
10
EXPLORING MESH NETWORKING

As you learned in Chapter 1, Wi-Fi net-
works operate in one of two ways: infras-

tructure or ad hoc mode. The vast majority
of wireless networks we interact with operate in

infrastructure mode, where all devices communicate
through a single access point. Ad hoc mode, by con-
trast, doesn’t rely on a centralized router but rather
distributes control to individual peers in the network.

Mesh networking, as its name implies, is meant to work via a large num-
ber of short-haul connections without any sort of centralized control. This
is in contrast to traditional networks that follow a hub-and-spoke topology,
where all devices connect to a central router or Wi-Fi base station. A proper
mesh network should configure itself dynamically, responding to the addi-
tion and removal of nodes and changes in connectivity. In a well-functioning
mesh, networking “just happens” without high-level coordination.

Mesh networks have earned a reputation as being difficult for do-it-
yourself enthusiasts to implement. In this chapter, I’ll dispel this myth by
demonstrating a clear, methodical approach to building a resilient and scal-
able mesh network with inexpensive, off-the-shelf components. This recipe
will work with two or more Raspberry Pi devices. Once you’ve successfully
connected two nodes using the ad hoc wireless routing protocol, the only

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

limitation is available hardware: You can apply the same configuration steps
to subsequent nodes and expand the mesh with ease.

A Brief History
The decentralized and ad hoc nature of mesh networks affords them many
advantages. A network of this type is often described as self-healing, meaning
that if one node fails or becomes unavailable, data packets can still be routed
through alternate paths. This redundancy and fault tolerance implies that
mesh networks should, in theory, be very difficult to disrupt.

It should perhaps come as no surprise that the origins of wireless mesh
networks can be traced back to military applications. Among the earliest
known wireless mesh networks was the Packet Radio Network (PRNET)
project initiated by the Defense Advanced Research Projects Agency (DARPA)
in the late 1970s. This project involved the development of protocols and al-
gorithms for routing data through a network of wireless nodes, paving the
way for today’s modern mesh networks.

MIT’s Roofnet project in the early 2000s was an initiative to deploy a
large-scale wireless mesh network to provide internet access to residents in
Cambridge, Massachusetts. Roofnet’s technology later formed the basis for
Meraki, a mesh networking startup spun off by several MIT engineers. Mer-
aki was subsequently acquired by Cisco Systems and is still in use today.

Around the same time in Europe, the Freifunk Paderborn project was
started to deliver free and open wireless mesh connectivity to residents in
the city of Paderborn, Germany. Participants install open source firmware
on their wireless routers, which allows them to share a portion of their inter-
net connection with others in the community. The Freifunk mesh network
has been in operation continuously since 2002 (a section of the network is
illustrated in Figure 10-1).

Figure 10-1: A small section of the Freifunk Paderborn wireless mesh network simulation

314 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

Since its introduction, Freifunk has grown into a global movement pro-
moting community-driven mesh networking with open source software.

Use Cases
Initiatives like Freifunk are among the most popular examples of practical,
community-based mesh network applications. These types of networks have
also proven to be essential in providing communication lifelines when tra-
ditional networks have been either destroyed or severely disrupted. Since
they can be deployed quickly, mesh networks have been used in the after-
math of numerous natural disasters in recent years, including earthquakes,
hurricanes, floods, and wildfires.

Today, there are many commercial product offerings that aim to re-
place your home Wi-Fi base station with a small constellation of wireless
mesh nodes. A key value proposition to consumers is that these systems,
while somewhat pricier on average than traditional home network router
setups, require very little knowledge to deploy. A home user needn’t know
anything about what’s happening under the hood; the mesh nodes dynami-
cally and continuously adjust their routing parameters to optimize coverage
and throughput.

Owing to the relatively small size, weight, and power requirements of
wireless mesh hardware, NASA has identified this technology for use in both
human and robotic space exploration. One recent area of practical research
at NASA has focused on the Orion spacecraft’s camera system. In fact, the
mesh protocol evaluated by NASA is the very same one you’ll be using in
this chapter.

Hardware Required
This recipe can be implemented with any number of available Raspberry Pi
devices. If my experience is any indication, you may find yourself eager to
press additional devices into service one the mesh is up and running, mak-
ing this recipe ideally suited as a group project.

Compatible Raspberry Pi Models
It’s certainly possible to build a proof-of-concept mesh network with just two
devices. However, things become more interesting as more nodes are added
to the network. The only strict requirement is an available USB port that can
accept an external wireless adapter. In addition, at least one device on your
mesh network should be equipped with an Ethernet port, for reasons that
will be discussed in the implementation steps.

You can use any Raspberry Pi model for this project, but its affordability
and small form factor make the Zero 2 W an ideal choice. If you opt to use
this model, bear in mind that you’ll need a micro USB to USB-C adapter to
connect an external wireless adapter, as the onboard WLAN chipset does
not support the required mesh mode.

Exploring Mesh Networking 315

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

The Pi Zero 2 W is widely available from online retailers for around
$15. It comes standard without a GPIO header, as pictured in Figure 10-2,
so you’ll need to obtain a 40-pin header and perform some basic soldering
to attach it.

Figure 10-2: A standard Pi Zero 2 W

Alternatively, you can avoid soldering by purchasing a model with a
presoldered header. Several retailers offer these, usually at little extra cost.

Mesh Capable Adapter
If you’ve followed the recipe in Chapter 7, you’ll already be familiar with
the Edimax EW-7811Un Nano. This inexpensive yet capable USB wireless
adapter, shown in Figure 10-3, has everything you need to begin exploring
mesh networking, including in-kernel Linux driver support.

Figure 10-3: The Edimax
EW-7811Un USB wireless
adapter

At minimum, your Pi-based mesh network will comprise two nodes,
so plan on budgeting for an equal number of these adapters. The Edimax
adapter is available from various online retailers from about $13.

Squid RGB (Optional)
You’ll acquire hands-on experience with several software tools for monitor-
ing your mesh network in this chapter, but it can be quite useful to have at-a-
glance visual indicators of network packet traffic on your mesh nodes. As an
optional component, the Pi Hut’s Squid RGB is an excellent addition to this
project; you can pick up one for each node you want to monitor in this way.

As shown in Figure 10-4, the Squid RGB has separate leads that control
the red, green, and blue channels of the attached LED.

316 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

Figure 10-4: The Squid RGB from
the Pi Hut

The Squid RGB’s lead sockets fit directly onto the Pi’s GPIO header,
so no soldering is required. It’s available directly from the Pi Hut for
about $6.

Uninterruptible Power Supply HAT
Optionally, you may choose to equip one or more of your Raspberry Pi
Zero 2 Ws with an add-on battery HAT. This isn’t strictly necessary, but you
can often gain great insights if one or more of the nodes in your mesh net-
work is completely untethered and free to move around a given service area.
This is an excellent way to evaluate the self-healing nature of your mesh and
to observe how a phenomenon known as “hopping” occurs in practice.

Many affordable options exist for the Raspberry Pi Zero and other
models. A favorite in my testing lab is the Waveshare UPS HAT, shown in
Figure 10-5.

Figure 10-5: The Waveshare UPS HAT for
Raspberry Pi Zero

It’s available directly from Waveshare for about $24.

Software Used
The primary software component you’ll be using for this recipe is the Better
Approach to Mobile Ad hoc Networking (BATMAN) protocol. A BATMAN mesh
is made up of a set of originators, which communicate via network interfaces
such as standard wireless adapters. Periodically, each originator broadcasts
an originator message (OGM) to all its neighbors to announce its presence.
Each neighbor makes a note of the presence of the originator and rebroad-
casts the message to its own neighbors. The net effect is that, over time,
every node in the mesh receives the OGM (possibly via multiple paths) and

Exploring Mesh Networking 317

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

learns both that the originator exists and which of its neighbors provides the
best path to reach it. Each node maintains a routing table that lists every node
it has ever heard of, along with the best next hop to reach that node.

