
3
B I N A R Y A R I T H M E T I C

A N D B I T O P E R A T I O N S

Understanding how computers represent
data in binary is a prerequisite to writing

software that works well on those computers.
Of equal importance, of course, is under-

standing how computers operate on binary data.
Exploring arithmetic, logical, and bit operations on
binary data is the purpose of this chapter.

3.1 Arithmetic Operations on Binary and Hexadecimal
Numbers

Because computers use binary representation, programmers who write great
code often have to work with binary (and hexadecimal) values. Often, when
writing code, you may need to manually operate on two binary values in order
to use the result in your source code. Although calculators are available
to compute such results, you should be able to perform simple arithmetic
operations on binary operands by hand.

Write Great Code
www.nostarch.com

40 Chapter 3

Hexadecimal arithmetic is sufficiently painful that a hexadecimal
calculator belongs on every programmer’s desk (or, at the very least, use a
software-based calculator that supports hexadecimal operations, such as the
Windows calculator). Arithmetic operations on binary values, however, are
actually easier than decimal arithmetic. Knowing how to manually compute
binary arithmetic results is essential because several important algorithms
use these operations (or variants of them). Therefore, the next several
subsections describe how to manually add, subtract, multiply, and divide
binary values, and how to perform various logical operations on them.

3.1.1 Adding Binary Values
Adding two binary values is easy; there are only eight rules to learn. (If this
sounds like a lot, just realize that you had to memorize approximately 200
rules for decimal addition!) Here are the rules for binary addition:

� 0 + 0 = 0

� 0 + 1 = 1

� 1 + 0 = 1

� 1 + 1 = 0 with carry

� Carry + 0 + 0 = 1

� Carry + 0 + 1 = 0 with carry

� Carry + 1 + 0 = 0 with carry

� Carry + 1 + 1 = 1 with carry

Once you know these eight rules you can add any two binary values together.
Here are some complete examples of binary addition:

0101
+ 0011

Step 1: Add the LO bits (1 + 1 = 0 + carry).

c
0101

+ 0011

0

Step 2: Add the carry plus the bits in bit position one (carry + 0 + 1 = 0 +
carry).

c
0101

+ 0011

00

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 41

Step 3: Add the carry plus the bits in bit position two (carry + 1 + 0 = 0 +
carry).

c
0101

+ 0011

000

Step 4: Add the carry plus the bits in bit position three (carry + 0 + 0 = 1).

0101
+ 0011

1000

Here are some more examples:

1100_1101 1001_1111 0111_0111
+ 0011_1011 + 0001_0001 + 0000_1001
----------- ----------- -----------
1_0000_1000 1011_0000 1000_0000

3.1.2 Subtracting Binary Values
Binary subtraction is also easy; like addition, binary subtraction has eight
rules:

� 0 − 0 = 0

� 0 − 1 = 1 with a borrow

� 1 − 0 = 1

� 1 − 1 = 0

� 0 − 0 − borrow = 1 with a borrow

� 0 − 1 − borrow = 0 with a borrow

� 1 − 0 − borrow = 0

� 1 − 1 − borrow = 1 with a borrow

Here are some complete examples of binary subtraction:

0101
− 0011

Step 1: Subtract the LO bits (1 − 1 = 0).

0101
− 0011

0

Write Great Code
www.nostarch.com

42 Chapter 3

Step 2: Subtract the bits in bit position one (0 − 1 = 1 + borrow).

0101
− 0011

b

10

Step 3: Subtract the borrow and the bits in bit position two (1 − 0 − b = 0).

0101
− 0011

010

Step 4: Subtract the bits in bit position three (0 − 0 = 0).

0101
− 0011

0010

Here are some more examples:

1100_1101 1001_1111 0111_0111
− 0011_1011 − 0001_0001 − 0000_1001
----------- ----------- -----------

1001_0010 1000_1110 0110_1110

3.1.3 Multiplying Binary Values

Multiplication of binary numbers is also very easy. It’s just like decimal multi-
plication involving only zeros and ones (which is trivial). Here are the rules
you need to know for binary multiplication:

� 0 × 0 = 0

� 0 × 1 = 0

� 1 × 0 = 0

� 1 × 1 = 1

Using these four rules, multiplication is done the same way you’d do decimal
multiplication (in fact, if you just follow the rules for decimal multiplication
on your binary values you’ll actually get the correct results, because the rules
for decimal multiplication involving the zero and one digits are identical).
Here are some examples of binary multiplication:

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 43

1010
× 0101

Step 1: Multiply the LO bit of the multiplier times the multiplicand.

1010
× 0101

1010 (1 × 1010)

Step 2: Multiply bit one of the multiplier times the multiplicand.

1010
× 0101

1010 (1 × 1010)
0000 (0 × 1010)

01010 (partial sum)

Step 3: Multiply bit two of the multiplier times the multiplicand.

1010
× 0101

001010 (previous partial sum)
1010 (1 × 1010)

110010 (partial sum)

Step 4: Multiply bit three of the multiplier times the multiplicand.

1010
× 0101

110010 (previous partial sum)

0000 (0 × 1010)

0110010 (product)

3.1.4 Dividing Binary Values
Like multiplication of binary numbers, binary division is actually easier than
decimal division. You use the same (longhand) division algorithm, but
binary division is easier because you can trivially determine whether the
divisor goes into the dividend during each step of the longhand division
algorithm. Figure 3-1 on the next page shows the steps in a decimal division
problem.

