
3
V A R I A B L E S A N D C A L C U L A T I O N S

Now you’re ready to learn your first ele-

ments of Python and start learning how

to solve programming problems. Although

programming languages have myriad features,

the core parts of any programming language are the

instructions that perform numerical calculations. In

this chapter, we’ll explore how math is performed in

Python programs and learn how to solve some prob-

lems using only mathematical operations.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

34 Chapter 3

Sample Program

Let’s start by looking at a very simple problem and its Python solution.

PROBLE M: T HE TOTA L COS T OF TOOT HPA S T E

A store sells toothpaste at $1.76 per tube. Sales tax is 8 percent. For a user-specified

number of tubes, display the cost of the toothpaste, showing the subtotal, sales tax, and

total, including tax.

First I’ll show you a program that solves this problem:

tube_count = int(input("How many tubes to buy: "))

toothpaste_cost = 1.76
subtotal = toothpaste_cost * tube_count
sales_tax_rate = 0.08
sales_tax = subtotal * sales_tax_rate
total = subtotal + sales_tax

print("Toothpaste subtotal: $", subtotal, sep = "")
print("Tax: $", sales_tax, sep = "")
print("Total is $", total, " including tax.", sep = ")

Parts of this program may make intuitive sense to you already; you
know how you would answer the question using a calculator and a scratch
pad, so you know that the program must be doing something similar. Over
the next few pages, you’ll learn exactly what’s going on in these lines of
code. For now, enter this program into your Python editor exactly as shown
and save it with the required .py extension. Run the program several times
with different responses to the question to verify that the program works.
Over the rest of this chapter, we’ll look at the elements of Python that are
used in simple programs like this.

Variables, Types, and Mathematics in Python

The variable is one of the most important concepts in high-level program-
ming. To understand the concept, let’s start with a line of Python code that
uses a variable:

first_variable = 37

From a glance, it looks like this code associates the word first_variable
with the number 37 in some way, but what is it actually doing? The simplest
way to understand variables is with a spreadsheet program. I’ll be using
Google Sheets for this explanation, which is a free browser-based applica-
tion, but any spreadsheet program will work if you want to follow along.

toothpaste.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 35

Spreadsheet Cells and Program Variables
Starting with a blank spreadsheet, place the number 37 in cell B2, the sec-
ond column of the second row. Now we have a particular number (37) in a
location that has a particular name (B2), as shown in Figure 3-1.

37

3

2

1

A B C

37

Figure 3-1: Cell B2 has the value 37.

In programs, a variable is a location to store data, just like a spreadsheet
cell. The data stored in the location, like the 37 in this cell, is the variable’s
value. The name that we use to refer to the location, like the B2 label of our
cell, is the variable’s identifier, or more colloquially, its name.

Let’s look again at that line of code:

first_variable = 37

This is an assignment statement, a line of code that places the value
specified on the right of an equal sign (=) in the location specified by an
identifier on the left. Here, first_variable is our variable identifier, and this
assignment statement places the value 37 into it. Put another way, this line
of code assigns 37 to first_variable.

Choosing Variable Identifiers
In Python, variable identifiers are single words made up of letters, digits, and
underscores, with the additional rule that the first character of an identifier
cannot be a digit. Table 3-1 lists sample valid and invalid Python identifiers.

Table 3-1: Valid and Invalid Python Identifiers

Valid Invalid

total 1995_Sales

totalSales total$

total_sales_percent total_Sales%

quarter3target

_sales1995

Any of the styles shown in the left column of the table are valid in
Python. In this book, variable identifiers are all lowercase, with under-
scores between words we would write separately in plain language, as in
first_variable. This is not because I personally prefer this style. Rather,
this is the rule for variable identifiers in PEP 8, a quasi-official style guide
for Python programs.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

36 Chapter 3

Programming style guides cover issues like how to name variables and
how to lay out source code on the page, and help maintain a consistent look
throughout a program. Style guides are very useful when multiple people
are working on the same program. If you continue programming, you may
be required to follow style guides given to you by employers or professors.
Also, when expanding an existing program written by someone else, you
will usually want to adopt the existing style of the program.

The Python community tends to adhere to PEP 8, and for this reason,
the code in this book will follow the guide as much as possible. If you plan
on sharing any of your code with other Python programmers on the web,
you will spare yourself some trouble if you, too, adopt the PEP 8 guidelines,
which can be found at http://www.python.org/dev/peps/pep-0008/.

It’s important to note, though, that PEP 8, like every other style guide,
simply represents the preferences of its author, and there is no “right” answer
for naming variables or any other style issue in programming. The downside
of using a style guide as a beginner is that you aren’t encouraged to think
about the choices you are making, so you may not develop the ability to write
code in a good style on your own. Whether you follow a style guide or make
your own path, just remember the goal of a coding style is a program that’s
easy to read and understand, and make sure you apply your chosen style
consistently.

Copying Values Between Variables
Returning to our spreadsheet, select cell B2, copy the number inside, and
paste it into cell C2. The result is shown in Figure 3-2.

37 37

3

2

1

A B C

37

Figure 3-2: Cell C2 is a copy of B2.