This protocol has the advantage of building and updating the routing
tables on the fly, with no central coordination needed. It should also find
near-optimal routes to each node. If a node goes offline, the routing tables
will reconfigure themselves to maintain connectivity in its absence. In all but
the smallest networks, no single node has a complete view of how the mesh
is constructed; each node only knows which of its neighbors are available
and which is the best next hop to get to a given node. This decentralized
approach adds to the security and robustness of the mesh.

Implemented in Linux as the batman-adv kernel module, the BATMAN
protocol has been part of the official kernel since version 2.6.38, released in
early 2011. This module operates at Layer 2 of the OSI network model (the
Data Link layer, discussed in “Diagnosing Mesh Network Connectivity” on
page 326). As it’s already present in most Linux kernels, you shouldn’t need
to install it from scratch.

Because batman-adv operates in kernel land, a tool to manage the module
and debug the network is required. The batctl utility was created to fill that
role and has proven an indispensable companion to batman-adv.

KERNEL VS. USERLAND

In this context, kernel land (or kernel space) refers to the privileged area of
virtual memory
where the operating system’s kernel is stored and executed. Modern operating
systems, including Linux, use this separation to protect the kernel from malicious
or errant software and to isolate hardware access.

By contrast, userland, also known as user space, is the area of memory where
code that runs outside the operating system’s kernel (such as application soft-
ware, libraries that interact with the kernel, and some drivers) resides. This
division is illustrated graphically in the following figure, which shows a typical
Linux operating system architecture.

Application 1 Application 2 . . .

Kernel
space

System call interface

Kernel

Device drivers

Application n
User
space

Hardware

Naturally, this recipe wouldn’t be a complete without a dash of Python.
Once you delve into the wilds of mesh networking, you’ll likely want to add
more devices to your network, and you’ll want to be able to monitor their
status at a glance. While not required for operation of the mesh network,

318 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

you can use a bit of Python code to flash an LED attached to your Pi. This
will give you a simple mesh network traffic indicator.

This recipe will walk you through creating the mesh network step by
step, so you can gain hands-on experience with the tools and processes in-
volved. After that, you’ll use a simple bash script to help you automate
things.

All the source code for this recipe is available at https://github.com/
wirelesscookbook/pi-mesh.

Preparing the Nodes
To maximize the flexibility of your setup, you’ll configure your mesh net-
work nodes to operate without an Ethernet connection from the outset.
With the nodes untethered by a network cabling, you’ll be better able to
move them around to test the resiliency of your mesh. You can, of course,
make them entirely wireless by trading the power supplies for attached bat-
tery modules. Later, I’ll discuss configuring one node as a gateway to pro-
vide internet connectivity to the rest of the network.

There is no hard and fast rule about using wpa_supplicant instead of Eth-
ernet here. If you prefer to access your devices with eth0 rather than a wire-
less interface, the outcome of the recipe will be the same.

For ease of setup later on, leave your Edimax EW-7811Un USB wireless
adapter disconnected at this stage. You’ll perform some basic configuration
steps later to assist with streamlining things.

You’ll need a minimum of two devices to create a basic mesh network.
As noted in “Hardware Required,” on page 315, you can use any Raspberry
Pi model capable of supporting a USB wireless adapter. Repeat the steps
described here for each device you plan to deploy on your network.

Begin by preparing the SD card. For this recipe, you’ll use a legacy ver-
sion of Raspberry Pi OS, Bullseye Lite (64- or 32-bit). The Bookworm distri-
bution’s kernel drivers for the wireless chipset used here require additional
work to fully support the mesh networking mode, but Bullseye includes well-
tested drivers that are known to work reliably with this recipe’s hardware.

Flash a fresh SD card with Raspberry Pi OS (Legacy) Lite, available on
the official download page, then create an empty file named ssh (no exten-
sion) and save it to the card’s boot partition.

You’ll use wpa_supplicant to connect to your existing wireless network.
The built-in wireless interface will handle connecting your device to the net-
work, while the interface provided by the USB wireless adapter will be used
to create the mesh network. Using your preferred editor, create a file called
wpa_supplicant.conf with the following contents:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

country=US

network={

ssid="your_SSID"

Exploring Mesh Networking 319

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

https://github.com/wirelesscookbook/pi-mesh
https://github.com/wirelesscookbook/pi-mesh

psk="your_wi-fi_password"

key_mgmt=WPA-PSK

}

Substitute your two-letter ISO 3166-1 alpha-2 country code for US if you’re
not in the United States, and be sure both your network SSID and your pass-
word (PSK) are enclosed in double quotes. Copy this file to the card’s boot
partition. You’ll need to complete this step before you boot the SD card for
the first time, as that’s the point at which the system checks for the presence
of the wpa_supplicant.conf file.

Alternatively, you can perform this configuration step with the Rasp-
berry Pi Imager tool while writing the OS to your SD card. UnderOS Cus-
tomisation, choose the Wireless LAN option and enter an SSID (name) and
the password for your network. If the network doesn’t broadcast an SSID
publicly, enable the Hidden SSID setting.

With this done, ensure that your Pi is within range of your wireless router,
then insert the SD card and connect it to power.

Creating the Mesh Network
At this stage, I’ll assume that your required minimum two devices are booted
and accessible on your WLAN. As with the previous section, repeat the steps
described here for each device you plan to configure for your network.

The batman-adv driver is already present in the Linux kernel, but you’ll
need to install its companion userland tool, batctl. This will provide you
with a full set of tools for creating, monitoring, and troubleshooting a sin-
gle mesh node, or the entire network. You’ll also install git to support a later
step. Since you’re starting with a clean OS, begin with a full upgrade to be
sure you have the latest kernel and packages, then install these prerequisites
and reboot:

$ sudo apt update && sudo apt full-upgrade

$ sudo apt install batctl git

$ sudo reboot

You’ll need to instruct the DHCP client daemon, dhcpcd, to ignore wlan1

when discovering new interfaces. To do this, you can make use of dhcpcd’s
denyinterfaces pattern. Open dhcpcd.conf in your editor with

$ sudo nano /etc/dhcpcd.conf

and add this directive to the end of the file:

denyinterfaces wlan1

Next, instruct dhcpcd to configure the wlan0 interface with wpa_supplicant.
Append the following below the line you added previously:

interface wlan0

wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

320 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

Save the file and exit your editor. With these steps done, restart the
dhcpcd service for the changes to take effect:

$ sudo systemctl restart dhcpcd.service

If you’re using NetworkManager, use the following modification to stop
it from managing the Wi-Fi adapter:

$ sudo touch /etc/network/interfaces

$ sudo echo "iface wlan1 inet manual" > /etc/network/interfaces

Now, connect your Edimax EW-7811Un wireless adapter to one of the
Pi’s USB ports. By connecting it after boot, you can more reliably have it
bound to wlan1, which leaves it unused by wpa_supplicant and ready to be put
into service as a mesh point. With the adapter connected to your device, run
lsusb to confirm that it’s recognized by the OS. You should see information
such as the device ID, manufacturer, model name, and chipset.