Write Great Code
www.nostarch.com

44 Chapter 3

Figure 3-1: Decimal division (3456/12)

This algorithm is actually easier in binary because at each step you do not
have to guess how many times 12 goes into the remainder nor do you have to
multiply 12 by your guess to obtain the amount to subtract. At each step in
the binary algorithm, the divisor goes into the remainder exactly zero or one
times. As an example, consider the division of 27 (11011) by three (11) as
shown in Figure 3-2.

12 3456
24

(1) 12 goes into 34
 two times.

(3) 12 goes into 105
 eight times.

12 3456
24

105
96

28

12 3456
24

105

2
(2) Subtract 24 from 34
 and drop down the 105.

12 3456
24

105
96

28

96

(4) Subtract 96 from 105
 and drop down the 96.

12 3456
24

105
96

288

96
96

(5) 12 goes into 96
 exactly eight times.

12 3456
24

105
96

288

96
96

(6) Therefore, 12 goes into
 3456 exactly 288 times.

2

11 11011
 11

11 goes into 11 one time.

1

11 11011
 11
 00

Subtract out the 11 and bring down the zero.

1

11 11011
 11
 00
 00

11 goes into 00 zero times.

10

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 45

Figure 3-2: Longhand division in binary

11 11011
 11
 00
 00
 01

Subtract out the zero and bring down the one.

10

11 11011
 11
 00
 00
 01
 00

11 goes into 01 zero times.

100

11 11011
 11
 00
 00
 01
 00
 11

Subtract out the zero and bring down the one.

100

11 11011
 11
 00
 00
 01
 00
 11
 11

11 goes into 11 one time.

1001

11 11011
 11
 00
 00
 01
 00
 11
 11
 00

This produces the final result
of 1001.

1001

Write Great Code
www.nostarch.com

46 Chapter 3

3.2 Logical Operations on Bits

There are four main logical operations we’ll need to perform on hexa-
decimal and binary numbers: AND, OR, XOR (exclusive-or), and NOT.
Unlike the arithmetic operations, a hexadecimal calculator isn’t necessary
to perform these operations.

The logical AND, OR, and XOR operations accept two single-bit
operands and compute the following results:

AND:
0 and 0 = 0
0 and 1 = 0
1 and 0 = 0
1 and 1 = 1

OR:
0 or 0 = 0
0 or 1 = 1
1 or 0 = 1
1 or 1 = 1

XOR:
0 xor 0 = 0
0 xor 1 = 1
1 xor 0 = 1
1 xor 1 = 0

Table 3-1, Table 3-2, and Table 3-3 show the truth tables for the AND, OR,
and XOR operations. A truth table is just like the multiplication tables you
encountered in elementary school. The values in the left column correspond
to the left operand of the operation. The values in the top row correspond to
the right operand of the operation. The value located at the intersection of
the row and column (for a particular pair of input values) is the result.

Table 3-1: AND truth table

AND 0 1

0 0 0

1 0 1

Table 3-2: OR truth table

OR 0 1

0 0 1

1 1 1

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 47

In plain English, the logical AND operation translates as, “If the first operand
is one and the second operand is one, the result is one; otherwise the result is
zero.” We could also state this as “If either or both operands are zero, the
result is zero.” The logical AND operation is useful for forcing a zero result.
If one of the operands is zero, the result is always zero regardless of the value
of the other operand. If one of the operands contains one, then the result is
the value of the other operand.

Colloquially, the logical OR operation is, “If the first operand or the
second operand (or both) is one, the result is one; otherwise the result is
zero.” This is also known as the inclusive-OR operation. If one of the operands
to the logical-OR operation is one, the result is always one. If an operand is
zero, the result is always the value of the other operand.

In English, the logical XOR operation is, “If the first or second operand,
but not both, is one, the result is one; otherwise the result is zero.” If one of
the operands is a one, the result is always the inverse of the other operand.

The logical NOT operation is unary (meaning it accepts only one
operand). The truth table for the NOT operation appears in Table 3-4.
This operator simply inverts (reverses) the value of its operand.

3.3 Logical Operations on Binary Numbers and Bit Strings

The logical functions work on single-bit operands. Because most pro-
gramming languages manipulate groups of 8, 16, or 32 bits, we need to
extend the definition of these logical operations beyond single-bit operands.
We can easily extend logical functions to operate on a bit-by-bit (or bitwise)
basis. Given two values, a bitwise logical function operates on bit zero of
both operands producing bit zero of the result; it operates on bit one of
both operands producing bit one of the result, and so on. For example,
if you want to compute the bitwise logical AND of two 8-bit numbers, you
would logically AND each pair of bits in the two numbers:

%1011_0101
%1110_1110

%1010_0100

Table 3-3: XOR truth table

XOR 0 1

0 0 1

1 1 0

Table 3-4: NOT truth table

NOT 0 1

1 0

Write Great Code
www.nostarch.com

48 Chapter 3

This bit-by-bit execution also applies to the other logical operations, as well.
The ability to force bits to zero or one using the logical AND and OR
operations, and the ability to invert bits using the logical XOR operation, is
very important when working with strings of bits (such as binary numbers).
These operations let you selectively manipulate certain bits within a value
while leaving other bits unaffected. For example, if you have an 8-bit binary
value X and you want to guarantee that bits four through seven contain
zeros, you could logically AND the value X with the binary value
%0000_1111. This bitwise logical AND operation would force the HO four
bits of X to zero and leave the LO four bits of X unchanged. Likewise, you
could force the LO bit of X to one and invert bit number two of X by logically
ORing X with %0000_0001 and then logically exclusive ORing (XORing) X
with %0000_0100. Using the logical AND, OR, and XOR operations to
manipulate bit strings in this fashion is known as masking bit strings. We use
the term masking because we can use certain values (one for AND, zero for
OR and XOR) to “mask out” or “mask in” certain bits in an operand while
forcing other bits to zero, one, or their inverse.