Both cells, B2 and C2, now display the same number, 37. If we change the
value of B2 from 37 to 117, the value of C2 remains unchanged, as shown in
Figure 3-3. The values in the two cells, B2 and C2, are independent.

117 37

3

2

1

A B C

117

Figure 3-3: Changing the value in cell B2 doesn’t affect C2.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 37

The same idea holds true for variables. Consider the following program:

first_variable = 37
second_variable = first_variable
first_variable = 117

The first statement we’ve already seen: it creates first_variable and
assigns 37 to it. The second statement creates second_variable and assigns
first_variable to it; that is, the statement copies the value of 37 from first_
variable into this new variable. The third statement replaces the previous
value in first_variable with 117.

The value of 37 is copied from one variable’s storage location to
another, just like copying and pasting the number from B2 to C2 in the
spreadsheet. Assigning 117 to first_variable in the third statement has no
effect on the value of second_variable. They are two independent variables at
that point.

Variable Creation
Scrolling down the spreadsheet reveals more and more empty cells. Having
all these empty cells might seem like a waste of memory, but the spread-
sheet doesn’t actually set aside space for a cell in memory until you put
some data into it.

In the same way, a Python variable is created when a value is first
assigned to it. Prior to that first assignment, the variable doesn’t exist in
memory.

Why is this important? Consider the following program:

first_variable = 37
first_variable = second_variable
second_variable = 117

The first line of this program creates a new variable, first_variable, and
assigns 37 to it. The second line attempts to assign the value of second_vari-
able to first_variable, but second_variable hasn’t been assigned a value yet, so
it doesn’t exist. This line will produce an error when the program is run:

NameError: name 'second_variable' is not defined

You must assign a value to a variable before referencing that variable’s
value.

Variable Types
Select cell B2 in the spreadsheet again and then select the option to format
the cell; in Google Sheets, this is Format Number on the menu. The avail-
able formatting options shown demonstrate how spreadsheets can store all
types of data in cells: text, whole numbers, numbers with decimal points,
currency, dates, and more.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

38 Chapter 3

Python variables can also store many different types of data. In pro-
gramming, the type of data indicates how it is stored and interpreted by the
programming language. In this chapter, we’ll focus on three fundamental
types of data in Python: integers, floating-point numbers, and strings.

Integers

You’ve already seen the integer type in statements such as this:

first_variable = 37

The word integer is programming-speak for a whole number, like 37
and 117. In this assignment statement, the 37 is an integer literal, a specific
value embedded in the text of our programming code. Each data type has
rules for literals we must follow, and these rules often vary from how we
would write the same value when we’re not programming. One important
rule for numerical literals is that you cannot include commas to separate
digit groups. If you want to assign the number 4,506 to second_variable, you
would use the literal 4506:

second_variable = 4506

Floating-Points

A floating-point is a number that can represent fractional amounts. Floating-
point literals have a decimal point and one or more digits after the decimal.
Here is a sample line of code that creates a floating-point variable:

float_variable = 1245.75

As with integers, floating-point literals cannot include commas. Note
that a numerical literal is floating-point even if the portion after the deci-
mal point is zero:

also_float = 23.0

Strings

The string type stores a series of characters—a character being a letter,
digit, punctuation mark, or anything else that can be typed on a keyboard.
Because strings can include spaces, string literals use quotation marks to
indicate where the literal begins and ends. For example:

string_variable = "Weekly Sales Total"

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 39

To be clear, the quotation marks that delimit the text are not part of
the string. This statement assigns the text Weekly Sales Total to string_vari-
able. To avoid confusion, I’ll include quotes when talking about string val-
ues in the text as well. Strings can also be delimited with single quotes:

another_string_variable = 'Annual Sales Average:'

We might want to include quotation marks as part of the actual string.
If a string starts with a double quote, any single quotes that appear will be
part of the string, and vice versa:

has_single = "This isn't a problem."
has_double = 'He said, "This is no problem, either."'

If we want to use a double quote inside double quotes, or a single quote
inside single quotes, we must use an escape sequence : a special sequence of
characters that begins with a backslash and identifies a single character. In
this case, that means putting a backslash before the quotation mark to indi-
cate \" or \', as shown in this example:

double_in_double = "This string has \"double quote marks\" but that is okay."
single_in_single = 'This string\'s okay too.'
has_both = "This string has \"many\" more \'quotes\' than is necessary."

For clarity, Table 3-2 shows the state of storage after these statements
are executed.

Table 3-2: Variable String Values After Assignments

Variable Value

double_in_double This string has “double quote marks” but that is okay.

single_in_single This string’s okay too.

has_both This string has “many” more ‘quotes’ than is necessary.