If this is a fresh install, ensure that Wi-Fi isn’t blocked by rfkill:

$ sudo rfkill unblock wlan

At this point, you can use iw to list the available wireless devices. For
clarity, I’ll refer to this first node asMesh-Pi #1. Example output is shown
here (yours may differ):

$ iw dev

phy#1

Interface wlan1

ifindex 4

wdev 0x100000001

addr 80:1f:02:9b:b0:c4

type managed

txpower 20.00 dBm

phy#0

Interface wlan0

ifindex 3

wdev 0x1

addr dc:a6:32:3d:ff:9d

ssid Home-Router

type managed

channel 11 (2462 MHz), width: 20 MHz, center1: 2462 MHz

txpower 31.00 dBm

Take note of the physical address (phy#1, in this example) for the adapter
bound to the wlan1 interface. You can inspect this wireless device’s capabili-
ties by running:

$ iw phy1 info | grep "Supported interface modes" -A10

Supported interface modes:

* IBSS

Exploring Mesh Networking 321

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

* managed

* AP

* AP/VLAN

* monitor

* mesh point

* P2P-client

* P2P-GO

--snip--

Notice that the Edimax adapter’s “mesh point” mode is listed as an avail-
able option. Since you know the physical address (phy#1) and the interface
(wlan1), you may now use iw to reconfigure this interface as a mesh point. Be-
gin by removing the existing interface, so you can define its type:

$ sudo iw dev wlan1 del

Now, redefine this interface as a mesh type, like so:

$ sudo iw phy phy1 interface add wlan1 type mesh

You can confirm the change by checking the output of iw again:

$ iw wlan1 info

Interface wlan1

ifindex 5

wdev 0x100000002

addr 80:1f:02:9b:b0:c4

type mesh point

wiphy 1

txpower 20.00 dBm

Next, use ip to set the MTU value for the interface, then call iw to join it
to the pi-mesh network (you can change this name if you like, just be sure to
use it consistently):

$ sudo ip link set mtu 1532 dev wlan1

$ sudo ip link set wlan1 up

$ sudo iw dev wlan1 mesh join pi-mesh

Now, you’ll use batctl to instruct the batman-adv kernel module to create
the new virtual bat0 mesh interface:

$ sudo batctl if add wlan1

$ sudo ip link set up dev bat0

These commands will typically not produce any output in the terminal.
However, you can use dmesg to view these events in the kernel’s ring buffer by
executing the following command:

$ dmesg | grep batman_adv

[145.630607] batman_adv: B.A.T.M.A.N. advanced 2022.3 loaded

322 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

[145.635757] batman_adv: bat0: Adding interface: wlan1

[145.635886] batman_adv: bat0: Interface activated: wlan1

Each batman-adv node maintains a list of all single-hop neighbors it de-
tects. Whether a single-hop neighbor is routed to directly or via another
neighbor is determined based on the link quality. You can view the current
node’s neighbor table with:

$ sudo batctl neighbors

[B.A.T.M.A.N. adv 2020.4, MainIF/MAC: wlan1/80:1f:02:9b:b0:c4

(bat0/66:24:2a:20:a2:71 BATMAN_IV)]

IF Neighbor last-seen

At the moment, no other nodes are visible because you haven’t yet en-
abled mesh support on your other devices.

Working with MTU Values
In TCP/IP networking, the maximum transmission unit (MTU) refers to the
size, in bytes, of the largest datagram that a given layer of a communications
protocol may pass in a single transaction. A large MTU value requires less
overhead, while a smaller MTU has less delay. This value will vary depending
on the most appropriate size for a given application.

The default MTU size for most Ethernet networks is 1,500 bytes. You
can check the MTU setting for the interfaces on your device by running:

$ ip a | grep mtu

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 noqueue state UNKNOWN group default

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP group default

3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UP group default

4: wlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1532 state UP group default

6: bat0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 state UNKNOWN group default

The Linux module batman-adv will advise you, via dmesg, when the MTU
setting of your configured mesh interface falls outside its recommended
range. For example, you may see a message such as:

The MTU interface wlan1 is too small (1500) to handle the transport of

batman-adv packets. Packets going over this interface will be fragmented

on layer2 which could impact performance. Setting the MTU to 1532 would

solve the problem.

--snip--

The MTU value is reflected in your configuration for the Edimax EW-
7811Un wireless adapter’s wlan1 interface. If you receive an error such as
“MTU greater than device maximum,” this usually indicates a limitation
of the wireless adapter hardware. Helpfully, ip will report the minimum
and maximum supported MTU values for a given interface. Use the -d or

Exploring Mesh Networking 323

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

-details option with ip and pipe it through grep to get detailed information
about the interface:

$ ip -details link list | grep wlan1 -A1

5: wlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1532 bat0 state UP mode DEF...

link/ether 74:da:38:ed:5e:7d... promiscuity 0 minmtu 256 maxmtu 2304

These values appear as minmtu and maxmtu in the output.

Adding More Nodes
To add more nodes to your mesh network, repeat the steps in the preceding
section on your other device(s). When you’re done, execute the following
commands on each device to view the interface status and neighbor table,
respectively. On Mesh-Pi #1, you should see output similar to this:

$ sudo batctl interface

wlan1: active

$ sudo batctl neighbors

[B.A.T.M.A.N. adv 2020.4, MainIF/MAC: wlan1/80:1f:02:9b:b0:c4

(bat0/d6:43:53:6c:61:88 BATMAN_IV)]

IF Neighbor last-seen

wlan1 74:da:38:ed:5e:94 0.570s

Now, execute the same commands on Mesh-Pi #2. Take note of the dif-
ferent MAC addresses:

$ sudo batctl interface

wlan1: active

$ sudo batctl neighbors

[B.A.T.M.A.N. adv 2020.4, MainIF/MAC: wlan1/74:da:38:ed:5e:94

(bat0/0e:36:d1:d2:dc:28 BATMAN_IV)]

IF Neighbor last-seen

wlan1 80:1f:02:9b:b0:c4 0.290s

As you can see, the MAC addresses of each device in the mesh is visible
to the other node.

In these examples, the batman-adv interface bat0 is used as a default pa-
rameter. You can specify the interface to use with the meshif option, and you
can use the abbreviated form of the neighbors command, n, if you prefer:

$ sudo batctl meshif bat0 n

Diagnosing Mesh Network Connectivity
Most wireless routing protocols operate at Layer 3 of the OSI network model
(see “Diagnosing Mesh Network Connectivity” on page 326 for a brief overview
of this model). This means they exchange routing information by sending

324 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

UDP packets and make routing decisions by manipulating the kernel routing
table. By contrast, batman-adv operates entirely at Layer 2, meaning it handles
not only the routing information but also the data traffic itself. In practice,
batman-adv encapsulates and forwards all traffic until it reaches its destina-
tion, effectively emulating a virtual network switch with all nodes participat-
ing. This is illustrated in Figure 10-6.

Virtual mesh interface

Network interface(s)

B.A.T.M.A.N. advanced

Network layer

Lower layers

Figure 10-6: The batman-adv encapsulation structure

For this reason, all nodes appear to be link-local and are unaware of the
network’s topology. Similarly, mesh nodes are unaffected by changes within
the network.

LINK-LOCAL ADDRESSES

In this context, link-local refers to addresses on a TCP/IP network that interfaces
can automatically adopt if one has not been manually configured for them or
assigned by DHCP. These addresses are often used for automatic address
configuration or neighbor discovery within a single link, or when no router is
present. They also enable direct communication between nodes on the same
network segment.

Traditional network debugging tools based on the Internet Control Mes-
sage Protocol (ICMP), such as ping and traceroute, won’t work as expected
with batman-adv. This is because all traffic in the mesh is transported to its
destination transparently at Layer 2, so higher-layer protocols have no visibil-
ity of hop counts or path details.

This transparency is one of the main reasons you can roam around with-
out breaking your connection. To provide comparable diagnostic tools,
batman-adv includes its own version of ICMP, which is integrated directly into
the protocol. Here, I’ll demonstrate using batctl ping to inject IMCP packets
that behave very similarly to their Layer 3 network counterpart.

Execute the following command on Mesh-Pi #1, replacing the MAC ad-
dress with the one for your own device. Your output will differ, but it should
have a similar format to the example output shown here:

$ sudo batctl ping 74:da:38:ed:5e:94

PING 74:da:38:ed:5e:94 (74:da:38:ed:5e:94) 20(48) bytes of data

Exploring Mesh Networking 325

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

20 bytes from 74:da:38:ed:5e:94 icmp_seq=7 ttl=50 time=12.99 ms

20 bytes from 74:da:38:ed:5e:94 icmp_seq=8 ttl=50 time=18.18 ms

You can also perform this ping test on Mesh-Pi #2:

$ sudo batctl ping 80:1f:02:9b:b0:c4

PING 80:1f:02:9b:b0:c4 (80:1f:02:9b:b0:c4) 20(48) bytes of data

20 bytes from 80:1f:02:9b:b0:c4 icmp_seq=1 ttl=50 time=6.01 ms

20 bytes from 80:1f:02:9b:b0:c4 icmp_seq=7 ttl=50 time=13.71 ms

Interrupt ping with CTRL-C. This is just a basic network connectivity test.
In the sections that follow, I’ll show you additional steps you can use to verify
the integrity of your new mesh network.