Several languages provide operators that let you compute the bitwise
AND, OR, XOR, and NOT of their operands. The C/C++/Java language
family uses the ampersand (&) operator for bitwise AND, the pipe (|) oper-
ator for bitwise OR, the caret (^) operator for bitwise XOR, and the tilde (~)
operator for bitwise NOT. The Visual Basic and Delphi/Kylix languages let
you use the and, or, xor, and not operators with integer operands. From 80x86
assembly language, you can use the AND, OR, NOT, and XOR instructions
to do these bitwise operations.

// Here's a C/C++ example:

i = j & k; // Bitwise AND
i = j | k; // Bitwise OR
i = j ^ k; // Bitwise XOR
i = ~j; // Bitwise NOT

3.4 Useful Bit Operations

Although bit operations may seem a bit abstract, they are quite useful for
many non-obvious purposes. The following subsections describe some of
their useful properties of using the logical operations in various languages.

3.4.1 Testing Bits in a Bit String Using AND
You can use the bitwise AND operator to test individual bits in a bit string to
see if they are zero or one. If you logically AND a value with a bit string that
contains a one in a certain bit position, the result of the logical AND will be
zero if the corresponding bit contains a zero, and the result will be nonzero

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 49

if that bit position contains one. Consider the following C/C++ code that
checks an integer value to see if it is odd or even by testing if bit zero of the
integer:

IsOdd = (ValueToTest & 1) != 0;

In binary form, here’s what this bitwise AND operation is doing:

xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // Assuming ValueToTest is 32 bits
0000_0000_0000_0000_0000_0000_0000_0001 // Bitwise AND with the value one

0000_0000_0000_0000_0000_0000_0000_000x // Result of bitwise AND

The result is zero if the LO bit of ValueToTest contains a zero in bit position
zero. The result is one if ValueToTest contains a one in bit position one. This
calculation ignores all other bits in ValueToTest.

3.4.2 Testing a Set of Bits for Zero/Not Zero Using AND

You can also use the bitwise AND operator to check a set of bits to see if they
are all zero. For example, one way to check to see if a number is evenly
divisible by 16 is to see if the LO four bits of the value are all zeros. The
following Delphi/Kylix statement uses the bitwise AND operator to
accomplish this:

IsDivisibleBy16 := (ValueToTest and $f) = 0;

In binary form, here’s what this bitwise AND operation is doing:

xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // Assuming ValueToTest is 32 bits
0000_0000_0000_0000_0000_0000_0000_1111 // Bitwise AND with $F

0000_0000_0000_0000_0000_0000_0000_xxxx // Result of bitwise AND

The result is zero if and only if the LO four bits of ValueToTest are all zero,
because ValueToTest is evenly divisible by 16 only if its LO four bits all contain
zero.

3.4.3 Comparing a Set of Bits Within a Binary String

The AND and OR operations are particularly useful if you need to compare a
subset of the bits in a binary value against some other value. For example,
you might want to compare two 6-bit values found in bits 0, 1, 10, 16, 24, and
31 of a pair of 32-bit values. The trick is to set all the uninteresting bits to
zero and then compare the two results.1

1 It’s also possible to set all the uninteresting bits to ones via the OR operation, but the AND
operator is often more convenient.

Write Great Code
www.nostarch.com

50 Chapter 3

Consider the following three binary values; the “x” bits denote bits whose
values we don’t care about:

%1xxxxxx0xxxxxxx1xxxxx0xxxxxxxx10
%1xxxxxx0xxxxxxx1xxxxx0xxxxxxxx10
%1xxxxxx1xxxxxxx1xxxxx1xxxxxxxx11

If we compare the first and second binary values (assuming we’re only
interested in bits 31, 16, 10, 1, and 0), we should find that the two values are
equal. If we compare either of the first two values against the third value,
we’ll find that they are not equal. Furthermore, if we compare either of the
first two values against the third, we should discover that the third value is
greater than the first two. In C/C++ and assembly, this is how we could
compare these values:

// C/C++ example

if((value1 & 0x81010403) == (value2 & 0x81010403))
{

// Do something if bits 31, 24, 16, 10, 1, and 0 of
// value1 and value2 are equal

}

if((value1 & 0x81010403) != (value3 & 0x81010403))
{

// Do something if bits 31, 24, 16, 10, 1, and 0 of
// value1 and value3 are not equal

}

// HLA/x86 assembly example:

mov(value1, eax); // EAX = value1
and($8101_0403, eax); // Mask out unwanted bits in EAX
mov(value2, edx); // EDX = value2
and($8101_0403, edx); // Mask out the same set of unwanted bits in EDX
if(eax = edx) then // See if the remaining bits match

