INDEX

Symbols
* (asterisk), 178, 234, 237
\ (backslash), 51, 179
^ (beginning of a line or string), 180
\0, 180
$ (end of a line or string), 180
/ (forward slash), 7
| (or), 11
% (percent as wildcard), 237
|| (pipe), 198
\s, 180
[] (square brackets), 180
\w, 180
. (wildcard), 180

A
A/A testing, 86
ABBA, 205
abline() command, 244
A/B testing
 applications and advanced considerations, 90
definition, 77, 79
ethical considerations, 91–93
framework of, 83–84
math, 80
process, 75, 83, 85
accuracy
 of linear probability models, 104–106
 of supervised learning models, 134–136
activation function, 133
adding titles and labels
title(), 14
xlabel(), 14
ylabel(), 14
advanced/fluent/efficient programming, 247
algebra of straight lines, 38
algorithms. See also supervised learning;
 unsupervised learning
 and E-M clustering, 157–158, 160, 164
 Expectation step, 158–160
 Guessing step, 157–158
natural language processing
 (NLP), 119, 209–229
 purpose, 119
alias
definition, 6
use, 13, 32, 35, 78
alternating least squares, 206
alternative hypothesis, 66, 72–73, 77
Anna Karenina, 69
anomaly detection, 167
application programming interface
 (API), 173, 189
APT, xxiii
apt-get command, xxiii
architectures of neural networks, 133
aspiring data scientists, xx
assignment operator, 241–242
asterisk (*), 178, 234, 237
attribute-based systems (aka content-
 based recommender systems), 206, 228
attrition risk, 96, 98, 101, 104–110, 114
ax.plot() method, 17
ax.scatter() method, 17

B
b (intercept), 38
backslash (\), 51, 179
baseline of variables, 38
base Python, xxiv–xxv, 176
Bayesian statistics, 91, 247
Beautiful Soup library, 184
beginning of a line or string (^), 180
bell curve, 64, 155
Betelguese, 53
bias node, 133
bimodal histogram, 148
binary classification
 applications, 90, 114–115
 definition, 95
 and linear regression, 110, 112
bivariate bell curve, 154
box plot, 61–62, 71–72
boxplot() method, 18, 59
bs4 package, 185
business recommendations, making, 103–104
business-to-consumer (B2C) business model, 91
C
C++, 246
central limit theorem, 64
champion/challenger framework, 75, 83–84, 91, 93
chatbots, 228
classification instead of regression, 137–139
classify() function, 151, 158
clauses, 236
clustering
 in business applications, 152
 centers, 160, 162–168
 and collaborative filtering, 206
 definition, 148–150
E-M, 158, 160
k-means, 245
methods, 164
 and natural language processing, 226–227
cmap parameter, 27
code, interpretation of, 170
coefficients
 forecasting, 51
 intercepts, 37–38, 43, 121
 linear regressions, 243–244
 logistic equations, 111
 Pearson correlation, 21
 supervised learning, 123
Cohen’s d, 88–89
cold-start problem, 192
collaborative filtering
 advanced ideas, 206–207
 definition, 191–192
 item-based, 194–195, 199, 201, 203
 user-based, 201–203, 205
color map, 27
columns in user-based collaborative filtering, 201
combinations of metacharacters, 180
comma-separated values, 5
comparisons
 content, 228
 experimental, 203
 group, 57, 74, 86, 88, 219
 statistical, 77
concatenation, 34
confusion matrix, 105, 109, 138
content-based recommender system (aka attribute-based systems), 206, 228
Convergence step, 162–164
convolutional neural networks, 133
corpus, 211–213
correlations, 21–27
corr() method, 21, 26
cosine, 197–198
covariance, 145
cov method, 145
cov/np.cov method, 145, 155
 matrix, 155, 157
.csv, 2, 4–5
cubic curve, 46
customers, 201
 attrition, 96
 segmentation, 153
D
\D, 180
data analysis
 correlation analysis, 21
 exploratory, 1
 machine learning, 117, 141
 making plots, 13
 of subsets, 10
 summary statistics, 8
data cleaning, 32–34
data engineering, 247
data scientists
 - aspiring, xx
 - overview/definition of, 32, 75, 105, 153, 231
 - professional, xxi
 - as statisticians, xix, 246
decision trees, 130–132
decomposition, 206
deep neural networks, 133
density-based spatial clustering of applications with noise (DBSCAN), 166–167
dependencies, 185
derived feature, 108, 137
describe() method, 9
dev.off() method, 244
DevOps, 247
dimension, 154
distance, 216
 - k-nearest neighbors, 124–125
 - distribution of data, 144
 - dot product, 198
distplot() method, 63