THE OSI NETWORK MODEL EXPLAINED

The Open Systems Interconnect (OSI) model is a conceptual framework that
breaks down networking into seven layers, each with its own role and respons-
ibilities. These layers help engineers visualize what’s going on in their networks
and pinpoint where issues occur. For our purposes, we’re primarily concerned
with Layers 3 (Network), 2 (Data Link), and 1 (Physical). Here’s a brief
overview of each:

Layer 3 (Network) At the Network layer, you’ll find most of the routing
functionality that networking professionals and hobbyists work with. In its
most basic sense, this layer is responsible for packet forwarding, including
routing traffic through different routers.
Layer 2 Data Link The Data Link layer provides node-to-node data trans-
fer between directly connected devices and handles error detection and
correction from the Physical layer. It has two sublayers: the Media Access
Control (MAC) layer and the Logical Link Control (LLC) layer. In the net-
working world, most switches operate at Layer 2; however, some also
operate at Layer 3 to support virtual LANs that span more than one switch
subnet, which requires routing capabilities.
Layer 1 (Physical) At the bottom of the OSI model is the Physical layer,
which represents the electrical and physical hardware. This can include
everything from radio frequencies (as in a Wi-Fi network) and voltages to
cables, hubs, repeaters, and other physical assets. When a networking
problem occurs, engineers commonly start at the Physical layer, checking
that all the hardware is properly connected and no components have lost
power.

Creating Mesh Hostnames
Until now, you’ve referred to your mesh devices by their MAC addresses.
Here, you’ll create a file called /etc/bat-hosts and define hostnames for each
device. This step is not required, but it can make common tasks easier to
perform and help clarify diagnostic output, as the symbolic names will be
used instead of the MAC addresses in the output of many batctl commands.

326 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

Create the file with

$ sudo nano /etc/bat-hosts

and define your mesh hostnames as shown here, replacing the MAC ad-
dresses with those of your devices:

80:1f:02:9b:b0:c4 mesh-pi1

74:da:38:ed:5e:94 mesh-pi2

You can use different names if you prefer; they don’t need to match the
device hostnames or be consistent with DNS or any other naming schemes.
When you’re done, save the file and exit your editor. The next time you ex-
ecute a batctl command, you should see the mesh node MAC addresses re-
placed with symbolic names. For example:

$ sudo batctl meshif bat0 neighbors

[B.A.T.M.A.N. adv 2022.3, MainIF/MAC: wlan1/74:da:38:ed:5e:7d

(bat0/66:52:d4:22:36:67 BATMAN_IV)]

IF Neighbor last-seen

wlan1 mesh-pi2 0.820s

This can be helpful for tracking and diagnosing issues with individual
nodes, particularly in larger mesh networks. You may even want to consider
affixing physical labels to your devices that correspond to these symbolic
names.

Running at Boot
The steps you’ve used to configure each mesh node will need to be per-
formed each time the device is rebooted. To streamline this process, you
can combine them into a bash startup script that you can run after a reboot.
Begin by cloning the companion GitHub repository for this project:

$ cd $HOME

$ git clone https://github.com/wirelesscookbook/pi-mesh.git

At the next device boot, reconnect the Edimax adapter to a USB port
if necessary, then run iw dev to confirm that it’s available for use. With the
presence of the wlan1 interface verified, execute the startup script as shown
here. The output should appear similar to the following:

$ cd $HOME/pi-mesh

$./startup.sh wlan1

Configuring wlan1 as mesh point

Physical wlan1 address is phy#1

Loading batman-adv kernel module

Releasing wlan1 interface

Adding wlan1 as mesh interface

Setting MTU value for batman-adv and joining pi-mesh

Exploring Mesh Networking 327

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

Adding wlan1 to batman-adv and bringing it up

Diagnostic output from batctl...

wlan1: active

[B.A.T.M.A.N. adv 2022.3, MainIF/MAC: wlan1/80:1f:02:9b:b0:c4

(bat0/ee:f8:60:47:7c:8a BATMAN_IV)]

IF Neighbor last-seen

wlan1 74:da:38:ed:5e:94 0.360s

If your mesh point interface is not wlan1, be sure to specify it when in-
vokeing the startup script. Otherwise, your device may become inaccessible
when the interface is reconfigured. The script will automatically detect the
physical interface, execute each of the required manual steps, and finish by
performing a diagnostic with batctl, as indicated in the output, to check the
status of the mesh interface and any connected nodes.

If you’d like this script to run automatically each time your mesh node
boots, a pi-mesh.service systemd unit file is included in the GitHub repository.
Begin by opening this file in your editor. If the path to startup.sh is different
from /home/pi/pi-mesh, be sure to adjust it accordingly in the unit file. Like-
wise, this service is configured to run as the pi user, but you can change this
if necessary. When you’re satisfied with the configuration, install and enable
the service with:

$ sudo cp $HOME/pi-mesh/pi-mesh.service /etc/systemd/system/

$ sudo systemctl daemon-reload

$ sudo systemctl enable pi-mesh.service

Following a reboot, you can check its status with:

$ sudo systemctl status pi-mesh.service

You may have noticed that the oneshot type is defined in the systemd ser-
vice unit file. This is used for services that perform a one-time task, then
exit. In this case, it handles initialization of the wlan1 interface, brings up
bat0, and joins the pi-mesh network. There’s no need for it to remain running
as a background service, so it appears as inactive (dead). This is expected;
you should see the status (code=exited, status=0/SUCCESS) returned in the out-
put to indicate that it executed successfully.

Extending the Mesh Network
If you have additional devices to add to the mesh, repeat the previous steps
for each one in turn. Verify each step, checking the kernel message log with
dmesg to see if an error is thrown at any stage. Filtering kernel messages for
batman-adv can be helpful for diagnosing problems. Example output is shown
here:

$ dmesg | grep batman_adv

batman_adv: B.A.T.M.A.N. advanced 2022.3 (compatibility version 15) loaded

batman_adv: bat0: Interface deactivated: wlan1

328 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

batman_adv: bat0: Removing interface: wlan1

batman_adv: bat0: Adding interface: wlan1

batman_adv: bat0: Interface activated: wlan1

When you’re satisfied with the state of your mesh network, move on to
the next section, where you’ll configure a gateway device to allow traffic to
be routed to and from the internet.

Gateways and Access
In the previous steps, you configured two or more Raspberry Pis to create
a mesh network using the batman-adv protocol. In this section, you’ll ensure
that you can access the devices forming the mesh and provide internet con-
nectivity to them. To do this, you’ll add a gateway node that allows mesh traf-
fic to reach the internet, while maintaining a level of isolation and privacy
for the mesh network itself. A visual representation is presented in Figure 10-7.

Gateway Mesh node

Figure 10-7: A conceptual view of a wireless mesh
network with a single gateway

To make the internet uplink available to the mesh network, batman-adv
lets you enable a so-called gateway mode. In this mode, the user-defined in-
ternet uplink bandwidth is propagated throughout the network. Since the
gateway functionality is based on DHCP, as you’ll see shortly, the protocol
assumes that each gateway operates its own DHCP server and each client
runs a DHCP client. When a DHCP client starts, it broadcasts a DHCP re-
quest to the entire network. Every available DHCP server sends a reply back
to the client, which then chooses one of the responding DHCP servers as its
gateway.

WHAT ROLE DOES A GATEWAY PLAY?

In the TCP/IP networking world, a gateway serves several key functions. First, it
acts to hide or separate one network (your mesh, in this case) from another.
Second, a gateway allows devices on a network to “see” devices on an
external network using a process known as network address translation (NAT).

(continued)

Exploring Mesh Networking 329

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

Simply put, this technique maps multiple private, internal IP addresses to a
unique public one. In this way, NAT allows a single device to act as an
intermediary between a local, private network and the public internet. It
achieves this by translating responses received from the internet back to the
originating device on the local network.