Escape sequences can be used to include other characters we couldn’t
include otherwise, such as \n, which is the line-feed character. The literal
string "this is\ntwo lines" represents the text:

this is
two lines

Also, because the backslash signals an escape sequence, we have an
escape sequence, \\, to indicate a backslash. For example, the literal string
"the program is c:\\mypython\\firstprogram.py" represents the text:

the program is c:\mypython\firstprogram.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

40 Chapter 3

Sometimes in programming we need a string with no characters in it,
called a null string, the string equivalent of a zero. A literal null string is
quotes with nothing between them:

null_string = ''
also_null_string = ""

Always remember that the rules of literals determine the type of the
literal, and, if we’re assigning a literal value to a variable, the type of the vari-
able as well. If we put quotes around a number, for example, that makes a
string literal:

string_not_integer = "23"

Changing Types

As with spreadsheet cells, when we assign a new value to an old variable, the
type of the new value doesn’t have to be the same as the old value. Values of
any type can be assigned to any variable regardless of the prior contents: an
integer can replace a string, a string can replace a floating-point, and so on.
The following is a legal sequence of instructions in Python:

some_variable = 37
some_variable = 100.938
some_variable = "Now I am a string."

Of course, just because something is legal doesn’t make it a good idea.
Storing different types in the same variable might make our code hard to
read. In later chapters, though, we’ll see how this capability can produce
flexible code that handles different types of data equally well.

BE YOND PY T HON: VA R I A BL E DECL A R AT IONS A ND T Y PING

Creating a variable the way we do in Python, by assigning a value to a new

identifier, is known as implicit declaration. Some languages use explicit decla-

ration, which requires a variable declaration statement before a variable can

be used. For example, in C, C++, or Java, one might write:

int someVariable;
someVariable = 37;

Also, most languages require a variable to store a single type throughout

the program. Here, the word int in the declaration makes someVariable an

integer. Unlike in Python, we couldn’t put a floating-point or string value in

someVariable later.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 41

Input and Output
The last features we need to cover before we can start writing useful pro-
grams are input and output. Python provides two functions for these pur-
poses. A function, in programming terms, is a sequence of instructions that
can be executed using the function’s identifier. Later, in Chapter 8, you’ll
learn the details of how functions work and how to write your own func-
tions, but along the way you’ll learn several of Python’s most useful built-in
functions. The first of these is the aptly named input function. Here’s an
example of this function being used:

age = input("Please enter your age: ")

As you can see, this is an assignment statement. On the left we have a
variable named age. On the right, input is the identifier of the function we
are using. Each specific use of a function is known as a function call. After
the function identifier we have parentheses, which enclose the function’s
arguments. An argument is data that is passed to a function for processing.
Different functions can take different numbers and types of arguments,
and in the case of this call to input, the only argument is the string literal
"Please enter your age: ". The input function will display this string to the
user and then wait for the user to input a response. After the user types a
response and presses ENTER, whatever characters the user entered will be
returned by the function as a string value. The returned string value will
then be assigned to the variable age.

Note that if we don’t need to give the user instructions for what to
input, we can leave out the argument, but every function call requires
parentheses:

year = input()

To output results, we use Python’s print function, which displays its
arguments to the Python shell. The print function accepts any number
of arguments, and each argument can be any of the types we have covered
so far. Arguments to functions are separated by commas:

age = input("Please enter your age: ")

print("You said your age was", age, ". Are you telling the truth?")

Note the blank line in this source code. Most languages, Python
included, allow blank lines to be placed anywhere, and we can use them
to separate different parts of a program—as we do here, separating input
and output.

If the user enters 45 for input in the first line, the output from the print
function will be this:

You said your age was 45 . Are you telling the truth?

input_and_print.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

42 Chapter 3

Notice that when we use a variable as the argument to print, such as age,
the value of the variable argument is displayed.

As you can see, there is an extra space after the 45 in the output. The
print function, by default, adds a space between each item it displays. We can
change this behavior by using a named argument, which has the form of an
assignment statement but appears inside the parentheses of a function call.
A named argument assigns a value to a variable used by the function’s code.
The named argument sep specifies what print uses as a separator between dis-
played items. By default, sep has a value of " " (a single space). If we want our
items to run together with nothing separating them, we would assign a null
string to sep:

print("You said your age was ", age, ". Are you telling the truth?", sep = "")

If you run the program with this modification, you’ll see the period
now comes right after the 45.

To discuss what our programs are doing, we’ll adopt some shorthand
verbs for input and output. In this book, when a program calls the input
function, we’ll say that the program reads a value. So we might say that
the first line of input_and_output.py reads the user’s age. When a program
calls the print function, we’ll say the program outputs or displays values. So
if input_and_output.py reads 45 from the user in the first line, the last line
would display or output the text shown previously.

Mathematical Expressions
In useful programs, assignment statements do more than store literal values
and shuffle data from one variable to another. The real power of an assign-
ment statement comes from an arithmetic expression: one or more operands
combined with mathematical operators.

Here’s a program that demonstrates the basic concept:

sum = 100 + 75

print(sum)

Here, 100 and 75 are operands, and the plus sign (+) is an operator. In exe-
cuting this statement, Python will evaluate the expression on the right, sum-
ming the integers 100 and 75 to get the integer result 175, and then assign
this result to the variable sum. This program will output 175 when executed.

You can try this out yourself, entering the program into a new source
code window, saving the results, and running the program as we did at the
start of the chapter.