effect sizes, 86
 - Cohen’s d, 88–89
embeddings, 219
E-M clustering, 155–164
dependencies, 185
derived feature, 108
ensemble method, 131
error measurements, 40–43
escape sequences, 178–180
ethical considerations of A/B testing, 91–93
Euclidean distance, 216
Euclidean() function, 216
exit probability, 101, 105
expectation-maximization, 157
Expectation step, 158
expected value, $E()$, 62, 64, 80–81, 100
experiment, 76, 79
exploration/exploitation trade-off, 91
false positives, 105–106, 138
feature engineering, 123
features, 142
fetchall() method, 236
filtering, 200, 206
find_all() method, 185, 188
find() method, 174–176
fit() method, 37, 46, 165, 227
fitting
 - logistic function data, 112
 - regression, 37–38
forecasting
 - best regression to use with, 50–55
 - customer demand, 31–32
 - with linear regression, 35, 43, 45, 47, 247
methods, 51, 54
for loop, 67, 236
forward slash (/), 7
function(s)
 - activation, 133
 - calls, xx
 - classify(), 151, 158
 - collaborative filtering and, 202–203, 205
 - euclidean(), 216
 - generating, 143, 145
 - getcenters(), 160–161
 - KMeans(), 165
 - learned, 142
 - multivariate_normal(), 151
 - norms of, 198
 - np.mean() function, 145
 - plt.scatter() function, 159–160
 - print() function, 6, 11, 47
 - R code and, 242
 - set() function, 203
future predictions, 102–103
Gaussian distribution, 145, 155
generating and exploring data, 142–148
Gensim package, 218
generate() function, 160–161
goodness of fit, 40–41
groupby() method, 11–12, 14
 group comparisons, 57
 hypothesis testing, 66
 in a marketing context, 70
 visual, 61
 guessing step, 157–159

H
Hamlet, 225
head() method, 6, 33
heat maps, 26–28
 hierarchical clustering, 167
histogram, 18–20, 29, 64, 67, 144–149
hour.csv, 4–7
HTML code
 elements, 172, 185
 parsing, 173
Hyndman, Rob, 32
hypothesis
 hypothesized line, 38–39, 41–43
 null vs. alternative hypothesis, 66, 72–73
 testing, 65–66, 68, 77

I
identically distributed, 64
identity matrix, 157–158
idx variable, 126
if...then statements, xx
 independent samples, 67
input layer, 133
installation of Python
 on Linux, xxiii
 on macOS, xxii–xxiii
 on Windows, xxii
interaction matrix, 193–196, 199, 201–206
interpretable models, 131
item-based collaborative filtering, 194–201

J
JavaScript, 171, 188, 246
Julia, 246
JupyterLab, xxv
Jupyter Notebook, xxv

K
Kiros, Ryan, 223
k-means clustering, 164–166
KMeans() function, 165
k-nearest neighbors (k-NN), 124
 implementing, 126
 method, 125
 with sklearn, 127–128
 other supervised learning algorithms, 128–129