A gateway also selectively forwards traffic from the public network to the pri-
vate one. In a typical configuration, the gateway forwards only responses to
traffic originating in the local (private) network. In this way, a gateway prevents
internet traffic from “seeing” into your network, while still allowing devices on
the network to access the internet.

If you’ve manually configured a routed access point, you’ll already be familiar
with NAT and IP forwarding. The technique explored in this section is func-
tionally equivalent.

Among networking professionals, this gateway implementation is often referred
to as a Layer 3 routing solution (in reference to the OSI model discussed in
“Diagnosing Mesh Network Connectivity” on page 326).

Depending on its topology, a mesh can have more than one gateway.
Here, I’ll demonstrate how to configure a single gateway for your mesh, but
you can repeat the same process for any number of devices.

Adding a Gateway
To create a gateway, you’ll need to select one device from your mesh net-
work and configure it accordingly. For simplicity, connect this device to
your external network via Ethernet, so it can be accessed via eth0. The other
devices in your mesh can remain connected via wpa_supplicant, if you opted
to go with a fully wireless setup.

Since you’re using IP routing to selectively move traffic between the
mesh and your external network, you’ll need to define a unique address
range. The steps outlined here assume the following network details:

Gateway address 192.168.99.1

Subnet mask 255.255.255.0

Address range 192.168.99.50 - 192.168.99.150

In the previous section, you used the DHCP client daemon, dhcpcd,
to configure the wireless interfaces for individual nodes in your mesh.
batman-adv doesn’t assign IP addresses itself; to do this, you’ll need to host
a DHCP server on your gateway. A separate software package called dnsmasq

will handle automatic IP address assignment within the mesh. Installing it is
straightforward:

$ sudo apt update

$ sudo apt install dnsmasq iptables

With the dnsmasq package installed, you can configure it to provide IP ad-
dresses to client nodes on the bat0 mesh interface. To do this, you’ll define

330 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

a pool of available addresses for DHCP to draw from and set a lease time
of 12 hours. This ensures that DHCP leases for devices that are no longer
active on the network are freed, or released, after a predefined time. This
helps make your mesh network more efficient, particularly if it’s a dynamic
one where nodes frequently go into and out of range.

Rather than editing the default dnsmasq configuration file (located at
/etc/dnsmasq.conf) directly, you can drop in a standalone configuration to
keep things neater. Create the file in your editor with

$ sudo nano /etc/dnsmasq.d/bat0.conf

and add the following contents to it:

interface=bat0

dhcp-range=192.168.99.50,192.168.99.150,255.255.255.0,12h

Save the file and exit your editor. Next, you’ll need to use a modified
version of the startup script you created earlier for the gateway node. Exam-
ine the contents of this file by running:

$ cat $HOME/pi-mesh/startup-gw.sh

--snip--

iface=${1:-wlan1}

networkid="pi-mesh"

echo "Configuring ${iface} as mesh point..."

get physical address of wlan1 adapter

addr=$(iw dev ${iface} info | awk '$1=="wiphy"{print $2}')

echo "Physical ${iface} address is phy#${addr}"

load the module

echo "Loading batman-adv kernel module"

sudo modprobe batman-adv

--snip--

tell batman-adv this is a gateway node

sudo batctl gw_mode server

enable port forwarding

sudo sysctl -w net.ipv4.ip_forward=1

sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

sudo iptables -A FORWARD -i eth0 -o bat0 -m conntrack --ctstate RELATED,

ESTABLISHED -j ACCEPT

sudo iptables -A FORWARD -i bat0 -o eth0 -j ACCEPT

--snip--

Exploring Mesh Networking 331

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

The key changes here are using batctl to tell batman-adv that this is a gate-
way node, assigning a static IP address to the gateway interface, and defining
some NAT rules (as described earlier) with iptables. To ensure the iptables

rules persist across reboots, install the following package:

$ sudo apt install iptables-persistent

At this point, your mesh node has all the required components to func-
tion as a gateway for the network. All that’s left to do now is reboot the nodes
and verify that IP addressing and internet access are working across your
mesh network.

Rebooting the Mesh Network
Rebooting your gateway and the other nodes in the mesh will ensure that IP
addressing and NAT are functioning as they should. Check that the gateway
node is connected to your router via Ethernet, then reboot each of the Pis in
your mesh network, starting with the gateway. Next, access the gateway node
via ssh and run:

$ cd $HOME/pi-mesh

$./startup-gw.sh wlan1

--snip--

Configuring wlan1 as mesh point...

Physical wlan1 address is phy#0

Loading batman-adv kernel module

Releasing wlan1 interface

Adding wlan1 as mesh interface

Setting MTU value for batman-adv and joining pi-mesh

Tell batman-adv this is a gw_mode server

Enabling IP forwarding and NAT

net.ipv4.ip_forward = 1

Adding wlan1 to batman-adv and bringing it up

If you’ve installed the pi-mesh systemd service, you can skip the following
step. Otherwise, connect to each of the other nodes via ssh and execute the
“normal” (non-gateway-enabled) startup script:

$ cd $HOME/pi-mesh

$./startup.sh wlan1

When this process is complete, your mesh should be fully formed, and
each node on the network should have an IP address assigned by the gate-
way. You’ll confirm this in the next section.

332 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

Verifying Your Mesh
There are many tools and techniques you can use to verify the integrity of
your mesh network. I’ll demonstrate several of these here, starting with the
gateway node. To begin, connect to the gateway via ssh and execute ip to
inspect the configured network interfaces. The bat0 interface is isolated here
for clarity:

$ ip a

--snip--

bat0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.199.1 netmask 255.255.255.0 broadcast 192.168.199.255

--snip--

Notice that the bat0 interface is configured with the gateway’s static IP
address, which you defined earlier. You should also see the eth0 interface
configured with an IP address assigned by your router.

Next, use batctl to check the status of neighboring nodes as seen by the
gateway:

$ sudo batctl neighbors

[B.A.T.M.A.N. adv 2022.3, MainIF/MAC: wlan1/80:1f:02:9b:b0:c4

(bat0/5e:26:41:3e:fd:7e BATMAN_IV)]

IF Neighbor last-seen

wlan1 mesh-pi#2 0.930s

wlan1 mesh-pi#3 0.070s

wlan1 mesh-pi#4 0.610s

wlan1 mesh-pi#5 1.780s

wlan1 mesh-pi#6 0.820s

The example output shows that several new mesh nodes have been added
(symbolic names have been mapped to their MAC addresses in /etc/bat-hosts,
as discussed earlier).

Now, verify the nodes in your mesh. Choose one of the mesh-pi nodes
and connect to it via ssh. Then, use ip to inspect its bat0 interface, as you did
with the gateway node:

$ ip a | grep bat0

bat0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state

inet 192.168.99.133/24 brd 192.168.99.255 scope global dynamic noprefixroute bat0

--snip--

Notice that this node’s bat0 interface has been assigned an IP address,
192.168.99.133, from the range you defined in the gateway node’s dnsmasq
service. If the bat0 interface doesn’t have an IP address assigned, you can
run dhclient bat0 to request one. Make note of this address for a later step.

Next, using the batctl commands you explored earlier, try inspecting
the batman-adv interface status and neighboring mesh nodes.

Up to this point, you’ve been accessing your nodes via the onboard wire-
less interface, wlan0, configured with wpa_supplicant. The wireless connection

Exploring Mesh Networking 333

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

to your router provides internet access in this configuration. To verify con-
nectivity within your mesh and to the wider internet via the gateway, you can
disable this interface. First, list your configured wireless devices:

$ iw dev

phy#1

Interface wlan1

ifindex 5

wdev 0x2

addr 74:da:38:ed:5e:94

type mesh point

channel 1 (2412 MHz), width: 20 MHz (no HT), center1: 2412 MHz

txpower 20.00 dBm

phy#0

Interface wlan0

ifindex 3

wdev 0x1

addr dc:a6:32:3d:ff:9d

ssid Home-Router

type managed

channel 11 (2462 MHz), width: 20 MHz, center1: 2462 MHz

txpower 31.00 dBm

Note that bringing down the interface you’re currently connected to via
ssh will cause your terminal session to freeze. Don’t worry; this is expected.
I’ll demonstrate an alternative method to access your device remotely.