// Do something if bits 31, 24, 16, 10, 1, and 0 of
// value1 and value2 are equal

endif;

mov(value1, eax); // EAX = value1
and($8101_0403, eax); // Mask out unwanted bits in EAX
mov(value3, edx); // EDX = value2
and($8101_0403, edx); // Mask out the same set of unwanted bits in EDX

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 51

if(eax <> edx) then // See if the remaining bits do not match

// Do something if bits 31, 24, 16, 10, 1, and 0 of
// value1 and value3 are not equal

endif;

3.4.4 Creating Modulo-n Counters Using AND
The AND operation lets you create efficient modulo-n counters. A modulo-n
counter counts from zero2 to some maximum value and then resets to zero.
Modulo-n counters are great for creating repeating sequences of numbers
such as 0, 1, 2, 3, 4, 5, . . . n−1, 0, 1, 2, 3, 4, 5, . . . n−1, 0, 1, You can use
such sequences to create circular queues and other objects that reuse array
elements upon encountering the end of the data structure. The normal way
to create a modulo-n counter is to add one to the counter, divide the result
by n, and then keep the remainder. The following code examples demon-
strate the implementation of a modulo-n counter in C/ C++, Pascal, and
Visual Basic:

cntr = (cntr + 1) % n; // C/C++
cntr := (cntr + 1) mod n; // Pascal/Delphi/Kylix
cntr = (cntr + 1) Mod n ` Visual Basic

The problem with this particular implementation is that division is an
expensive operation, requiring far more time to execute than operations
such as addition. In general, you’ll find it more efficient to implement
modulo-n counters using a comparison rather than the remainder operator.
Here’s a Pascal example:

cntr := cntr + 1; // Pascal example
if(cntr >= n) then

cntr := 0;

For certain special cases, however, you can increment a modulo-n counter
more efficiently and conveniently using the AND operation. You can use the
AND operator to create a modulo-n counter when n is a power of two. To
create such a modulo-n counter, increment your counter and then logically
AND it with the value n = 2m−1 (2m−1 contains ones in bit positions 0..m−1
and zeros everywhere else). Because the AND operation is usually much
faster than a division, AND-driven modulo-n counters are much more
efficient than those using the remainder operator. Indeed, on most CPUs,
using the AND operator is quite a bit faster than using an if statement. The
following examples show how to implement a modulo-n counter for n = 32
using the AND operation:

2 Actually, they could count down to zero as well, but usually they count up.

Write Great Code
www.nostarch.com

52 Chapter 3

//Note: 0x3f = 31 = 25 − 1, so n = 32 and m = 5

cntr = (cntr + 1) & 0x3f; // C/C++ example
cntr := (cntr + 1) and $3f; // Pascal/Delphi/Kylix example
cntr = (cntr + 1) And &h3f ` Visual Basic example

The assembly language code is especially efficient:

inc(eax); // Compute (eax + 1) mod 32
and($3f, eax);

3.5 Shifts and Rotates

Another set of logical operations on bit strings are the shift and rotate oper-
ations. These functions can be further broken down into shift lefts, rotate lefts,
shift rights, and rotate rights. These operations turn out to be very useful in
many programs.

The shift left operation moves each bit in a bit string one position to the
left, as shown in Figure 3-3. Bit zero moves into bit position one, the previous
value in bit position one moves into bit position two, and so on.

Figure 3-3: Shift left operation (on a byte)

There are two questions that arise: “What goes into bit zero?” and “Where
does the HO bit wind up?” We’ll shift a zero into bit zero, and the previous
value of the HO bit will be the carry out of this operation.

Several high-level languages (such as C/C++/C#, Java, and
Delphi/Kylix) provide a shift left operator. In the C language family, this
operator is <<. In Delphi/Kylix, you use the shl operator. Here are some
examples:

// C:

cLang = d << 1; // Assigns d shifted left one position to
// variable "cLang"

// Delphi:

Delphi := d shl 1; // Assigns d shifted left one position to
// variable "Delphi"

Shifting the binary representation of a number one position to the left is
equivalent to multiplying that value by two. Therefore, if you’re using a
programming language that doesn’t provide an explicit shift left operator,

7 6 5 4 3 2 1 0

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 53

you can usually simulate this by multiplying a binary integer value by two.
Although the multiplication operation is usually slower than the shift left
operation, most compilers are smart enough to translate a multiplication by
a constant power of two into a shift left operation. Therefore, you could write
code like the following in Visual Basic to do a shift left:

vb = d * 2

A shift right operation is similar to a shift left, except we’re moving the data
in the opposite direction. Bit seven moves into bit six; bit six moves into bit
five; bit five moves into bit four; and so on. During a shift right, we’ll move
a zero into bit seven, and bit zero will be the carry out of the operation
(see Figure 3-4). C, C++, C#, and Java use the >> operator for a shift right
operation. Delphi/Kylix uses the shr operator. Most assembly languages also
provide a shift right instruction (shr on the 80x86).

Figure 3-4: The shift right operation (on a byte)

Shifting an unsigned binary value right divides that value by two. For
example, if you shift the unsigned representation of 254 ($FE) one place to
the right, you get 127 ($7F), exactly as you would expect. However, if you
shift the 8-bit two’s complement binary representation of −2 ($FE) one
position to the right, you get 127 ($7F), which is not correct. To divide a
signed number by two using a shift, we must define a third shift operation:
arithmetic shift right. An arithmetic shift right operation does not modify the
value of the HO bit. Figure 3-5 shows the arithmetic shift right operation for
an 8-bit operand.