L
Last Continent, The, 210
latent variable models, 167
learned functions
 decision trees and, 132–133
 definition of, 122–123
 supervised learning and, 128–129, 135, 142
Legendre, Adrien-Marie, 43
linear algebra methods, 246–247
 alternating least squares, 206
linear probability model (LPM), 95, 97–109
 weaknesses of, 109–110
linear regression, 99
 classification, 137
 decision trees, 130
 definition of, 29
 and forecasting, 32, 43, 54–55, 247
 and k-nearest neighbors, 124, 126, 128–129, 131
 measuring accuracy of, 104
 methods of, 47–48
 multivariate, 31, 45–46, 106
 as prediction method, 121
 with R, 243–244
 and supervised learning, 117, 122–124
univariate, 45
line continuation characters, 51
line of best fit, 36, 39, 43, 54, 100
line plot
 how to make, 17
 purpose of, 48
Linux console, xxiii
literal_eval() method, 156
lm() command, 243
loc() method, 10
logistic curve, 110–112
logistic regression, 110–114
LPM. See linear probability model
lxml package, 184–187

M
m (slope), 38
machine learning
 clustering, 152
 datasets, 119
 decision trees, 131
 distances, 125
 forecasting, 53
 methods, 36–37, 114–115
Madonna, 205
magnitude of correlations, 22–25
Mann-Whitney U test, 68
marker style, 16
MATLAB, 246
Matplotlib, 13, 18, 34–35, 59, 71
matrix laboratory, 246
Maximization (M) step, 157, 160–163
max() method, 8
mean, calculating, 8
mean absolute error (MAE), 41–42, 51, 52, 104, 134
mean() method, 8–9, 11
median() method, 8–9, 78
Mengele, Josef, 92
merge() method, 79
metacharacters, 177–182
min() method, 8
Moby Dick, 225
model, 38, 123
modes, 148
monotonic trends, 114
multi-armed bandit problem, 91
multivariate linear regression, 31, 45–46, 106
multivariate_normal() function, 151

N
NaN (not a number), 33
natural language, 211
natural language processing (NLP)
 applications, 228
 definition, 119
 methods, 207
 sentiment analysis, 119, 228
negatively correlated variables, 24
neighbors, 125
neural networks, 132–134
nighttime data, 10–11
NLP. See natural language processing
nodes, 133
nonparametric statistics, 68, 247
normal distribution, 145, 147
norms, 198
not a number (NaN), 33
np.append() method, 43
np.cov() method, 145, 155
np.mean() function, 145
null hypothesis, 66–69
number of observations (nobs), 89–90
NumPy, 41, 78, 82, 126

O
omitted variable, 25
one-dimensional dataset, 154
or (), 11
overfitting, 53, 134

P
package managers, xxiii
pair plot, 20
pandas, xxiv, 6, 32–33
 dataframes, 32–33, 183
 installation, xxiv–xxv, 6
parametric test, 68
parsing HTML, 173–176, 186–188
Pearson correlation coefficient, 21–22
percent as wildcard (%), 237
pip, xxiv–xxv, 6
pipe (||), 198
.pkg file, xxiii
plagiarism, detecting, 210–211, 216–218, 222–223, 225
plot() command, 244
plotting data
 adding titles and labels, 14
 appearance
 box plot, 18
 histogram, 19
 line plot, 17
 pair plot, 20
 scatterplot, 16–17
 simple plot, 13–14
 subsets, 15–16
plt.scatter() function, 159–160
png() command, 244
popularity-based recommendations, 192, 194
populations and samples, 58
positively correlated variables, 22
postdiction, 134
practical significance vs. statistical significance, 69–70
Pratchett, Terry, 210, 225
precision, 105–106
predict() method, 134
price elasticity of demand, 90
print() function, 6, 11, 47
programming languages, 231, 238, 246
proxy, 120
proxy servers, 188
p-value, 65
Python
 base Python, xxiv–xxv, 176
 installation
 on Linux, xxiii
 on macOS, xxii–xxiii
 on Windows, xxii
 packages, xxiv–xxv, 6, 217
 working with, 5
Q
quantifying similarity between words, 211–213
quantitative methods, 32, 62, 117
queries, 234–236
R
R (programming language), 241–243
 and linear regression, 243–244
random forests, 131–132
randomized controlled trials, 91
randomness, 23–24, 35–38, 44
random.random() method, 82
random samples, 59–62
random seed, 82
read_csv() method, 6–7, 32, 58
reading data, 32–34
recall, 105
recommendation systems, 191
 advanced approaches to, 206–207
 case study, 204–205
 collaborative filtering, 194–195
 implementing, 199–201
 using, 201–204
 cosine similarity, 197, 198–199
 popularity-based, 192–194
 vector similarity, 195–201
recurrent neural networks, 134
re.finditer() method, 183
regressor, 37
decision trees, 130–131
k-NN regressors, 127–129
with multivariate models, 107, 136
random forests, 131–132
regular expressions, 176–182, 184–185, 238
related samples, 67
re.search() method, 176
reshape() method, 37
root mean squared error (RMSE), 42–43, 50–54, 104
rotating proxies, 188
rpy2 package, 242
S
\s, 180
Salk, Jonas, 92–93
sample() method, 60
SAS, 246
Scala, 246
scatter() method, 13, 35
scatterplot, 14, 20, 35, 48
scikit-learn (sklearn), 37, 123, 127–128
SciPy package, 67–68
scraping, 188–189. See also web scraping
an email address, 173–174
and parsing HTML tables, 186–188
seaborn package, 18–20, 63
search() method, 176
seasonal data, analyzing, 11–12
sensitivity, 105
set() function, 203
significance level, 66, 73, 76–77
singular value decomposition, 206
skip-thoughts, 223–225
sklearn. See scikit-learn
solve_power() method, 90
sort_values() method, 193
SPSS, 246
spurious correlation, 25
SQL
introduction, 234
joining tables, 238–241
managing soccer with, 232–234
running queries, 235–238
setting up a database, 234–235
SQLite3 package, 235
square brackets ([]), 180
standard deviation, 8, 86–88, 145–147
start tag, 172
Stata, 246
statistical power, 88–90
statistical significance vs. practical
significance, 69–70
statistics packages, 246
std() method, 8
subplots() method, 13
subsets, plotting, 15–16
summary statistics
calculating, 8–9, 72
and plots, 58–59
sum() method, 193
supervised learning
algorithms, 128–129
decision trees, 130–131
random forests, 131–132
neural networks, 132–134
comparison to unsupervised
learning, 142
definition of, 117
k-NN, 124–127
process, 122–124
multivariatemodels, 136
sklearn, 127–128
system of equations, 213–217
T
terminal (Linux console), xxiii–xxiv
test set, 53, 136
titles and labels
title(), 14
xlabel(), 14
ylabel(), 14
Tolstoy, Leo, 69
tools to run Python code, xxv
topic modeling, 225–226
“trained a model,” 38
training set, 51
transpose a matrix, 205
trigonometric curve, 49
trigonometry, 47
true positives, 105, 138
t-test. See also Welch’s t-test
calculating, 67–70
experimentation, 76–77
group comparison, 73–74
performing, 79–80, 83
statistical power, 88
Twyman’s law, 84–86, 93
U
uncorrelated variables, 22, 26
units of exiting, 100
univariate
bell curve, 154
linear regression, 45
Universal Sentence Encoder
(USE), 224
unsupervised learning
clustering, 150
comparison to supervised
learning, 143
definition, 139
E-M clustering, 155
methods, 143, 167–168
user-based collaborative filtering, 201,
203, 205
V
Varian, Hal, xix
variance, 145
vector
degree, 196–197, 199, 225
similarity, measuring, 195
space, 219

W
\w, 180
web scraping, 169, 171–172, 189. See also scraping
converting results to data, 182–184
warning, 173
websites, 170–171
predicting traffic, 118–119
Welch’s t-test, 68. See also t-test
Wilcoxon rank-sum test, 68
wildcard (.), 180
Williams, Robbie, 205
word2vec, 211, 218, 221–224

X
x-position, 243

Y
y-intercept, 38
Yum, xxiii

Z
zero-based indexing, 10