In the preceding output, you can see that the wlan0 interface is con-
nected to “Home-Router.” Execute the following command to bring this
interface down:

$ sudo ip link set down dev wlan0

At this point, your ssh session will become unresponsive because your
device is no longer connected to your home network. Reconnect to your
gateway node via ssh, using the IP address you noted earlier in place of
192.168.99.133:

$ ssh pi@192.168.99.133

pi@192.168.99.133 password:

--snip--

If your username is different, you’ll also need to replace pi with the
name of your user. If you’ve set up key-based authentication, as described
in “Key-Based Authentication” on page 44, you should now be connected re-
motely to this node over the mesh network via ssh. To verify that the gateway
is providing internet access via IP forwarding and NAT, you can perform a
basic ping test:

334 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

$ ping nostarch.com

PING nostarch.com (104.20.17.121): 56 data bytes

64 bytes from nostarch.com (104.20.17.121): icmp_seq=1 ttl=47 time=21.9 ms

64 bytes from nostarch.com (104.20.17.121): icmp_seq=2 ttl=47 time=14.6 ms

--snip--

Interrupt the ping test with CTRL-C. You may also want to use ip again to
check the status of this mesh node’s interfaces:

$ ip a

...

2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN

group default qlen 1000

link/ether b8:27:eb:f9:39:a8 brd ff:ff:ff:ff:ff:ff

3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN

group default qlen 1000

link/ether b8:27:eb:ac:6c:fd brd ff:ff:ff:ff:ff:ff

5: wlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1532 qdisc mq master bat0 state UP

group default qlen 1000

link/ether 74:da:38:ed:5e:94 brd ff:ff:ff:ff:ff:ff

inet6 fe80::76da:38ff:feed:5e94/64 scope link

valid_lft forever preferred_lft forever

6: bat0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN

group default qlen 1000

link/ether be:54:cb:4a:34:d8 brd ff:ff:ff:ff:ff:ff

inet 192.168.99.133/24 brd 192.168.99.255 scope global dynamic noprefixroute

--snip--

Notice that the eth0 and wlan0 interfaces appear as DOWN, while the wlan1

interface is UP and associated with the virtual bat0 interface. Congratulations!
Your node is successfully communicating on the mesh network, with inter-
net connectivity provided by the gateway. While you’re connected, you may
also execute any of the batctl commands covered earlier to monitor the sta-
tus of the mesh.

Managing Nodes with the Gateway
You may have noticed that the gateway is the only node that’s directly ac-
cessible from your external network. The other mesh nodes remain hidden
behind it. To access them, simply log in to the gateway node; you can then
manage these nodes from the command line or access them directly via
ssh. Bear in mind, however, that any external services that rely on network
broadcast traffic, such as media servers or wireless printers, won’t be passed
through to the mesh network.

There are several ways you can survey nodes on the mesh, apart from
using batctl and the batman-adv protocol. One method is to use the mesh

Exploring Mesh Networking 335

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

gateway’s dnsmasq service to check the active DHCP leases. You can do this by
inspecting the contents of the leases file, like so:

$ cat /var/lib/misc/dnsmasq.leases

1640415313 be:54:cb:4a:34:d8 192.168.99.133 raspberrypi 01:be:54:cb:4a:34:d8

--snip--

Recall that you’ve set leases to expire after 12 hours, so this may not ac-
curately reflect all active nodes. Another handy utility for this scenario is
nmap (or network mapper), a staple in every network administrator’s toolbox.
Install it and use it to explore your mesh network by executing the following
commands:

$ sudo apt install nmap -y

$ sudo nmap -sn 192.168.99.0/24

Starting Nmap 7.80 (https://nmap.org) at 2021-12-24 20:18 GMT

Nmap scan report for 192.168.99.133

Host is up (0.0014s latency).

--snip--

Here, the -sn option tells nmap to list available hosts that respond to dis-
covery probes, without performing a port scan. Often called a “ping scan,”
this will provide you with a list of all the active IP addresses belonging to
nodes on your mesh network. As a reminder, these services and tools op-
erate at Layer 3 of the mesh. You can, of course, inspect the single-hop mesh
neighborhood at the protocol (Layer 2) level with sudo batctl neighbors peri-
odically as well, and compare the results.

batman-adv will proactively do all the dynamic packet routing and “dead
node” detection in your mesh for you. You can monitor all aspects of the
network using the suite of tools available from batctl, including tcpdump,
traceroute, and more, as well as analyzing logfiles and debug tables, if needed.
Execute batctl -h for a complete list of options.

In most cases, a batman-adv wireless mesh will optimize itself without your
intervention as nodes enter and leave the network. There are still ways you
can tweak it to better suit your specific requirements, however. These are
discussed in “Pointers on Fine-Tuning” on page 337.

A Closer Look at the Protocol
The batman-adv algorithm works by dispersing knowledge about the optimal
end-to-end paths between nodes in the mesh across all participating nodes.
Each node maintains information only about the best next hop to every
other node, making global knowledge about network topology unnecessary.
This might sound like voodoo, but the inner workings of the algorithm will
become clearer as you explore it further.

On a practical level, each node in a batman-adv mesh periodically broad-
casts a “hello” signal, also known as an originator message or OGM, to in-
form neighboring nodes of its existence. An OGM consists of an originator
address, a sender address, and a unique sequence number. When a node
receives an OGM, it changes the sending address to its own address and

336 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

rebroadcasts the message according to specific rules. The sequence number
is used to identify which of a pair of messages is newer. Through this pro-
cess, each node in the network becomes aware of its own direct, or “single-
hop” neighbors. At the same time, a node also learns about other nodes that
aren’t in range through a direct link but can be reached by hopping through
a neighbor.

While node A is moving through the mesh, the route between A and B
should recover as fast as possible. This process is illustrated in Figure 10-8,
where N1 and N2 are intermediate nodes.

B N1

A

N2 B N1 B

A

N2

A

N2N1

Figure 10-8: A visual representation of node mobility and ”hopping” in a mesh network

OGMs that follow a path where the quality of wireless links is poor or
where links are saturated will suffer from packet loss or delays on their way
through the mesh. OGMs that travel along better routes will propagate faster
and more reliably. The routing algorithm uses this information when select-
ing which neighbor to use as the next hop and updates its routing table ac-
cordingly.

Pointers on Fine-Tuning
Given this high-level view of how OGMs are used to build mesh routing
tables, let’s consider some scenarios in which you might tweak the network
configuration to better suit your needs. To reduce the overhead of discover-
ing all participants in the mesh, batman-adv can aggregate OGMs into a single
packet rather than sending several smaller ones. This feature is enabled by
default because it’s helpful in the vast majority of setups. However, if you’re
operating batman-adv in a highly mobile environment (such as a fleet of ve-
hicles, unmanned aerial vehicles, or robots), you may want to disable it, as
it introduces a slight delay while updating the network. You can check and
modify this setting as follows:

$ sudo batctl meshif bat0 aggregation

enabled

$ sudo batctl meshif bat0 aggregation 0

disabled

A related setting you can adjust for mobile environments is the hop
penalty, which influences batman-adv’s preference for multihop versus direct
routes. This value is applied to each forwarded OGM. A higher hop penalty
makes it less likely that other nodes will choose this node as an intermediate

Exploring Mesh Networking 337

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

hop to any given destination, while a lower hop penalty may result in longer
routes because retransmissions are not penalized.