Figure 3-5: Arithmetic shift right operation (on a byte)

This generally produces the result you expect for two’s complement signed
operands. For example, if you perform the arithmetic shift right operation
on −2 ($FE), you get −1 ($FF). Note, however, that this operation always
rounds the numbers to the closest integer that is less than or equal to the actual
result. If you arithmetically shift right −1 ($FF), the result is −1, not zero.
Because −1 is less than zero, the arithmetic shift right operation rounds
towards −1. This is not a “bug” in the arithmetic shift right operation; it just
uses a different (though valid) definition of integer division. The bottom
line, however, is that you probably won’t be able to use a signed division

0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Write Great Code
www.nostarch.com

54 Chapter 3

operator as a substitute for arithmetic shift right in languages that don’t
support arithmetic shift right, because most integer division operators round
towards zero.

One problem with the shift right operation in high-level languages is
that it’s rare for a high-level language to support both the logical shift right
and the arithmetic shift right. Worse still, the specifications for certain
languages leave it up to the compiler’s implementer to decide whether to use
an arithmetic shift right or a logical shift right operation. Therefore, it’s only
safe to use the shift right operator on values whose HO bit will cause both
forms of the shift right operation to produce the same result. If you need to
guarantee that a shift right is a logical shift right or an arithmetic shift right
operation, then you’ll either have to drop down into assembly language or
you’ll have to handle the HO bit manually. Obviously, the high-level code
gets ugly really fast, so a quick in-line assembly statement might be a better
solution if your program doesn’t need to be portable across different CPUs.
The following code demonstrates how to simulate a 32-bit logical shift right
and arithmetic shift right in languages that don’t guarantee the type of shift
they use:

// Written in C/C++, assuming 32-bit integers, logical shift right:
// Compute bit 30.
Bit30 = ((ShiftThisValue & 0x800000000) != 0) ? 0x40000000 : 0;
// Shifts bits 0..30.
ShiftThisValue = (ShiftThisValue & 0x7fffffff) >> 1;
// Merge in Bit #30.
ShiftThisValue = ShiftThisValue | Bit30;

// Arithmetic shift right operation

Bits3031 = ((ShiftThisValue & 0x800000000) != 0) ? 0xC0000000 : 0;
// Shifts bits 0..30.
ShiftThisValue = (ShiftThisValue & 0x7fffffff) >> 1;
// Merge bits 30/31.
ShiftThisValue = ShiftThisValue | Bits3031;

Many assembly languages also provide various rotate instructions that recir-
culate bits through an operand by taking the bits shifted out of one end of
the operation and shifting them into the other end of the operand. Few
high-level languages provide this operation; fortunately, you won’t need
it very often. If you do, you can synthesize this operation using the shift
operators available in your high-level language:

// Pascal/Delphi/Kylix Rotate Left, 32-bit example:
// Puts bit 31 into bit 0, clears other bits.
CarryOut := (ValueToRotate shr 31);
ValueToRotate := (ValueToRotate shl 1) or CarryOut;

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 55

Assembly language programmers typically have access to a wide variety
of shift and rotate instructions. For more information on the type of shift
and rotate operations that are possible, consult my assembly language
programming book, The Art of Assembly Language (No Starch Press).

3.6 Bit Fields and Packed Data

CPUs generally operate most efficiently on byte, word, and double-word data
types;3 but occasionally you’ll need to work with a data type whose size is
something other than 8, 16, or 32 bits. In such cases, you may be able to save
some memory by packing different strings of bits together as compactly as
possible, without wasting any bits to align a particular data field on a byte or
other boundary.

Consider a date of the form “04/02/01.” It takes three numeric values
to represent this date: month, day, and year values. Months, of course, use
the values 1..12. It will require at least four bits (a maximum of 16 different
values) to represent the month. Days use the range 1..31. Therefore, it will
take five bits (a maximum of 32 different values) to represent the day entry.
The year value, assuming that we’re working with values in the range 0..99,
requires seven bits (representing up to 128 different values). Four plus five
plus seven is 16 bits, or two bytes. In other words, we can pack our date data
into two bytes rather than the three that would be required if we used a
separate byte for each of the month, day, and year values. This saves one byte
of memory for each date stored, which could be a substantial saving if you
need to store many dates. You might arrange the bits as shown in Figure 3-6.

Figure 3-6: Short packed date format (16 bits)

MMMM represents the four bits making up the month value, DDDDD represents the
five bits making up the day, and YYYYYYY is the seven bits that hold the year.
Each collection of bits representing a data item is a bit field. We could
represent April 2, 2001, with $4101:

0100 00010 0000001 = %0100_0001_0000_0001 or $4101
04 02 01

Although packed values are space efficient (that is, they use little memory),
they are computationally inefficient (slow!). The reason? It takes extra
instructions to unpack the data from the various bit fields. These extra
instructions take time to execute (and additional bytes to hold the
instructions); hence, you must carefully consider whether packed data

3 Some RISC CPUs only operate efficiently on double-word values, so the concept of bit fields
and packed data may apply to any object less than 32 bits in size on such CPUs.