Operands can be literals, like 100 and 75 in the previous example, or
variables. Consider the following program:

subtotal = 200
total = subtotal + 75

print_sum.py

print_total.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 43

print(total)

The output will be 275.
Math expressions in Python can use any of the operators from alge-

bra, although some operators use different symbols to allow us to type the
expressions on a keyboard. Table 3-3 lists the Python math operators.

Table 3-3: Python Math Operators

Operator Description Example Result

+ Addition 4 + 30 34

- Subtraction 12 - 4 8

* Multiplication 6 * 5 30

/ Division 9 / 2 4.5

// Floor division 9 // 2 4

% Modulo (remainder) 9 % 2 1

** Exponent 5 ** 3 125

These operators can be combined into complex expressions, like this:

sales_tax_rate = 0.08
items_total = 36.45 + 384.55
shipping_cost = 4.5
total_bill = items_total + items_total * sales_tax_rate + shipping_cost

print(total_bill)

The output of this program is 459.18. As with algebra, multiplication
and division take precedence over addition and subtraction. In computing
total_bill, the multiplication of items_total and sales_tax_rate occurs first,
then this result (33.68) is added to items_total, and that result (454.68)
is added to shipping_cost to produce the final value of 459.18, which is
assigned to total_bill.

This program computes the sales tax as 8 percent of items_total and
adds this amount to items_total and shipping_cost. We could get the same
result by computing 108 percent of items_total and adding this amount and
shipping_cost. Rewriting the code in this way requires us to use parentheses
to alter the order of computation, like this:

sales_tax_rate = 0.08
items_total = 36.45 + 384.55
shipping_cost = 4.5
total_bill = items_total * (1 + sales_tax_rate) + shipping_cost

print(total_bill)

total_bill.py

total_bill_
alternate.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

44 Chapter 3

With the parentheses, we add 1 to sales_tax_rate to make 1.08 before
multiplying this result and items_total. Without the parentheses, the multi-
plication of items_total and 1 would happen first.

Mixing Types in Arithmetic Expressions

As we’ve seen, computations with integers produce integers, and compu-
tations with floating-points produce floating-points. Python also allows
numerical types to be mixed in the same expression:

income = 35764
income_tax = 2500 + (income - 17500) * 0.15

When integers and floating-points appear in the same expression, the
integers are converted to floating-point, and thus the final result of the cal-
culation is floating-point as well. In the assignment of income_tax, the literal
integer values of 2500 and 17500 and income’s integer value of 35764 will be
converted to floating-point (2500.0, 17500.0, and 35764.0), and the result of
5239.6 will be assigned to income_tax.

Division is a bit of an odd duck among operators, because dividing
one integer into another may produce fractional results. For example, 16
divided by 2 is 8, but 16 divided by 5 is 3.2.

In some cases, instead of fractional results, we might rather have division
results expressed as a whole number plus a remainder, so that 16 divided by 5
would be expressed as 3 with a remainder of 1, rather than 3.2.

Python’s answer to this issue is to provide three different operators for
division. The basic / operator always produces a floating-point result: 16 / 5
is 3.2, and 16 / 2 is 8.0. The // operator always rounds the result of division
down to the next lower number, and if both operands are integers, the result
is an integer as well. This is known as floor division. For example, 16 // 2 is
8, 16 // 5 is 3, and 16.8 // 5 is 3.0. If the result is negative, the result is still
rounded down, not rounded off; -16 / 5 is −3.2, but the result of -16 // 5 is
−4, not −3.

BE YOND PY T HON: ROUNDING DI V ISION R E SULT S

Almost all programming languages distinguish between integer and

floating-point division, but Python is unusual in how it handles this distinction.

In Python, the programmer chooses between fractional and rounded results by

choosing different division operators. In many languages, the type of a division

result is determined strictly from the type of the operands, so that 9 / 4 would

be integer 2 but 9.0 / 4.0 would be floating-point 2.25. Also, Python is nearly

unique in choosing “floor” rounding for integer division; most languages round

off rather than rounding down. This affects results with negative numbers;

although −9 // 4 is −3 in Python, it will be −2 in most languages.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 45

The third division operator is %, the modulo operator, which yields
the remainder of division. So 16 % 5 is 1, and 16 % 2 is 0. Note that because
-16 // 5 is −4, as explained previously, it means the remainder, -16 % 5, is 4.

String Operations

Python provides many useful string operations, but we’ll discuss just the
most useful string operation, concatenation, which chains separate strings
into one longer string with the + operator:

big_string = "This is " + "one big" + " string now."

print(big_string)

This program constructs and outputs a single string:

"This is one big string now."