The default hop penalty of 15 is a good balance for most mesh config-
urations and in most cases may be left as is. In mobile deployments, you
might choose a higher value (up to a maximum of 255) to discourage other
nodes from routing traffic through certain nodes. To view the current set-
ting on any mesh node, run:

$ sudo batctl meshif bat0 hop_penalty

To change it, add the new value after the hop_penalty option. For exam-
ple, to make sure a mobile node won’t be chosen as a router, you might use:

$ sudo batctl meshif bat0 hop_penalty 255

As you saw in the previous section, a batman-adv node can operate in a
gateway server mode in which it shares its internet connection with the rest
of the mesh. One of the features of a gateway is its ability to announce its
available internet bandwidth. The default gateway bandwidth is 10Mbps for
downloads and 2Mbps for uploads. You can confirm this setting by running
the following command on your gateway node:

$ sudo batctl meshif bat0 gw_mode

server (announced bw: 10.0/2.0 MBit)

As your mesh grows, it can be advantageous to configure more than
one gateway. In these scenarios, gateways can adjust their announced band-
width to more accurately represent their capabilities. To do this, enter the
desired numbers separated with a forward slash (/), optionally followed by
kbit or mbit):

$ sudo batctl meshif bat0 gw_mode server 20mbit/5mbit

The protocol will propagate these values throughout the mesh, allowing
client nodes to select the best gateway based on criteria such as link quality
and announced bandwidth.

These are a few of the common settings you can use to fine-tune your
mesh network. Of course, batman-adv offers many more configuration op-
tions not covered here. If you’d like to make further adjustments to your
mesh, a good practice is to establish a baseline by measuring latency be-
tween nodes (using the tools we’ve explored), then modify the settings on
one or more nodes and observe how your metrics change.

For insights into an additional mesh tuning parameters, visualized in
real time, see “Using LED Activity Indicators” on page 340.

A Word on Security
One of the most common questions asked about batman-adv, and about wire-
less mesh networks in general, is: “How do I secure the mesh?” The short
answer is, it depends on what type of security you need. Security is a broad

338 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

topic. Most often, it involves authentication, encryption, or (probably) some
combination of both. The environment in which you deploy your mesh will
also shape its security requirements. In real-world implementations, achiev-
ing strong security always involves trade-offs, and even the most secure sys-
tems usually have vulnerabilities. You might opt for making your community
wireless mesh secure enough for most clients to join, or for use in an emer-
gency, but not so bulletproof that the system becomes unusable. After all,
the “plug-and-play” nature of mesh networks is one of their greatest selling
points.

In the case of authentication, the lack of central infrastructure in an ad
hoc wireless mesh presents special challenges when it comes to establishing
trust between nodes. Contrast this to the public internet, where we can use
a public key infrastructure (PKI) with certificates and keys to secure data
transfers between a client device, such as a web browser, and a server.

In the context of community wireless projects, the lack of a central au-
thority in a self-organizing mesh means that it’s often simpler to forgo en-
cryption at the Wi-Fi link layer and implement security at higher layers. This
means using encrypted channels with tools such as ssh and sftp rather than
insecure protocols like telnet, for example.

One proposed approach for mesh authentication is to use special pub-
lic key certificates called proxy certificates, combined with a neighbor trust
mechanism. Together, these allow authentication and access control to be
managed in a secure manner.

Monitoring the Mesh Network
You should now have a minimum of two active mesh nodes in your network.
You may also have configured a third node as a gateway to provide internet
connectivity to the network and to give you an entry point to manage your
mesh nodes. If you haven’t set up a gateway, you can continue to provide
WLAN connectivity to your nodes via the onboard wireless adapter’s wlan0
interface.

As noted in “Diagnosing Mesh Network Connectivity” on page 324, be-
cause batman-adv operates at Layer 2, traditional ICMP-based tools like ping

and traceroute aren’t able to provide their usual insights within the mesh.
However, several other network tools can help you monitor the activity and
overall health of your mesh nodes. These generally work by observing the
flow of network packets transmitted and received over the mesh interface,
then collecting and displaying various metrics. In addition to these terminal
utilities, this section will demonstrate a monitoring technique that uses an
optional hardware component and accompanying Python source code.

Using the Terminal
There are many command line tools you can use to monitor traffic over a
batman-adv mesh interface. Several of the more popular utilities are described

Exploring Mesh Networking 339

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

here. The one you choose will largely depend on your specific network diag-
nostic goals, as well as personal taste.

One popular tool is iftop, a real-time bandwidth monitor for the ter-
minal. It listens to network traffic on a specific interface, or on the first in-
terface it can find if none is specified. By default, iftop counts all IP pack-
ets that pass through its filter and tracks their direction as they transit the
interface. It then displays a summary of current bandwidth usage. To install
and run iftop on the bat0 interface, use the following commands:

$ sudo apt install iftop -y

$ sudo iftop -i bat0

After a few moments, you should see traffic between your node’s bat0 in-
terface and other nodes in the mesh. Note the directional traffic indicators
(=> and <=) between the hosts. To exit the monitor, pressQ.

Another popular tool is bmon (bandwidth monitor), which can be used
to monitor network traffic over a mesh interface and its associated wireless
interface simultaneously. Install it with:

$ sudo apt install bmon -y

Then launch it, specifying the bat0 and wlan1 interfaces for monitoring:

$ bmon -p bat0,wlan1

You can use the up and down arrow keys to toggle between the inter-
faces. To exit bmon, pressQ.

The final network monitor tool I’ll mention is slurm. Install it with:

$ sudo apt install slurm -y

Then run it, specifying the bat0 mesh interface with the -i option. The
-L option enables software-based transmit/receive LED indicators:

$ slurm -i bat0 -L

Exit the program with a Q keystroke. In the next section, you’ll imple-
ment a hardware-based monitoring technique.

Using LED Activity Indicators
Another way of visualizing how network traffic propagates through your
mesh is by adding LED indicators to your nodes. This can be done with one
or more Squid RGB add-ons and a dash of Python. As you saw in “Hardware
Required” on page 315, this component provides a single LED with several
fully controllable color channels.

Begin by connecting the Squid RGB to the GPIO header of the mesh
node (or nodes, if you have multiple Squids) you want to monitor. If you’re
unsure of the GPIO pin numbering, execute pinout from the terminal for a
handy reference. The black lead serves as a ground; connect this to one of

340 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

the GND pins on the header. The GND pin between GPIO pins 18 and 23
is most convenient, as it permits you to connect the Squid’s leads in a series.
Next, connect the color-coded leads as follows:

• Red Squid lead to GPIO 18

• Green Squid lead to GPIO 23

• Blue Squid lead to GPIO 24

With that done, access the node and install the necessary dependencies:

$ sudo apt install python3-rpi.gpio python3-pip python3-psutil

$ pip3 install psutil

If you haven’t done so already, clone this chapter’s companion GitHub
repository to your home directory. Then, change to the project directory
and open netactivity.py in your editor:

$ cd $HOME

$ git clone https://github.com/wirelesscookbook/pi-mesh.git

$ cd pi-mesh

$ nano netactivity.py

The netactivity.py Python script uses the Squid class, which provides a
convenient interface to the standard RPi.GPIO library. Each of the Squid
RGB’s three color channels is controlled by a separate GPIO pin. These pins
and their corresponding colors are defined in the following code sample:

from squid import Squid, RED, GREEN, OFF

from time import sleep

import psutil

import time

import sys

GPIO pins for RED, GREEN, BLUE channels (BCM numbering)

RED_PIN = 17

GREEN_PIN = 27

BLUE_PIN = 22

led = Squid(RED_PIN, GREEN_PIN, BLUE_PIN)

Default network interface

interface = 'wlan1'

def flash(color):

led.set_color(color)

time.sleep(0.01) # Flash duration

led.set_color(OFF)

Exploring Mesh Networking 341

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

try:

while True:

net_io = psutil.net_io_counters(pernic=True)

interface_io = net_io.get(interface)

--snip--

Inside the main while loop, the psutil (process and system utilities)
Python package is used to fetch information on system utilization—in this
case, network I/O, or input and output, statistics. By comparing the current
number of bytes sent and received over the selected interface to their pre-
vious values, the script can flash the corresponding LED color to indicate
activity. This is handled by flash(GREEN) and flash(RED), respectively. A short
time.sleep() interval is added so each flash is visible. Execute the script with:

$ python netactivity.py wlan1 &

You can omit the wlan1 argument if you like, as this is the default inter-
face. If your mesh interface is something other than wlan1, be sure to specify
it here.

Appending an ampersand (&) to the command line instructs the shell to
run the command as a background process. The shell will respond with the
process ID (PID) of the running program, followed by a message indicating
the monitored interface. Pressing ENTER will return you to the bash com-
mand prompt, allowing you to perform other operations while the Python
script is running. At any time, you can use the jobs command to view a list of
background jobs. Use fg %n to bring a background job (job number n) to the
foreground. To exit the Python script, press CTRL-C.

The first thing you may notice upon running the script is that the LED
flashes green (“send” or transmit) on your mesh nodes at regular intervals.
This activity corresponds to the “hello” originator messages sent to inform
neighboring nodes of their presence, as discussed in “A Closer Look at the
Protocol” on page 336. You can determine the current setting for this inter-
val by running:

$ batctl meshif bat0 orig_interval

The default interval value is 1,000 ms (1 s). This is generally suitable for
small, relatively stable mesh networks. In larger or highly dynamic networks
(where nodes move frequently or change often), decreasing this interval can
help the network adapt more quickly to topology changes. However, bear in
mind that this also increases overhead. To adjust the interval, specify a new
parameter value in milliseconds:

$ sudo batctl meshif bat0 orig_interval 500

342 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

After making this change, restart the netactivity.py script and check that
the green “send” LED flashes to confirm that it has taken effect. As you tune
your mesh, monitor the network’s performance using batctl and the com-
mand line tools discussed in the previous section. A good rule of thumb
is to make incremental, rather then drastic, changes while fine-tuning the
network.

Troubleshooting
If a node isn’t able to join your mesh network, start by verifying that the
batman-adv module is loaded. Then check the installed version using batctl,
like so:

$ lsmod | grep batman_adv

$ batctl -v

batctl debian-2020.4-2 [batman-adv: 2022.3]

The example output indicates that the installed batman-adv version is
2022.3. In practice, different minor versions usually interoperate without
issues, but major version differences (for example, 2020.1 versus 2023.1) can
cause protocol compatibility problems. To ensure a stable and reliable mesh,
I recommend that all nodes run the same version of the protocol.

If you suspect a node has lost connectivity to the mesh, a best practice
is to begin by conducting basic ping and traceroute tests. As mentioned in
“Diagnosing Mesh Network Connectivity” on page 324, you’ll need to use
batctl’s versions of these tools. You can identify a node by its MAC address
or hostname, using commands like the following:

$ sudo batctl ping node_mac_address

$ sudo batctl traceroute hostname

Make sure to substitute the actual MAC address or hostname of the
node you want to test in place of the placeholder values. If your node re-
sponds to these tests, you can further examine your mesh with these batctl

diagnostics:

$ sudo batctl neighbors

$ sudo batctl originators

$ sudo batctl gateways

As a next step, you can check the global translation table with:

$ sudo batctl transglobal

This table maps client MAC addresses to the appropriate mesh nodes
and ensures that packets are correctly routed to their destination nodes
within the network. This routing information is especially vital in dynamic
environments where nodes frequently change position. If your mesh is highly
dynamic, consider tuning the orig_interval parameter value as described in
“Using LED Activity Indicators” on page 340.

Exploring Mesh Networking 343

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

All batman-adv error messages, warnings, and information messages are
written to the kernel log. To see these messages in the system logs, use the
following commands:

$ journalctl -xe | grep batman

$ dmesg | grep batman

As a last measure, restarting a node will often permit it to rejoin the net-
work. The mesh node startup scripts described in “Running at Boot” on
page 327 are useful here.

Going Further
In the previous sections, you looked at several methods to verify and moni-
tor connectivity between nodes in your mesh network, including optionally
integrating an LED activity indicator. In terms of where to go from here, the
direction you choose will be guided by your (or your future mesh commu-
nity’s) specific requirements, goals, and ambitions. Mesh networks afford
many unique possibilities that set them apart from typical Wi-Fi networks.
To provide some inspiration, I’ll describe a few popular use cases drawn
from existing mesh implementations.

The Freifunk Paderborn project, discussed at the beginning of this chap-
ter, is one of the best-known and most successful community-based mesh
networks worldwide. This project, which is part of the larger Freifunk (“free
Wi-Fi”) initiative in Germany, has the egalitarian aim of providing free and
open internet access to its members and visitors. The project’s open source
ethos has inspired and enabled the growth of mesh-based free wireless con-
nectivity in many other regions. Organized in a grassroots manner, local
communities have formed their own networks and connected them together
with wireless backbones, with uplinks to the wider internet established at
several locations via secure VPN tunnels. A real-time map of one of these
Freifunk community networks, connecting the municipalities of Mainz,
Wiesbaden, and Umgebung, is shown in Figure 10-9.

Figure 10-9: A real-time map of Freifunk community mesh nodes
(OpenStreetMap, CC BY-SA 2.0)

344 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

As of this writing, more than a thousand mesh nodes are participat-
ing in this Freifunk region alone. Across Germany as a whole, this num-
ber exceeds many tens of thousands of nodes. All the devices in Freifunk
operate as 802.11s mesh nodes using the same batman-adv protocol you’ve
implemented here. Connecting to the network is done simply by flashing
a supported router or access point with the Freifunk mesh firmware and
powering it up. The device will then automatically mesh with other Freifunk
router nodes that are within range.

Beyond free Wi-Fi, the Freifunk network provides many services to its
participants, including chat via IRC and Mumble, radio and podcasts,
collaborative writing, community calendars, and more. Perhaps most in-
terestingly, the Freifunk Community API provides a mechanism for each
community to make its resources known in a structured way. Powered by
this API, a map of active Freifunk communities across Germany is available
at https://api-viewer.freifunk.net.

The Freifunk initiative is an exceptional success story highlighting the
potential of community-owned mesh networks. While a Raspberry Pi–based
mesh network operating at this scale is theoretically possible, dedicated
router hardware is generally better suited for this purpose. That said, I cer-
tainly encourage you to expand the pi-mesh network you’ve implemented
here. To make it easier for others to join your pi-mesh, consider creating a
baseline configuration based on the example in this chapter, then cloning
the OS to create your own custom image. You can then distribute this image
to other users so that they can more easily participate in the network.

If you’re intrigued by the visual LED status indicators but find them
lacking, the recipe from Chapter 3 can be modified to output any number of
metrics associated with your mesh nodes. For example, you could parse the
output of batctl to obtain a list of neighbors, originators, and gateway nodes
within range of your node and output this to the TFT display. By querying
these values at regular intervals, you can experimentally observe the process
of “hopping” as nodes transit through the mesh.

Wrapping Up
In marked contrast to most of the other Wi-Fi networks covered in this book,
this chapter has focused on implementing wireless mesh nodes that rely on
an ad hoc routing protocol. The approach you’ve followed uses low-cost,
readily available components to create a mesh network that’s both resistant
to disruption and capable of scaling up as more nodes are added.

To achieve this, you interacted with network interfaces and the mesh
protocol directly via the shell, and you used bash scripts from the compan-
ion GitHub repository to automate joining nodes to the mesh at system
startup. Throughout this process, you saw how the mesh protocol operates
entirely at Layer 2 of the OSI model, effectively emulating a virtual network
switch to route traffic between nodes. You also learned about the vital role
gateways play in providing an internet uplink to your network, as well as

Exploring Mesh Networking 345

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

https://api-viewer.freifunk.net

serving as an entry point for managing nodes in the mesh. To facilitate this,
you used the mesh protocol and DHCP to designate a gateway node.

You examined the protocol itself to learn how messages are propagated
between nodes, and you saw how nodes use this information to discover
neighbors and route traffic efficiently. With this understanding of how mesh
routing tables are created, you explored techniques for fine-tuning your
mesh network. Finally, you looked at various methods for monitoring your
mesh network, both via the terminal and by using hardware LED activity
indicators.

346 Chapter 10

The Wireless Cookbook (Sample Chapter) © 7/9/25 by Bill Zimmerman