Y Y Y Y Y Y Y

15 14 13 12 11 10 7 6 5 4 3 2 1 09 8

M M M M D D D D D

Write Great Code
www.nostarch.com

56 Chapter 3

fields will save you anything. The following sample HLA/x86 code
demonstrates the effort that must go into packing and unpacking this
16-bit date format.

program dateDemo;

#include("stdlib.hhf")

static
 day: uns8;
 month: uns8;
 year: uns8;

 packedDate: word;

begin dateDemo;

 stdout.put("Enter the current month, day, and year: ");
 stdin.get(month, day, year);

 // Pack the data into the following bits:
 //
 // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 // m m m m d d d d d y y y y y y y

 mov(0, ax);
 mov(ax, packedDate); //Just in case there is an error.
 if(month > 12) then

 stdout.put("Month value is too large", nl);

 elseif(month = 0) then

 stdout.put("Month value must be in the range 1..12", nl);

 elseif(day > 31) then

 stdout.put("Day value is too large", nl);

 elseif(day = 0) then

 stdout.put("Day value must be in the range 1..31", nl);

 elseif(year > 99) then

 stdout.put("Year value must be in the range 0..99", nl);

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 57

 else

 mov(month, al);
 shl(5, ax);
 or(day, al);
 shl(7, ax);
 or(year, al);
 mov(ax, packedDate);

 endif;

 // Okay, display the packed value:

 stdout.put("Packed data = $", packedDate, nl);

 // Unpack the date:

 mov(packedDate, ax);
 and($7f, al); // Retrieve the year value.
 mov(al, year);

 mov(packedDate, ax); // Retrieve the day value.
 shr(7, ax);
 and(%1_1111, al);
 mov(al, day);

 mov(packedDate, ax); // Retrieve the month value.
 rol(4, ax);
 and(%1111, al);
 mov(al, month);

 stdout.put("The date is ", month, "/", day, "/", year, nl);

end dateDemo;

Keeping in mind the Y2K4 problem, adopting a date format that only
supports a two-digit year is rather foolish. So consider a better date format,
shown in Figure 3-7.

Figure 3-7: Long packed date format (32 bits)

4 Year 2000, a software engineering disaster that occurred because programmers in the 1900s
encoded dates using only two digits and then discovered they couldn’t differentiate 1900 and
2000 when the year 2000 came along.

151631 8 7 0

Month (1-12)Year (0-65535) Day (1-31)

Write Great Code
www.nostarch.com

58 Chapter 3

Because there are more bits in a 32-bit variable than are needed to hold the
date, even accounting for years in the range 0–65,535, this format allots a
full byte for the month and day fields. Because these two fields are bytes,
an application can easily manipulate them as byte objects, reducing the
overhead to pack and unpack these fields on those processors that support
byte access. This leaves fewer bits for the year, but 65,536 years is probably
sufficient (you can probably assume that your software will not be in use
63,000 years from now).

Of course, you could argue that this is no longer a packed date format.
After all, we needed three numeric values, two of which fit just nicely into
one byte each and one that should probably have at least two bytes. Because
this “packed” date format consumes the same four bytes as the unpacked
version, what is so special about this format? Well, in this example packed
effectively means packaged or encapsulated. This particular packed format does
not use as few bits as possible; by packing the data into a double-word
variable the program can treat the date value as a single data value rather
than as three separate variables. This generally means that it requires only a
single machine instruction to operate on this data rather than three separate
instructions.

Another difference you will note between this long packed date format
and the short date format appearing in Figure 3-6 is the fact that this long
date format rearranges the Year, Month, and Day fields. This is important
because it allows you to easily compare two dates using an unsigned integer
comparison. Consider the following HLA/assembly code:

mov(Date1, eax); // Assume Date1 and Date2 are double-word variables

if(eax > Date2) then // using the Long Packed Date format.

<< do something if Date1 > Date2 >>

endif;

Had you kept the different date fields in separate variables, or organized the
fields differently, you would not have been able to compare Date1 and Date2 in
such a straightforward fashion. This example demonstrates another reason
for packing data, even if you don’t realize any space savings — it can make
certain computations more convenient or even more efficient (contrary to
what normally happens when you pack data).

Some high-level languages provide built-in support for packed data. For
example, in C you can define structures like the following:

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 59

struct
{

unsigned bits0_3 :4;
unsigned bits4_11 :8;
unsigned bits12_15 :4;
unsigned bits16_23 :8;
unsigned bits24_31 :8;

} packedData;

This structure specifies that each field is an unsigned object that holds four,
eight, four, eight, and eight bits, respectively. The “:n” item appearing after
each declaration specifies the minimum number of bits the compiler will
allocate for the given field.

Unfortunately, it is not possible to provide a diagram that shows how
a C/C++ compiler will allocate the values from a 32-bit double word among
the fields. No (single) diagram is possible because C/C++ compiler imple-
menters are free to implement these bit fields any way they see fit. The
arrangement of the bits within the bit string is arbitrary (for example,
the compiler could allocate the bits0_3 field in bits 28..31 of the ultimate
object). The compiler can also inject extra bits between fields as it sees fit.
The compiler can use a larger number of bits for each field if it so desires
(this is actually the same thing as injecting extra padding bits between
fields). Most C compilers attempt to minimize the injection of extraneous
padding, but different C compilers (especially on different CPUs) do have
their differences. Therefore, any use of C/C++ struct bit field declarations
is almost guaranteed to be nonportable, and you can’t really count on what
the compiler is going to do with those fields.