Sometimes numerical data will be stored as a string. In itself, this is
no problem, but we can’t perform calculations with a number stored as a
string. For example:

string_income = "34465"
tax = string_income * 0.25

print(tax)

The attempt to compute the product of string_income and 0.25 will gen-
erate an error. In order to use a number stored in a string in an arithmetic
expression, we must first convert the string to a numeric type, using either
the int function, which returns an integer value equivalent to its string
argument, or the float function, which returns a floating-point value. The
previous example can be correctly written as follows:

string_income = "34465"
tax = int(string_income) * 0.25

print(tax)

This program will output 8616.25. This situation is commonly encoun-
tered when using the input function, which returns whatever the user types as
a string. When we are asking the user for numerical input we plan to use in
an expression, we can pass the result from input directly to int or float, as in
this example:

purchase_amount = 24.50
sales_tax_rate = float(input("Enter the sales tax rate as a percentage: "))
sales_tax = purchase_amount * sales_tax_rate

print(sales_tax)

concatenate.py

string_error.py

int_function.py

sales_tax.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

46 Chapter 3

Occasionally, a program will need to convert an integer or floating-
point to a string, which is done with the str function:

tax_amount = 3785.45
tax_message = "You owe " + str(tax_amount) + " in taxes."

print(tax_message)

Splitting Lines

Although most source code editors, IDLE’s included, allow lines of code to be
any length, we programmers tend to limit line length so that we can read an
entire line without having to scroll horizontally. The official PEP 8 suggestion
is to limit lines to 79 characters; as a general rule, you’ll want to pick a line
length based on how wide you keep the editor window on your screen.

Sometimes, though, we’ll have a line that doesn’t fit within our chosen
width, in which case we need to split the logical statement across two or
more lines. Python allows us to split a line inside a set of parentheses at any
place we could put a space. In the case of computations, that means we can
split a line before an operator, like this:

integer_variable = 500
second_variable = 200
multi_line = (34 + integer_variable
 + 33 + second_variable)

print(multi_line)

Or we can split after an operator, like this:

integer_variable = 500
second_variable = 200
multi_line = (34 + integer_variable +
 33 + second_variable)

print(multi_line)

The latter is my personal preference, but the former is specified by
PEP 8, so that’s what you will see in this book. In either case, just remem-
ber that we can only split a line inside parentheses and where we could put
a space. Also note that continuation lines (marked in these two listings)
are indented to line up with the first character after the left parenthesis in
the previous line. We’ll talk more about indentation and what it means in
Python in Chapter 5. At this point, just know that if you use parentheses
and press ENTER at the place where you want to split the line, the IDLE edi-
tor will indent the continuation line for you.

Now we know how to create variables, store data in them, perform cal-
culations, read input from the user, and output results. We have everything
we need to start solving simple problems.

tax_message.py

line_splitting.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 47

Programs with Variables and Mathematics
Let’s take another look at the sample program from the start of the chapter:

 tube_count = int(input("How many tubes to buy: "))

 toothpaste_cost = 1.76
 subtotal = toothpaste_cost * tube_count
 sales_tax_rate = 0.08
 sales_tax = subtotal * sales_tax_rate
 total = subtotal + sales_tax

 print("Toothpaste subtotal: $", subtotal, sep = "")
print("Tax: $", sales_tax, sep = "")
print("Total is $", total, " including tax.", sep = "")

This program uses only the Python shown so far in this chapter. Let’s
examine it line by line to see how it works.

On the first line , the program requests the number of toothpaste
tubes from the user using the input function. Because the program needs to
perform arithmetic with this number later, the input string is sent to the int
function to convert it to an integer, which is then stored in tube_count. Then
toothpaste_cost is assigned the floating-point literal 1.76 , the cost of one
tube of toothpaste. The values of the variables toothpaste_cost and tube_count
are multiplied and the result is stored in subtotal . The floating-point lit-
eral 0.08, representing an 8 percent tax rate, is assigned to sales_tax_rate ,
and the values of subtotal and sales_tax_rate are multiplied with the result
assigned in sales_tax . The sum of the pre-tax toothpaste cost, subtotal,
and the sales tax, sales_tax, is assigned to total . The program ends with
three lines of calls to the print function, displaying the values of the
subtotal, sales_tax, and total variables, along with some string literals con-
taining explanatory text. Note that in each of these print calls, the named
argument sep is set to the null string. Without that, each line of output
would have a space between the dollar sign and the number.

In this program and others we’ve seen, you may have noticed that the
numerical output doesn’t look right for an amount of currency. If you run
this program and enter 877 for the number of toothpaste tubes, the result-
ing total will display as $1667.0016, when we would expect to see something
like $1,667.00. Python’s print function has extra features that can help us
format numbers for display, but instead we’ll treat these issues as opportuni-
ties for problem solving in this and later chapters.

It’s important to remember when reading code that assignment state-
ments are value copies, the same as copying and pasting the contents of one
spreadsheet cell into another. When we use the equals sign in algebra, we
are establishing a relationship that is always true, as when Pythagoras tells
us that for a right triangle, a2 + b2 = c2. An assignment statement, though,
merely places a value in a named storage location.

toothpaste.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

48 Chapter 3

The Input-Calculations-Output Program Structure
To cement your understanding of the Python language shown so far, let’s
take a look at another problem.

PROBLE M: ME T E R CON V E RSION

Write a program that reads a number of meters and outputs the equivalent number of

centimeters and kilometers.

This is less like problem solving and more like assembling and modify-
ing parts from a kit:

 meters = int(input("Enter a number of meters: "))

 centimeters = meters * 100
 kilometers = meters / 1000

 print("That's", centimeters, "centimeters.")
print("And", kilometers, "kilometers.")

