed

D Denied

AU Audit

AL Alarm

OA AllowedObject

OD DeniedObject

OU AuditObject

OL AlarmObject

XA AllowedCallback

XD DeniedCallback

ZA AllowedCallbackObject

XU AuditCallback

ML MandatoryLabel

RA ResourceAttribute

SP ScopedPolicyId

TL ProcessTrustLabel

FL AccessFilter

The next component is Flags, which represents the ACE flags. The audit
entry in the SACL from Listing 5-15 shows the flag string FA, which repre-
sents FailedAccess. Table 5-9 shows other mappings.

Table 5-9: Mappings of Flag Strings to ACE Flags

ACE flag string ACE flag

OI ObjectInherit

CI ContainerInherit

NP NoPropagateInherit

IO InheritOnly

ID Inherited

CR Critical
(continued)

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

26 Chapter 5

Table 5-9: Mappings of Flag Strings to ACE Flags
(continued)

ACE flag string ACE flag

SA SuccessfulAccess

FA FailedAccess

TP TrustProtected

Next is Access, which represents the access mask in the ACE. This can
be a number in hexadecimal (0x1234), octal (011064), or decimal (4660) for-
mat, or a list of short access strings. If no string is specified, then an empty
access mask is used. Table 5-10 shows the access strings.

Table 5-10: Mappings of Access Strings to Access Masks

Access string Access name Access mask

GR Generic Read 0x80000000

GW Generic Write 0x40000000

GX Generic Execute 0x20000000

GA Generic All 0x10000000

WO Write Owner 0x00080000

WD Write DAC 0x00040000

RC Read Control 0x00020000

SD Delete 0x00010000

CR Control Access 0x00000100

LO List Object 0x00000080

DT Delete Tree 0x00000040

WP Write Property 0x00000020

RP Read Property 0x00000010

SW Self Write 0x00000008

LC List Children 0x00000004

DC Delete Child 0x00000002

CC Create Child 0x00000001

Note that the available access strings do not cover the entire access
mask range. This is because SDDL was designed to represent the masks for
directory service objects, which don’t define access mask values outside of
a limited range. This is also why the names of the rights are slightly con-
fusing; for example, Delete Child does not necessarily map to an arbitrary
object type’s idea of deleting a child, and you can see in Listing 5-15 that
the File type’s specific access maps to directory service object access, even
though it has nothing to do with Active Directory.

To better support other types, the SDDL format provides access strings
for common file and registry key access masks, as shown in Table 5-11. If the

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 27

available access strings can’t represent the entire mask, the only option is to
represent it as a number string, typically in hexadecimal format.

Table 5-11: Access Strings for File and Registry Key Types

Access string Access name Access mask

FA File All Access 0x001F01FF

FX File Execute 0x001200A0

FW File Write 0x00120116

FR File Read 0x00120089

KA Key All Access 0x000F003F

KR Key Read 0x00020019

KX Key Execute 0x00020019

KW Key Write 0x00020006

For the ObjectType and InheritedObjectType components, used with object
ACEs, SDDL uses a string format for the GUIDs. The GUIDs can be any
value. For example, Table 5-12 contains a few well-known ones used by
Active Directory.

Table 5-12: Well-Known Object Type GUIDs Used in Active Directory

GUID Directory object

19195a5a-6da0-11d0-afd3-00c04fd930c9 Domain

bf967a86-0de6-11d0-a285-00aa003049e2 Computer

bf967aba-0de6-11d0-a285-00aa003049e2 User

bf967a9c-0de6-11d0-a285-00aa003049e2 Group

Here is an example ACE string for an AllowedObject ACE with the
ObjectType set:

(OA;;CC;2f097591-a34f-4975-990f-00f0906b07e0;;WD)

After the InheritedObjectType component in the ACE is the SID. As detailed
earlier in this chapter, this can be a short alias if it’s a well-known SID, or
the full SDDL format if not.

In the final component, which is optional for most ACE types, you can
specify a conditional expression if using a callback ACE or a security attri-
bute if using a ResourceAttribute ACE. The conditional expression defines a
Boolean expression that compares the values of a token’s security attribute.
When evaluated, the result of the expression should be true or false. We
saw a simple example in Listing 5-5: WIN://TokenId == "XYZ", which compares
the value of the security attribute WIN://TokenId with the string value XYZ and
evaluates to true if they’re equal. The SDDL expression syntax has four dif-
ferent attribute name formats for the security attribute you want to refer to:

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

28 Chapter 5

Simple Used for local security attributes; for example, WIN://TokenId

Device Used for device claims; for example, @Device.ABC

User Used for user claims; for example, @User.XYZ

Resource User for resource attributes; for example, @Resource.QRS

The comparison values in the conditional expressions can accept
several different types, as well. When converting from SDDL to a security
descriptor, the condition expression will be parsed, but because the type
of the security attribute won’t be known at this time, no validation of the
value’s type can occur. Table 5-13 shows examples for each conditional
expression type.

Table 5-13: Example Values for Different Conditional Expression Types

Type Examples

Number Decimal: 100, -100; octal: 0100; hexadecimal: 0x100

String "ThisIsAString"

Fully qualified binary name {"O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON",1004}

SID SID(BA), SID(S-1-0-0)

Octet string #0011223344

The syntax then defines operators to evaluate an expression, starting
with the unary operators in Table 5-14.

Table 5-14: Unary Operators for Conditional Expressions

Operator Description

Exists ATTR Checks whether the security attribute ATTR
exists

Not_Exists ATTR Inverse of Exists

Member_of {SIDLIST} Checks whether the token groups contain all
SIDs in SIDLIST

Not_Member_of {SIDLIST} Inverse of Member_of

Device_Member_of {SIDLIST} Checks whether the token device groups
contain all SIDs in SIDLIST

Not_Device_Member_of {SIDLIST} Inverse of Device_Member_of

Member_of_Any {SIDLIST} Checks whether the token groups contain
any SIDs in SIDLIST

Not_Member_of_Any {SIDLIST} Inverse of Not_Member_of_Any

Device_Member_of_Any {SIDLIST} Checks whether the token device groups
contain any SIDs in SIDLIST

Not_Device_Member_of_Any {SIDLIST} Inverse of Device_Member_of_Any

!(EXPR) The logical not of an expression

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 29

In Table 5-14, ATTR is the name of an attribute to test, SIDLIST is a list of
SID values enclosed in braces {}, and EXPR is another conditional subexpres-
sion. Table 5-15 shows the infix operators the syntax defines.

Table 5-15: Infix Operators for Conditional Expressions

Operator Description

ATTR Contains VALUE Checks whether the security attribute contains the
value

ATTR Not_Contains VALUE Inverse of Contains

ATTR Any_of {VALUELIST} Checks whether the security attribute contains any
of the values

ATTR Not_Any_of {VALUELIST} Inverse of Any_of

ATTR == VALUE Checks whether the security attribute equals the
value

ATTR != VALUE Checks whether the security attribute does not equal
the value

ATTR < VALUE Checks whether the security attribute is less than the
value

ATTR <= VALUE Checks whether the security attribute is less than or
equal to the value

ATTR > VALUE Checks whether the security attribute is greater than
the value

ATTR >= VALUE Checks whether the security attribute is greater than
or equal to the value

EXPR && EXPR The logical AND between two expressions

EXPR || EXPR The logical OR between two expressions

In Table 5-15, VALUE can be either a single value from Table 5-13 or a list
of values enclosed in braces. The Any_of and Not_Any_of operators work only
on lists, and the conditional expression must always be placed in parenthe-
ses in the SDDL ACE. For example, if you wanted to use the conditional
expression shown back in Listing 5-5 with an AccessCallback ACE, the ACE
string would be as follows:

(ZA;;GA;;;WD;(WIN://TokenId == "XYZ"))

The final component represents a security attribute for the
ResourceAttribute ACE. Its general format is as follows:

"AttrName",AttrType,AttrFlags,AttrValue(,AttrValue...)

The AttrName value is the name of the security attribute, AttrFlags is a hexa-
decimal number that represents the security attribute flags, and AttrValue
is one or more values specific to the AttrType, separated by commas. The
AttrType is a short string that indicates the type of data contained in the
security attribute. Table 5-16 shows the defined strings, with examples.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

30 Chapter 5

Table 5-16: Security Attribute SDDL Type Strings

Attribute type Type name Example value

TI Int64 Decimal: 100, -100; octal: 0100; hexadecimal: 0x100

TU UInt64 Decimal: 100; octal: 0100; hexadecimal: 0x100

TS String "XYZ"

TD SID BA, S-1-0-0

TB Boolean 0, 1

RX OctetString #0011223344

To give an example, the following SDDL string represents a
ResourceAttribute ACE with the name Classification. It contains two string
values, TopSecret and MostSecret, and has the CaseSensitive and NonInheritable
flags set:

S:(RA;;;;;WD;("Classification",TS,0x3,"TopSecret","MostSecret"))

The last field in Listing 5-15 to define is the SACL. The structure is the
same as that described for the DACL, although the types of ACEs supported
differ. If you try to use a type that is not allowed in the specific ACL, pars-
ing the string will fail. In the SACL example in Listing 5-15, the only ACE
is the mandatory label. The mandatory label ACE has its own access strings
used to represent the mandatory policy, as shown in Table 5-17.

Table 5-17: Mandatory Label Access Strings

Access string Access name Access mask

NX No Execute Up 0x00000004

NR No Read Up 0x00000002

NW No Write Up 0x00000001

The SID represents the integrity level of the mandatory label; again,
special SID aliases are defined. Anything outside the list shown in
Table 5-18 needs to be represented as a full SID.

Table 5-18: Mandatory Label Integrity Level SIDs

SID alias Name SDDL SID

LW Low integrity level S-1-16-4096

ME Medium integrity level S-1-16-8192

MP MediumPlus integrity level S-1-16-8448

HI High integrity level S-1-16-12288

SI System integrity level S-1-16-16384

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 31

The SDDL format doesn’t preserve all information you can store in
a security descriptor. For example, the SDDL format can’t represent the
OwnerDefaulted or GroupDefaulted control flags, so these are discarded. SDDL
also doesn’t support some ACE types, so I omitted those from Table 5-8.

As mentioned previously, if an unsupported ACE type is encountered
while converting a security descriptor to SDDL, the conversion process
will fail. To get around this problem, the ConvertFrom-NtSecurityDescriptor
PowerShell command can convert a security descriptor in relative format to
base64, as shown in Listing 5-18. Using base64 preserves the entire security
descriptor and allows it to be copied easily.

PS> ConvertFrom-NtSecurityDescriptor $sd -AsBase64 -InsertLineBreaks
AQAUpJgAAACkAAAAFAAAAEQAAAACADAAAgAAAAKAFAAAAAEAAQEAAAAAAAEAAAAAEQAUAAEAAAAB
AQAAAAAAEAAQAAACAFQAAwAAAAEAFAAAAAAQAQEAAAAAAAUHAAAAAAAkAAMAAAABBQAAAAAABRUA
AAD0rDCKvQmS0XPc7QzqAwAAAAAUAAEAAAABAQAAAAAAAQAAAAABAQAAAAAAAQAAAAABAQAAAAAA
AQAAAAA=

Listing 5-18: Converting a security descriptor to a base64 representation

To retrieve the security descriptor, you can pass New-NtSecurityDescriptor
the Base64 parameter.

Worked Examples
Let’s finish this chapter with some worked examples that use the commands
you’ve learned about here.

Manually Parsing a Binary SID
The PowerShell module comes with commands you can use to parse SIDs
that are structured in various forms. One of those forms is a raw byte array.
You can convert an existing SID to a byte array using the ConvertFrom-NtSid
command:

PS> $ba = ConvertFrom-NtSid -Sid "S-1-1-0"

You can also convert the byte array back to a SID using the Byte param-
eter to the Get-NtSid command, as shown here. The module will parse the
byte array and return the SID:

PS> Get-NtSid -Byte $ba

Although PowerShell can perform these conversions for you, you’ll
find it valuable to understand how the data is structured at a low level. For
example, you might identify code that parses SIDs incorrectly, which could
lead to memory corruption; through this discovery, you might find a secu-
rity vulnerability.

The best way to learn how to parse a binary structure is to write a
parser, as we do in Listing 5-19.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

32 Chapter 5

1 PS> $sid = Get-NtSid -SecurityAuthority Nt -RelativeIdentifier 100, 200, 300
PS> $ba = ConvertFrom-NtSid -Sid $sid
PS> $ba | Out-HexDump -ShowAll
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF

00000000: 01 03 00 00 00 00 00 05 64 00 00 00 C8 00 00 00 -d.......
00000010: 2C 01 00 00 - ,...

PS> $stm = [System.IO.MemoryStream]::new($ba)
2 PS> $reader = [System.IO.BinaryReader]::new($stm)

PS> $revision = $reader.ReadByte()
3 PS> if ($revision -ne 1) {
 throw "Invalid SID revision"
}

4 PS> $rid_count = $reader.ReadByte()
5 PS> $auth = $reader.ReadBytes(6)
PS> if ($auth.Length -ne 6) {
 throw "Invalid security authority length"
}

PS> $rids = @()
6 PS> while($rid_count -gt 0) {
 $rids += $reader.ReadUInt32()
 $rid_count—
}

7 PS> $new_sid = Get-NtSid -SecurityAuthorityByte $auth -RelativeIdentifier $rids
PS> $new_sid -eq $sid
True

Listing 5-19: Manually parsing a binary SID

For demonstration purposes, we start by creating an arbitrary SID and
converting it to a byte array 1. Typically, though, you’ll receive a SID to
parse in some other way, such as from the memory of a process. We also
print the SID as hex. (If you refer to the SID structure shown in Figure 5-1,
you might already be able to pick out its various components.)

Next, we create a BinaryReader to parse the byte array in a structured
form 2. Using the reader, we first check whether the revision value is set to
1 3; if it isn’t, we throw an error. Next in the structure is the RID count as
a byte 4, followed by the 6-byte security authority 5. The ReadBytes method
can return a short reader, so you’ll want to check that you read all six bytes.

We now enter a loop to read the RIDs from the binary structure and
append them to an array 6. Next, using the security authority and the
RIDs, we can run Get-NtSid to construct a new SID object 7 and verify that
the new SID matches the one we started with.

This listing gives you an example of how to manually parse a SID (or,
in fact, any binary structure) using PowerShell. If you’re adventurous,
you could implement your own parser for the binary security descriptor

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

Security Descriptors 33

formats, but that’s outside the scope of this book. It’s simpler to use the
New-NtSecurityDescriptor command to do the parsing for you.

Enumerating SIDs
The LSASS service does not provide a publicly exposed method for query-
ing every SID-to-name mapping it knows about. While the official Microsoft
documentation provides a list of known SIDs, these aren’t always up to
date and won’t include the SIDs specific to a computer or enterprise net-
work. However, we can try to enumerate the mappings using brute force.
Listing 5-20 defines a function, Get-AccessSids, to brute-force a list of the
SIDs for which LSASS has a name.

PS> function Get-AccountSids {
 param(
 [parameter(Mandatory)]
 1 $BaseSid,
 [int]$MinRid = 0,
 [int]$MaxRid = 256
)

 $i = $MinRid

 while($i -lt $MaxRid) {
 $sid = Get-NtSid -BaseSid $BaseSid -RelativeIdentifier $i
 $name = Get-NtSidName $sid
 2 if ($name.Source -eq "Account") {
 [PSCustomObject]@{
 Sid = $sid;
 Name = $name.QualifiedName;
 Use = $name.NameUse
 }
 }
 $i++
 }
}

3 PS> $sid = Get-NtSid -SecurityAuthority Nt
PS> Get-AccountSids -BaseSid $sid
Sid Name Use
---- ---- ---
S-1-5-1 NT AUTHORITY\DIALUP WellKnownGroup
S-1-5-2 NT AUTHORITY\NETWORK WellKnownGroup
S-1-5-3 NT AUTHORITY\BATCH WellKnownGroup
—snip—

4 PS> $sid = Get-NtSid -BaseSid $sid -RelativeIdentifier 32
PS> Get-AccountSids -BaseSid $sid -MinRid 512 -MaxRid 1024
Sid Name Use
---- ---- ---
S-1-5-32-544 BUILTIN\Administrators Alias
S-1-5-32-545 BUILTIN\Users Alias

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

34 Chapter 5

S-1-5-32-546 BUILTIN\Guests Alias
—snip—

Listing 5-20: Brute-forcing known SIDs

The function accepts a base SID and the range of RID values to test 1.
It then creates each SID in the list and queries for its name. If the name’s
source is Account, which indicates the name was retrieved from LSASS, we
output the SID’s details 2.

To test the function, we call it with the base SID, which contains the
Nt authority but no RIDs 3. We get the list of retrieved names and SIDs
from LSASS. Notice that the SIDs in the output are not domain SIDs, as
you might expect, but WellKnownGroup SIDs. For our purposes, the distinction
between WellKnownGroup, Group, and Alias is not important; they’re all groups.

Next, we try brute-forcing the BUILTIN domain SID 4. In this case,
we’ve changed the RID range based on our preexisting knowledge of the
valid range, but you’re welcome to try any other range you like. Note that
you could automate the search by inspecting the NameUse property in the
returned objects and calling Get-AccountsSids when its value is Domain. I leave
this as an exercise for the reader.

Wrapping Up
We started this chapter by delving into the structure of the security descrip-
tor. We detailed its binary structures, such as SIDs, and looked at access
control lists and the access control entries that make up the discretionary
and system ACLs. We then discussed the differences between absolute and
relative security descriptors and why the two formats exist.

Next, we explored the use of the New-NtSecurityDescriptor and
Add-NtSecurityDescriptorAce commands to create and modify a security
descriptor so that it contains whatever entries we require. We also saw how
to display security descriptors in a convenient form using the
Format-NtSecurityDescriptor command.

Finally, we covered the SDDL format used for representing security
descriptors. We discussed how to represent the various types of security
descriptor values, such as ACEs, and how you can write your own. Some
tasks we haven’t yet covered are how to query a security descriptor from a
kernel object and how to assign a new one. We’ll get to these topics in the
next chapter.

Windows Security Internals (Sample Chapter) © 10/06/2023 by James Forshaw