The advantage of using the compiler’s built-in data-packing capabilities
is that the compiler automatically handles packing and unpacking the data
for you. For example, you could write the following C/C++ code, and the
compiler would automatically emit the necessary machine instructions to
store and retrieve the individual bit fields for you:

struct
{

unsigned year :7;
unsigned month :4;
unsigned day :5;

} ShortDate;
. . .

ShortDate.day = 28;
ShortDate.month = 2;
ShortDate.year = 3; // 2003

Write Great Code
www.nostarch.com

60 Chapter 3

3.7 Packing and Unpacking Data

The advantage of packed data types is efficient memory use. Consider the
Social Security identification number in use in the United States. This is a
nine-digit code that normally takes the following form (each “X” represents
a single decimal digit):

XXX–XX–XXXX

If we encode a Social Security number using three separate (32-bit) integers,
it will take 12 bytes to represent this value. That’s actually more than the 11
bytes needed to represent the number using an array of characters. A better
solution is to encode each field using short (16-bit) integers. Now it takes
only 6 bytes to represent the Social Security number. Because the middle
field in the Social Security number is always between 0 and 99, we can
actually shave one more byte off the size of this structure by encoding
the middle field with a single byte. Here’s a sample Delphi/Kylix record
structure that defines this data structure:

SSN :record

FirstField: smallint; // smallints are 16 bits in Delphi/Kylix
SecondField: byte;
ThirdField: smallint;

end;

If we drop the hyphens in the Social Security number, you’ll notice that the
result is a nine-digit number. Because we can exactly represent all values
between 0 and 999,999,999 (nine digits) using 30 bits, it should be clear that
we could actually encode any legal Social Security number using a 32-bit
integer. The problem is that some software that manipulates Social Security
numbers may need to operate on the individual fields. This means that you
have to use expensive division, modulo, and multiplication operators in
order to extract fields from a Social Security number you’ve encoded in a
32-bit integer format. Furthermore, it’s a bit more painful to convert Social
Security numbers to and from strings when using the 32-bit format. The
advantage of using bit fields to hold a value is that it’s relatively easy to insert
and extract individual bit fields using fast machine instructions, and it’s also
less work to create a standard string representation (including the hyphens)
of one of these fields. Figure 3-8 provides a straightforward implementation
of the Social Security number packed data type using a separate string of bits
for each field (note that this format uses 31 bits and ignores the HO bit).

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 61

Figure 3-8: Social Security number packed fields encoding

As you’ll soon see, fields that begin at bit position zero in a packed data
object are the ones you can most efficiently access. So it’s generally a good
idea to arrange the fields in your packed data type so that the field you access
most often begins at bit zero. Of course, you’ll have to determine which field
you access most often on an application-by-application basis. If you have no
idea which field you’ll access most often, you should try to assign the fields
so they begin on a byte boundary. If there are unused bits in your packed
type, you should attempt to spread them throughout the structure so that
individual fields begin on a byte boundary and have those fields consume
multiples of eight bits.

We’ve only got one unused bit in the Social Security example shown in
Figure 3-8, but it turns out that we can use this extra bit to align two fields on
a byte boundary and ensure that one of those fields occupies a bit string
whose length is a multiple of eight bits. Consider Figure 3-9, which shows a
rearranged version of our Social Security number data type.

Figure 3-9: A (possibly) improved encoding of the Social Security number

One problem with the data format shown in Figure 3-9 is that we can’t sort
Social Security numbers in an intuitive fashion by simply comparing 32-bit
unsigned integers.5 Therefore, if you intend to do a lot of sorting based on
the entire Social Security number, the format in Figure 3-8 is probably a
better format.

If this type of sorting isn’t important to you, the format in Figure 3-9
has some advantages. This packed type actually uses eight bits (rather than
seven) to represent SecondField (along with moving SecondField down to
bit position zero); the extra bit will always contain zero. This means that
SecondField consumes bits 0..7 (a whole byte) and ThirdField begins on a
byte boundary (bit position eight). ThirdField doesn’t consume a multiple
of eight bits, and FirstField doesn’t begin on a nice byte boundary, but
we’ve done fairly well with this encoding, considering we only had one
extra bit to play around with.

5 “Intuitive” meaning that the first field is the most significant portion of the value, the second
field is the next most significant, and the third field is the least significant component of the
number.

Third field
0000-9999

Second field
00-99

First field
000-999

31 20 012

31 21

Third field
0000-9999

Second field
00-99

First field
000-999

07

Write Great Code
www.nostarch.com

62 Chapter 3

The next question is, “How do we access the fields of this packed type?”
There are two separate activities here. We need the ability to retrieve, or
extract, the packed fields, and we need to be able to insert data into these
fields. The AND, OR, and SHIFT operations provide the tools for this.

When actually operating on these fields, it’s convenient to work with
three separate variables rather than working directly with the packed data.
For our Social Security number example, we can create the three variables
FirstField, SecondField, and ThirdField. We can then extract the actual data
from the packed value into these three variables, operate on these variables,
and then insert the data from these three variables back into their fields
when we’re done.