You may have noticed that this program is structured much like the
first one. The program calls the input function and passes the result to the
int function to convert the string input to an integer. This result is stored in
meters , after which, meters is multiplied by 100 and the result is stored in
centimeters . Then, meters is divided by 1000 and the result is stored in kilo-
meters . Finally, the program outputs centimeters and kilometers, along with
supporting text, with two calls to the print function . This basic structure—
input, calculations, and output—is at the heart of most useful programs.

Choices Programmers Make
Even in a program this short, the programmer still has choices to make. I’ve
made meters and centimeters integer variables, but kilometers is a floating-
point because it would potentially lose a lot of the precision if floor-division
were used. I’ve performed all the calculations before any output; I could
have interleaved the output and calculations. Or I might have placed the
calculating expressions directly in the output statements, making an even
shorter program:

meters = int(input("Enter a number of meters: "))

print("That's", meters * 100, "centimeters.")
print("And", meters / 1000, "kilometers.")

My choices make sense to me, but other programmers might make dif-
ferent choices, and that’s okay. While there are lots of ways to write a bad pro-
gram, there are also many ways to write a good program. Programming, like

meter_
conversion.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 49

most things, involves trade-offs, and the relative importance a programmer
places on various programming virtues will dictate the choices made in devel-
opment. This will be a continuing theme throughout this book.

Warm-up Exercises

Like the programs shown in the previous section, this group of exercises
requires no real problem solving, just direct application of the Python state-
ments shown so far. These warm-up exercises should help you absorb the
language syntax so you won’t be tripping over it when we get to the trickier
problems. Do not skip these exercises unless you already have experience
programming in Python using input, print, and math expressions.

3-1. Write a program that reads a Fahrenheit temperature and displays the tem-
perature in Celsius and Kelvin.

3-2. Write a program that reads an hourly wage and average number of hours
worked per week and displays the total yearly pay.

3-3. Write a program that reads a total number of inches and outputs feet and
inches. For example, if the input is 54, the output should be 4 feet 6 inches.

3-4. Write a program that reads at-bats and hits and displays the batting average.
(Cricket fans can compute batting average from runs and outs if they prefer.)

3-5. This one will probably require a little Googling: Write a program that com-
putes an NCAA quarterback rating: read the relevant statistics and display
the answer.

Problem Solving with Variables and Mathematics

Now we’re ready to look at problems that require real problem solving. The
programming itself is just as simple as the previous examples, using the
same basic combination of input, calculations, and output, and the result-
ing programs are just as short. The difference is in the thought process that
must occur before the code is written.

An important note: we’ll be solving these problems using only the
Python we’ve seen to this point, but some elements in these problems could
be solved more directly using techniques we’ll cover in later chapters. This
pattern will repeat throughout this book. We’ll try to push each language
concept as far as it can go, even though there may be other ways to solve the
same problem around the corner.

Why do this? For one thing, we don’t want to wait until we’ve covered
most of the language to start learning problem solving. This early exposure
to problem solving will develop your problem-solving skills better than wait-
ing. Solving problems with restricted programming syntax will allow you to
fully understand the capabilities of each element of programming and help
you to unlock all your creative potential as a problem solver. Exploring the
limitations of simpler programming instructions also helps you understand
why programming languages have the features they have.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

50 Chapter 3

As explained in the introduction, the Python community encourages a
set of concepts they call Pythonic programming, and one Pythonic concept
is that there is one “right” approach for each particular problem. Because
of this, a solution that deliberately avoids using advanced language features
may not be Pythonic. But remember that the point of this book is for you
to learn to think like a programmer—to learn how to solve programming
problems on your own.

Therefore, we’ll write programs using the syntax we’ve covered to that
point, and trust that our solutions will become more Pythonic as we become
more knowledgeable and proficient.

Packs and Cans
Our first problem involves monetary calculations, but there’s more to it
than that.

PROBLE M: E FFICIE N T SODA BU Y ING

A local store sells six-packs of soda for $3.29. Individual cans can be bought for 90 cents

a can. Write a program to read the total number of soda cans desired and display how

many packs should be bought to result in the lowest cost.

At first glance, this problem might seem just as straightforward as those
shown previously, but it isn’t. As a rule, and especially as a beginning pro-
grammer, never assume anything is trivial in programming. Always have a
plan, and don’t just jump into coding. If someone wanted to buy 22 cans,
for example, the right number of packs and individual cans is not immedi-
ately obvious, and even less obvious is how we can produce general formulas
for the answers.

Making a Table

Making a table of sample input and output is a good way to start when the
right output isn’t clear. Table 3-4 shows a range of input (the desired num-
ber of soda cans) from 1–12, the number of packs and individual cans that
should be bought to result in the lowest cost, and that cost.

Table 3-4: Sample Input and Output for Efficient Soda Buying

Cans needed (input) Six-packs (output) Individual cans Total cost

1 0 1 $0.90

2 0 2 $1.80

3 0 3 $2.70

4 1 0 $3.29

5 1 0 $3.29

6 1 0 $3.29

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 51

7 1 1 $4.19

8 1 2 $5.09

9 1 3 $5.99

10 2 0 $6.58

11 2 0 $6.58

12 2 0 $6.58

As you can see, buying individual cans is better when buying 1–3 cans,
but then it becomes more economical to buy a six-pack, and this pattern
repeats as the number of cans increases. Creating the table provides data
we can use to test our program once it is written. Also, the table may give us
some hints in writing our program. The output, shown in the second col-
umn of the table, has a definite pattern, but how to produce that pattern is
not immediately clear.

Guessing and Testing

Because the six-pack holds six cans, it’s logical to think that figuring out
the number of packs we should buy will involve dividing by six. In fact, if
someone wanted to buy an exact multiple of six cans, simply dividing the
number of cans by six would be the right answer. That will not produce the
right answer here, but let’s see how wrong the result actually is.

To do that, let’s augment the previous table with a new column that
shows the result of dividing the total number of cans by six. Because we
can’t buy part of a six-pack, we’ll use floor division, Python’s // operator.
The result is shown as Table 3-5.

Table 3-5: Floor-Division Results

Cans needed (input) Six-packs (output) Cans // 6

1 0 0

2 0 0

3 0 0

4 1 0

5 1 0

6 1 1

7 1 1

8 1 1

9 1 1

10 2 1

11 2 1

12 2 2

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

52 Chapter 3

This is what I call guessing and testing; when you aren’t sure about a
mathematical formula, make an educated guess, compare the results to
what you need, and see if you can bring the two together. In this case, the
floor division produces the right numbers, but two rows below where we
would like them. In other words, if we could just shift the third column up
two rows, it would match the desired output.

A Formula for the Pattern

Maybe that’s a clue to a solution. What if we used addition to shift the
results? If we added 2 to the number of cans before the floor division, then,
for example, an input of 4 would produce the results on row 6 of the third
column. Let’s apply this idea to our table to make sure it works (Table 3-6).

Table 3-6: Floor-Division Modification

Cans needed (input) Six-packs (output) Cans // 6 (Cans + 2) // 6

1 0 0 0

2 0 0 0

3 0 0 0

4 1 0 1

5 1 0 1

6 1 1 1

7 1 1 1

8 1 1 1

9 1 1 1

10 2 1 2

11 2 1 2

12 2 2 2

The fourth column looks just like the second—success! Now we can
translate this idea into a program:

 cans_needed = int(input("Number of cans needed: "))
 packs = (cans_needed + 2) // 6

 print("You should buy", packs, "packs.")

Here, we’ve simply applied what we learned to the input-calculations-
output template. Our program gets the number of cans from the user ,
computes the number of packs using the formula we discovered , and dis-
plays the results .

This is another short program, but this problem offers a first glimpse
of what programming and problem solving are all about. In the warm-up

efficient_soda_
buying.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 53

exercises, the calculation needed in the solution was either given in the
problem or obvious. In this problem, figuring out the formula was most of
the work. This is a pattern that will continue throughout this book.

Note that this problem doesn’t require our program to figure out how
many individual cans need to be bought. Because efficiently buying six-
packs can result in buying more cans than needed, the pattern for indi-
vidual cans, as shown in Table 3-4, is more complicated than the pattern for
six-packs. It’s possible for a program to calculate the number of individual
cans, but there’s a much easier way to accomplish such a task that we’ll see
in the next chapter.

A Better Money Display
Let’s take a look at another problem that requires a different approach.
In previous programs, the results of our monetary calculations have been
numbers with more digits after the decimal than is customary. If a result is
7.475, for example, we’d want to display that as $7.48. How can we do that
using just the tools shown so far?

PROBLE M: ROUNDING MONE Y

Write a program that reads an arbitrary floating-point number and displays it with

exactly two decimal places.

Many new programmers would have no idea how to get started on this
problem, because it doesn’t seem to have anything to do with the Python
we’ve learned so far. Our toolbox is filled only with tools for calculations,
but no calculation appears to be involved here.

This problem is really a puzzle as much as a program, and to solve it,
we need to apply the lesson from the fox, goose, and corn puzzle. Instead
of thinking about what needs to be done, we should think about the opera-
tions taught in this chapter and what they can be made to do, and work
from there. We know that floor division rounds its result down. It’s a tool
that is typically used with integers, but we can experiment to see what we
can make it do. What happens if we floor-divide a floating-point by 1?

float_num = 365.4386
 float_num = float_num // 1

print(float_num)

This code is straightforward, but I do want to mention the second state-
ment, where float_num is used on both sides of an assignment statement .
As an algebraic expression, this statement wouldn’t make any sense, but
it is perfectly legal and happens all the time in programming. The state-
ment float_num = float_num // 1 takes the value currently in float_num, floor-
divides it by 1, and stores the result back in float_num, overwriting whatever
was there before.

divide_by_one.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

54 Chapter 3

Note that, as with previous programs, the calculations could be per-
formed in a single assignment statement, but using separate statements
makes the code more readable and matches our thought process: first, we
have a number with four decimal places, and then we try to round it off.