Extracting the SecondField data from the packed format shown in Figure
3-9 is easy (remember, the field aligned to bit zero in our packed data is the
easiest one to access). All you have to do is copy the data from the packed
representation to the SecondField variable and then mask out all but the
SecondField bits using the AND operation. Because SecondField is a 7-bit value,
we can create the mask as an integer containing all one bits in positions zero
through six and zeros everywhere else. The following C/C++ code demon-
strates how to extract this field into the SecondField variable (assuming
packedValue is a variable holding the 32-bit packed Social Security number):

SecondField = packedValue & 0x7f; // 0x7f = %0111_1111

Extracting fields that are not aligned at bit zero takes a little more work.
Consider the ThirdField entry in Figure 3-9. We can mask out all the bits
associated with the first and second fields by logically ANDing the packed
value with %_11_1111_1111_1111_0000_0000 ($3F_FF00). However, this
leaves the ThirdField value sitting in bits 8 through 21, which is not con-
venient for various arithmetic operations. The solution is to shift the masked
value down eight bits so that it’s aligned at bit zero in our working variable.
The following Pascal/Delphi/Kylix code shows how one might do this:

SecondField := (packedValue and $3fff00) shr 8;

As it turns out, you can also do the shift first and then do the logical AND
operation (though this requires a different mask, $11_1111_1111_1111
or $3FFF). Here’s the C/C++ code that extracts SecondField using that
technique:

SecondField = (packedValue >> 8) & 0x3FFF;

Extracting a field that is aligned against the HO bit, as the first field is in
our Social Security packed data type is almost as easy as accessing the data
aligned at bit zero. All you have to do is shift the HO field down so that it’s
aligned at bit zero. The logical shift right operation automatically fills in
the HO bits of the result with zeros, so no explicit masking is necessary.
The following Pascal/Delphi code demonstrates this:

Write Great Code
www.nostarch.com

Bina ry A ri thmet ic and Bi t Operat ions 63

FirstField := packedValue shr 18; // Delphi's shift right is a logical
// shift right.

In HLA/x86 assembly language, it’s actually quite easy to access the second
and third fields of the packed data format in Figure 3-9. This is because we
can easily access data at any arbitrary byte boundary in memory. That allows
us to treat both the second and third fields as though they both are aligned
at bit zero in the data structure. In addition, because the SecondField value is
an 8-bit value (with the HO bit always containing zero), it only takes a single
machine instruction to unpack the data, as shown here:

movzx((type byte packedValue), eax);

This instruction fetches the first byte of packedValue (which is the LO 8 bits
of packedValue on the 80x86), and it zero extends this value to 32 bits in EAX
(movzx stands for “move with zero extension”). The EAX register, therefore,
contains the SecondField value after this instruction executes.

Extracting the ThirdField value from our packed format isn’t quite as
easy, because this field isn’t an even multiple of eight bits long. Therefore,
we’ll still need a masking operation to clear the unused bits from the 32-bit
result we produce. However, because ThirdField is aligned on a byte (8-bit)
boundary in our packed structure, we’ll be able to avoid the shift operation
that was necessary in the high-level code. Here’s the HLA/x86 assembly code
that extracts the third field from our packedValue object:

mov((type word packedValue[1]), ax); // Extracts bytes 1 & 2

// from packedValue.

and($3FFF, eax); // Clears all the undesired bits.

Extracting FirstField from the packedValue object in HLA/x86 assembly code
is identical to the high-level code; we’ll simply shift the upper ten bits (which
comprise FirstField) down to bit zero:

mov(packedValue, eax);
shr(21, eax);

Inserting a field into a packed structure is only a little more complicated
than extracting a field. Assuming the data you want to insert appears in
some variable and contains zeros in the unused bits, inserting a field into
a packed object requires three operations. First, if necessary, you shift the
field’s data to the left so its alignment matches the corresponding field in
the packed object. The second step is to clear the corresponding bits in
the packed structure. The final step is to logically OR the shifted field into
the packed object. Figure 3-10 on the next page displays the details of this
operation.

Write Great Code
www.nostarch.com

64 Chapter 3

Figure 3-10: Inserting ThirdField into the Social Security packed type

Here’s the C/C++ code that accomplishes the operation shown in
Figure 3-10:

packedValue = (packedValue & 0xFFc000FF) | (ThirdField << 8);

You’ll note that $FFC000FF is the hexadecimal value that corresponds
to all zeros in bit positions 8 through 21 and ones everywhere else.

3.8 For More Information

My book, The Art of Assembly Language, provides additional information on bit
processing, including several algorithms for counting bits, reversing the bits
in an object, merging two bit strings, coalescing sets of bits, and spreading
bits out across some value. Please see that text for more details on these low-
level bit operations. Donald Knuth’s The Art of Computer Programming, Volume
Two: Seminumerical Algorithms provides a discussion of various arithmetic
operations (addition, subtraction, multiplication, and division) that you may
find of interest.

F F T T T T

Step 1: Need to align the bits in the ThirdField variable to bit position eight

F F T T T T T T T T T T S S S S S S S S

t t t t t t t t t t t t t t

F FFF F F

Step 2: Need to mask out the corresponding bits in the packed structure

t t t tt t t t t tt t t t

F T T T TF F T T T T T T T T T T S S S S S S S SF F F F FF F

F F F F F F F F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S S S S S S S S

t t t t t t t t t t t t t t

Step 3: Need to logically OR the two values to produce the final result

F F F F F F F F F F S S S S S S S St t t t t t t t t t t t t t

Final Result

Write Great Code
www.nostarch.com