And our effort proves partially successful, because when we run this
program, the output is 365.0. This method will round off a floating-point
number—but to a whole number; the number has been rounded to 365 but
displays as 365.0 because it’s a floating-point. We ask ourselves if there’s any
way to move the decimal point, and there is; we can just multiply or divide
by powers of 10. We extend the experiment, and multiply float_num by 100
before floor-dividing by 1, then divide by 100 afterward.

float_num = 365.4386
float_num = float_num * 100
float_num = float_num // 1
float_num = float_num / 100

print(float_num)

Running this code, we get a result of 365.43, rounded to two decimal
places—time to pop the cork on the champagne! But when we look more
closely, we see that we started with 365.4386, and since we should round
our decimals to the nearest number and not just round down, this should
round to 365.44.

Floor division always rounds down for positive numbers, but maybe
there is still some way to get floor division to do what we want. So we think
back to the Efficient Soda Buying problem and how we used addition to shift
the result of floor division to the result we wanted. Is there a way to do the
same here?

Consider the number 1.01. We want any floating-point number from
1.005 to just under 1.015 to round to 1.01. With our current code, though,
the range of numbers that round to 1.01 is 1.01 to just under 1.02. These
ranges are 0.005 apart. If we add 0.005 to a number before rounding, we
will bring it into the range that will round down to the number we want.

float_num = 365.4386
float_num = float_num + 0.005
float_num = float_num * 100
float_num = float_num // 1
float_num = float_num / 100

print(float_num)

We run this program and the results look correct. Now we want to test
this on a variety of numbers, so now is a good time to change the literal
floating-point in the first statement to a call to input:

float_num = float(input("Enter a floating-point number: "))

two_decimal_
places.py

rounding_money.py

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

Variables and Calculations 55

Starting with a literal value in the assignment makes it easier to test
when we were using the same test value for every run. Once we’re closer
to a working solution, though, having the program read the input is easier
than modifying the code every time we want to change the test data. Not
every programmer would do this. This is the kind of choice that marks a
programmer’s individual personality. By the end of this book, you’ll be
putting together your own personal plan for program development.

When we test this code with different inputs, the results all look properly
rounded. The results aren’t always perfect, though. If we enter 245.1023, for
example, the output is 245.1, when we want it to be 245.10. How can we force
the second digit after the decimal to display even when it is zero? That prob-
lem can be solved using only the tools of this chapter, but I’m leaving the
solution up to you.

A First Taste of Problem Solving
By now you can see that solving problems and learning Python are two dif-
ferent things, and it’s in learning both that you will become a programmer.
Notice how I used some of the problem-solving techniques from the classic
puzzles in the first chapter to work out programming solutions. In the rest
of this book, you will learn a lot more about the Python language and pro-
gramming in general, but you’ll use the techniques in this chapter again
and again. Eventually, their use will become second nature.

Problem-Solving Exercises

Now it’s your turn. Earlier in the chapter you worked through some warm-
up exercises, but these are the first problem-solving exercises in the book.
Because the ideas in this chapter are the basis for everything that follows,
it’s important that you don’t go ahead until you’ve completed these exer-
cises. Work through the problems in the order shown. Remember to apply
the problem-solving techniques shown in this chapter. Don’t tackle the full
problems head on; use tables to visualize patterns of results.

One further note: some readers will have already learned more Python
than what is covered in this chapter, but don’t be Captain Kirk: make sure
you only use the basic tools of this chapter in solving these problems.

3-6. A rock band needs to book studio time to record their new album. The stu-
dio books time in half-hour increments at $120 per half-hour. Write a pro-
gram that allows the musicians to enter the total time they need to record
their album in minutes, and outputs the studio cost. For example, if they
needed 415 minutes, that would require 14 half-hour sessions, at a total cost
of $1,680.

3-7. A store sells soda by the case. A case holds 24 bottles and cost $22.75. Write
a program that allows the user to enter the minimum number of desired
bottles, and outputs the number of bottles that will actually have to be pur-
chased as well as the cost. For example, if the user enters 80, the program
will output that 96 bottles will be purchased at a cost of $91.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

56 Chapter 3

3-8. The rules for determining a leap year are as follows: a year is a leap year if
the year number is divisible by 4, except that years divisible by 100 are not
leap years unless they are also divisible by 400. Thus, the year 1900 was not
a leap year, but the year 2000 was. Write a program that asks for a number
of years and determines how many of those years, starting at the year 2001,
are leap years. That is, if the user enters 102, the program will determine
how many years in the range 2001–2103 are leap years (the answer is 19).
This problem may be too much to try in one pass. Consider starting with
the basic rule (every fourth year is a leap year), and adding the exceptions
once the program produces the right answer for the basic rule.

3-9. Write a program that reads a three-digit number and displays the sum of
the three digits. For example, if the input is 429, the output should be 15.

3-10. You knew this was coming: rewrite the Rounding Money code so that it
always displays two decimal places. For example, an input of 1.001 should
produce an output of 1.00.

� � � � � � � � � � � 	
 � 	 � � � � 	
 � � 	 �
 � � 	 � ! �

