
I N D E X

SYMBOLS
` (backtick), 23
$ (dollar sign), 23
=> (fat arrow), 21
! (exclamation mark), 102
. (period), 176
+ (plus operator), 34, 142
? (question mark), 45
... (spread operator), 27–28, 78
[] (square brackets), 77, 102
_ (underscore), 105

NUMBERS
200 status code, 107, 248–249
404 status code, 227
405 status code, 111
500 status code, 77, 101, 249

A
absolute imports, 196
abstract syntax tree (AST), 103–104
access token, 159

using authorization grant to
get, 171

using to get protected resource, 172
act, test cases, 133
allowJs option, 259
AMD format, 16
anonymous functions, 16–17
any type, 43
APIs (application programming

interfaces), 57
containers communicating

through, 174
contracts, 34, 38, 94
GraphQL APIs, 101–113
microservices communicating

through, 178
REST APIs, 93–101

routes
creating, 90
for GraphQL API, 110–111
overview, 75–77
replacing with route handlers,

285–287
Apollo sandbox, 111–113
Apollo server, 108
app directory, 72, 263–287

exploring project structure, 269–287
adding content and route,

275–277
adding server component

that fetches remote data,
281–284

catching errors, 277–279
completing application with

navigation, 284–285
defining layout, 273–275
replacing API routes with

route handlers, 285–287
showing optional loading

interface, 279–281
updating CSS, 271–272

rendering components
dynamic rendering, 268–269
fetching data, 266–267
static rendering, 267–268

server components vs. client
components

client components, 265
server components, 264–265

App function, 56
application glue, 120
application programming interfaces.

See APIs
apps

serving from Docker container, 177
using databases and object-relational

mappers, 116

296 Index

arranging test cases, 132–133
array.map function, 27
arrays

dispersing, 27–28
identifying object types as, 102
looping through, 27

array type, 41–42
arrow functions, 20–22

exploring practical use cases, 22
lexical scope, 21–22
writing, 21

assertion, test cases, 133–134
AST (abstract syntax tree), 103–104
asynchronous scripts

avoiding traditional callbacks,
24–25

simplifying, 26–27
using promises, 25–26
writing ES.Next module with, 29–30

async keyword, 26–27
audience claim, 164
auditing package.json file, 10
AuthElement component

adding to header, 241–243
overview, 238–240

authentication
authorization vs., 158–159
REST APIs, 97–98

authentication callback, 233–236
auth guard, 248–249
authorization, 157–172

accessing protected resource,
168–172

logging in to receive
authorization grant,
170–171

setting up client, 168–170
using access token to get

protected resource, 172
using authorization grant to

get access token, 171
authentication vs., 158–159
bearer tokens, 160–161
code flow, 160–163
creating JWT tokens, 163–168

header, 163
payload, 163–166
signature, 166–168

grant types, 159–160
role of OAuth, 159

authorization code flow, 160–163
authorization grant

logging in to receive, 170–171
using to get access token, 171

authorization server, 159
automated tests, 253–257

adding Jest to project, 254
setting up, 254–256
writing snapshot tests for header

element, 256–257
await keyword, 26–27

B
Babel.js, 15
backend container

creating backend service, 187–189
seeding the database, 186–187

backtick ()̀, 23
baseUrl option, 259
bearer tokens, 160–161
beforeAll hook, 132
beforeEach hook, 132
black-box test, 144
blocking time, 86
block scope, 17
Booleans, 40
Boolean scalar type, 102
built-in components

next/head, 80–81
next/image, 82–83
next/link, 81–82

built-in hooks
handling side effects with

useEffect, 62–63
managing internal state with

useState, 62
sharing global data with

useContext and context
providers, 63–64

built-in matchers, 289–291
built-in types

any, 43
array, 41–42
object, 42
primitive types, 40–41
tuple, 42–43

Index 297

union, 41
void, 43–44

built-in validators, 118
button, generic, 235–238, 244–247

C
@cacheControl directive, 103
cacheControl.setCacheHint resolver

function, 103
cached connection, 198
callback hell, 25
callbacks

array function running, 138
array.map function, 27
arrow functions simplifying, 22
avoiding traditional, 24–25

callback URL, 162
cases, test, 130
catch all API route, 78
catch method, 25–26
claims, 163–166

private, 166
public, 165
registered, 164–165

class components, 59–60
client components, 265
client credentials, 232

flow, 160
client ID, 159
clients, 159
client secret, 159
client-side rendering, 88–89
cloning arrays and objects, 28
code coverage, 130, 138–139
code generator, 55
collections, 117
collisions, 161
compilerOptions field, 37
compilers, 36
components, 57–61

Next.js built-in components, 80–83
next/head, 80–81
next/image, 82–83
next/link, 81–82

providing reusable behavior with
hooks, 61

styles for, 79–80
writing class components, 59–60

concise body function, 21
constant-like data, 20
const keyword, 20
constructor function, 59
container class, 80
containerization, 173–182. See also

Docker
context providers, 63–64
COPY keyword, 176
create-next-app command, 70
create-react-app command, 55
Cross-Origin Resource Sharing

(CORS), 75–76
CRUD operations, 121–123, 199
CSS styles, 78–80

adding to list item, 216–217
component styles, 79–80
global styles, 79
updating, 271–272

cumulative layout shifts, 82
curl command, 248, 251–252
cURL tool, 99
custom types, 44–45, 208
Cypress, 253

D
daemon service, 175
database-connection middleware,

120–121
data mapping, 77
data types, 20
declarative programming, 54
declaring variables, 17–20

constant-like data, 20
hoisted variables, 18–19
scope-abiding variables, 19

default exports, 16–17
default keyword, 16
DefinitelyTyped repository, 46
DELETE method, 98
deleteOne function, 123
deleting document, 123
dependencies

installing, 8–9
overview, 6
removing, 11
replacing, 139–143

creating doubles folder, 141

298 Index

dependencies (continued)
replacing (continued)

creating module with
dependencies, 140–141

using fakes, 142
using mocks, 143
using stubs, 142

useEffect hook managing, 63
details component, 227–228
development dependencies

installing, 9–10
overview, 6

development scripts, Next.js, 72
directives, 208
dispersing arrays and objects, 27–28
Docker, 173–182, 185–193

building local environment with
backend container, 186–189
frontend container, 189–192

containerization architecture, 174
containers, 174–178

building Docker image, 176
interacting with, 178
locating exposed Docker port,

177–178
serving application from, 177
writing Dockerfile, 175–176

Docker Compose, 178–182
interacting with, 182
rerunning tests, 181–182
running containers, 180–181
writing docker-compose.yml file,

179–180
Food Finder application, 186
installing, 174
running automated tests in,

253–257
adding Jest to project, 254
setting up, 254–256
writing snapshot tests for

header element, 256–257
docker-compose.yml file, 179–180
document databases, 117
document object model (DOM), 54, 57
documents, 117
dollar sign ($), 23
domain-specific language (DSL), 24
doubles folder, 141

dynamically typed languages, 34
dynamic feedback, 38
dynamic rendering, 268–269
dynamic URLs, 77–78

E
element constant, 57
elements, 56
encrypted tokens, 161
endpoint, 95
end-to-end query, 123–125
end-to-end tests, 145, 151–153
environment problems, 144
errors, 133

catching, 277–279
with const keyword, 20
Internal Server Error, 77
non-hoisted variables, 19
promises and, 25–26
TypeScript, 36
using variables before declaring, 18

escape character, 99
esModuleInterop option, 259
ES.Next modules, 15–17

importing modules, 17
using named and default exports,

16–17
writing with asynchronous code,

29–30
exclamation mark (!), 102
exclude option, 37
executing script, using npx, 12
expect function, 133–134
expiration claim, 164
export statement, 16
exposed Docker port, 177–178
ExpressJS Fundamentals course, 14
Express.js server

building “Hello World,” 13–14
creating reactive user interface for,

64–67
extending with modern JavaScript,

29–31
extending with TypeScript, 46–51

adding type annotations to
index.ts file, 49–50

adding type annotations to
routes.ts file, 48–49

Index 299

creating tsconfig.json file, 47
defining custom types, 47–48
setting up, 46–47
transpiling and running code,

50–51
refactoring, 89–91

extends option, 37
external APIs, 93–94

F
fakes, 142
fat arrow (=>), 21
fetch API, 26–27, 266–267, 281–284
Fibonacci sequence, 140–143
fields, 117
filter method, 22
finally method, 25–26
findOne function, 122
Float scalar type, 102
Food Finder application, 186
forceConsistentCasingInFileNames

option, 260
--force flag, 10
FROM keyword, 175
frontend container

application service
adjusting for restarts,

191–192
creating, 189–190

global layout components, 222–226
header, 223–224
layout, 224–226
logo, 222–223

installing Next.js, 190–191
location details page, 227–230
start page, 216–222

list item component, 216–218
location list component,

218–219
user interface, 215–216

fs module, 24–25
functional tests, 144
function components, 59
functions

arrow, 20–22
exploring practical use cases, 22
lexical scope, 21–22
writing, 21

avoiding traditional callbacks,
24–25

type annotations declaring
parameters of, 39–40

function scope, 17–18

G
gateway communications, 144–145
generic button component, 235–238,

244–247
getByTestId matcher, 292
GET method, 98–100
getServerSideProps function, 84–85
getToken function, 250
GitHub OAuth app, 232
global data, sharing with useContext

hook, 63–64
global layout components, 222–226

header, 223–224
layout, 224–226
logo, 222–223

global scope, 18, 44
global styles, 79, 219–220
Google Authenticator, 158
Google scoring algorithm, 86
gql tag, 210
grant types, 159–160
graph databases, 117
GraphQL APIs, 75, 101–113, 207–214

adding API endpoint to Next.js,
212–214

adding to Next.js
adding data, 109
creating API route, 110–111
creating schema, 108–109
implementing resolvers,

109–110
using Apollo sandbox, 111–113

comparing REST to
over-fetching, 106–107
under-fetching, 107–108

connecting MongoDB to
adding services to GraphQL

resolvers, 126–127
connecting to database,

125–126
merging typedefs into final

schema, 209–210

300 Index

GraphQL APIs (continued)
resolvers, 103–106, 210–212
schemas, 101–103

custom types and directives,
208

mutation schema, 209
query schema, 209

securing mutations, 247–252
setting up, 208

GraphQL queries, 209
GraphQL schema, 24
guards, 248

H
hash-based message authentication

code (HMAC), 161
Head elements, 80–81
header

adding AuthElement component to,
241–243

global layout components,
223–224

JWT tokens, 163
writing snapshot tests for,

256–257
hoisted variables, 18–19
hooks, 62–64

handling side effects with
useEffect, 62–63

managing internal state with
useState, 62

providing reusable behavior
with, 61

sharing global data with
useContext and context
providers, 63–64

host system, 174–175
hot-code reloading, 72
HTML, 24

incremental static regeneration, 87
JSX elements and, 57
reactive user interface and, 54
static HTML exporting, 89

HTTP methods, 98–99

I
id helper program, 192
ID scalar type, 102

Image component, 82–83
images, Docker, 176
 element, 82
immutable data types, 20
immutable elements, 57
implicit flow, 160
importing modules, 17
import statement, 16–17
include option, 37
incremental option, 260
incremental static regeneration

(ISR), 87
integration tests, 144–145
interaction-based tests, 132
interface keyword, 45
interfaces

defining, 45
Mongoose model, 118
storing, 90

inter-module communication, 144
internal APIs, 93
Internal Server Error, 77, 101
internal state, managing with useState

hook, 62
Int scalar type, 102
I/O operations, 24–25
isolatedModules option, 260
ISR (incremental static regeneration), 87
issued at claim, 165
issuer claim, 164

J
JavaScript

arrow functions, 20–22
exploring practical use

cases, 22
lexical scope, 21–22
writing, 21

asynchronous scripts
avoiding traditional callbacks,

24–25
simplifying, 26–27
using promises, 25–26

creating strings, 22–24
declaring variables, 17–20
dispersing arrays and objects,

27–28
ES.Next modules, 15–17, 29–30

Index 301

Express.js server
building “Hello World,” 13–14
extending, 29–31

looping through arrays, 27
Node.js, 3–14

creating projects, 8–12
installing, 4
package.json file, 4–6
package-lock.json file, 6–7
working with npm, 4

TypeScript, 33–51
benefits of, 34–36
built-in types, 40–44
custom types and interfaces,

44–46
extending Express.js server

with, 46–51
setting up, 36–38
type annotations, 38–40

JavaScript Syntax Extension (JSX)
example expression, 56–57
ReactDOM package, 57

JEST-DOM matchers, 292–293
Jest framework, 129–156

adding test cases to weather app
creating mocks to test

services, 148–151
evaluating user interface with

snapshot test, 153–156
performing end-to-end test of

REST API, 151–153
testing middleware with spies,

146–148
adding to project, 254
anatomy of test case

act, 133
arrange, 132–133
assertion, 133–134

creating example module to test,
131–132

matchers
built-in, 289–291
JEST-DOM, 292–293

replacing dependencies, 139–143
creating doubles folder, 141
creating module with

dependencies, 140–141
using fakes, 142

using mocks, 143
using stubs, 142

setting up, 130–131
test-driven development,

135–139
evaluating test coverage,

138–139
overview, 130
refactoring code, 136–138

types of tests
end-to-end tests, 145
functional tests, 144
integration tests, 144–145
snapshot tests, 145

unit testing, 130
jsonlint package, 12
JSX. See JavaScript Syntax Extension
jsx option, 260
JWT (JSON Web Token)

defined, 160–161
header, 163
payload, 163–166

private claims, 166
public claims, 165
registered claims, 164–165

signature, 166–168
JWT claim, 165

K
key-value storage, 117
kill command, 178

L
layout

app directory, 273–275
global layout components, 224–226

let keyword, 19
lexical scope, 21–22
lib option, 260
lifecycle methods, 59
Link component, 81–82
list item component, 216–218
loading user interface, 279–281
local environment

backend container, 186–189
creating backend service,

187–189
seeding the database, 186–187

302 Index

local environment (continued)
frontend container, 189–192

adjusting application service
for restarts, 191–192

creating application service,
189–190

installing Next.js, 190–191
location details page, 215

adding button to, 244–247
overview, 227–230

location ID, 215
location list component, 218–219
location services

creating, 203–205
custom types for, 203

logo, 222–223
long-term support (LTS) version, 4
looping through arrays, 27

M
MAC (message authentication

code), 161
major version changes, 5
matcher function, 134
matchers

built-in, 289–291
JEST-DOM, 292–293

Memcached, 117
message authentication code (MAC), 161
microservices, 178–182

interacting with Docker Compose,
182

rerunning tests, 181–182
running containers, 180–181
writing docker-compose.yml file,

179–180
middleware, 120–121, 195–206

configuring Next.js to use absolute
imports, 196

connecting Mongoose, 196–199
fixing TypeScript warning,

198–199
writing database connection,

197–198
creating Mongoose model

creating location model,
201–202

creating schema, 199–200

model services, 202–206
creating location services,

203–205
testing, 206

testing with spies, 146–148
minor version changes, 5
mobile-first design pattern, 222
mocks, 143, 148–151
module option, 260
moduleResolution option, 260
module scope, 18, 44
MongoDB, 101, 115–128

connecting GraphQL API to
database, 125–126

adding services to GraphQL
resolvers, 126–127

creating end-to-end query, 123–125
defining Mongoose model

database-connection
middleware, 120–121

interfaces, 118
model, 119–120
schema, 118–119

how apps use databases and object-
relational mappers, 116

querying database
creating document, 121–122
deleting document, 123
reading document, 122
updating document, 122–123

relational and non-relational
databases, 116–117

setting up Mongoose and, 117
MongoDB Query Language (MQL), 117
Mongoose

connecting middleware, 196–199
fixing the TypeScript warning,

198–199
writing database connection,

197–198
creating model

creating location model,
201–202

creating schema, 199–200
defining model

database-connection
middleware, 120–121

interfaces, 118

Index 303

model, 119–120
schema, 118–119

setting up, 117
MQL (MongoDB Query Language), 117
multifactor authentication, 158
mutations, 101, 211–212

defining schema, 209
input type object for, 102–103
securing GraphQL, 247–252

MySQL, 101

N
named exports, 16–17
name field, 5
--name flag, 177
navigation, 284–285
Neo4j, 117
nested page routes, 73–75
networking protocols, 8
next-auth, 231–235

adding client credentials, 232
creating authentication callback,

233–236
creating GitHub OAuth app, 232
installing, 233
sharing session across pages and

components, 235
next export command, 89
next/head component, 80–81
next/image component, 82–83
Next.js, 13, 69–91

adding API endpoint to, 212–214
adding GraphQL API to, 108–113

adding data, 109
creating API route, 110–111
creating schema, 108–109
implementing resolvers,

109–110
using Apollo sandbox, 111–113

app directory, 263–287
exploring project structure,

269–287
rendering components,

266–269
server components vs. client

components, 264–265
built-in components

next/head, 80–81

next/image, 82–83
next/link, 81–82

configuring to use absolute
imports, 196

installing in container, 190–191
pre-rendering and publishing,

83–89
client-side rendering, 88–89
incremental static

regeneration, 87
server-side rendering, 84–85
static HTML exporting, 89
static site generation, 86–87

refactoring React and Express.js
applications, 89–91

routing applications, 72–78
API routes, 75–77
dynamic URLs, 77–78
nested page routes, 73–75
simple page routes, 73

setting up, 70–72
development scripts, 72
project structure, 71–72

styling applications, 78–80
component styles, 79–80
global styles, 79

wish list page, 243–244
next/link component, 81–82
Node.js, 3–14

creating projects, 8–12
auditing package.json file, 10
cleaning up node_modules

folder, 11
executing script only once

using npx, 12
initializing new module or

project, 8
installing dependencies, 8–9,

11–12
installing development

dependencies, 9–10
removing dependencies, 11
updating all packages, 11

Express.js-based Node.js server,
13–14

installing, 4
package.json file, 4–6

dependencies, 6

304 Index

Node.js (continued)
package.json file (continued)

development dependencies, 6
required fields, 5

package-lock.json file, 6–7
TypeScript installation in, 36–37
working with npm, 4

node_modules folder
cleaning up, 11
package.json file vs., 4–5

node package execute (npx) tool, 12
noEmit option, 260
non-hoisted variables, 19–20
non-nullable fields, 102
non-primitive data types, 20
non-relational databases, 116–117
NoSQL databases, 117
not before claim, 165
npm, 4
npm audit command, 10
npm init command, 8
npm install command, 7, 11–12
npm prune command, 11
npm run build command, 72
npm test command, 131
npm uninstall command, 11
npm update command, 11
npx command, 70
npx next build command, 72
npx tool, 12
null types, 40–41
numbers, as primitive types, 40

O
OAuth, 157–172

accessing protected resource
logging in to receive

authorization grant,
170–171

setting up client, 168–170
using access token to get

protected resource, 172
using authorization grant to

get access token, 171
adding button to location detail

component, 244–247
adding with next-auth, 231–235

adding client credentials, 232

creating authentication
callback, 233–236

creating GitHub OAuth
app, 232

installing next-auth, 233
sharing session across

pages and components,
235

AuthElement component
adding to header, 241–243
overview, 238–240

authentication vs., 158–159
authorization code flow,

161–163
bearer tokens, 160–161
creating JWT tokens

header, 163
payload, 163–166
signature, 166–168

generic button component,
235–238

grant types, 159–160
role of OAuth, 159
securing GraphQL mutations,

247–252
wish list Next.js page, 243–244

object data modeling, 116
object-relational mappers, 116
objects, 27–28
object type, 42
one-time password (OTP), 158
online playground, 37, 55
online registry, npm, 4
OpenAPI format, 95
over-fetching, 106–107
over-typing, 38–39

P
package.json file, 4–6

auditing, 10
dependencies, 6
development dependencies, 6
editing, 29
required fields, 5

package-lock.json file, 6–7
packages

npm online registry, 4
updating, 11

Index 305

page routes
adding, 275–277
creating, 90–91
nested, 73–75
simple, 73

pages folder, 71–72
parameters of functions, 39–40
PATCH method, 98
patch version changes, 5
$PATH environment variable, 12
payload, JWT tokens, 163–166

private claims, 166
public claims, 165
registered claims, 164–165

period (.), 176
persisting the data, 116
Playwright, 253
plus operator (+), 34, 142
POST method, 98
prefixes, 79–80
pre-rendering, 83–89

client-side rendering, 88–89
incremental static regeneration, 87
server-side rendering, 84–85
static HTML exporting, 89
static site generation, 86–87

primitive types, 20, 40–41
private APIs, 93
private claims, 166
profile pages, 77
promise chain, 26
Promise object, 25
props argument, 57–58, 84, 86
protected resource

logging in to receive authorization
grant, 170–171

setting up client, 168–170
using access token to get protected

resource, 172
using authorization grant to get

access token, 171
providers, 231
public claims, 165
public folder, 71
--publish-all flag, 177
push method, 20
PUT method, 98

Q
queries, 101
querying database, 121–123
query schema, 209
question mark (?), 45

R
ReactDOM package, 57
reactive user interface, 54
React, 53–67

creating reactive user interface for
Express.js server, 64–67

JavaScript Syntax Extension,
56–57

organizing code into components,
57–61

providing reusable behavior
with hooks, 61

writing class components,
59–60

refactoring, 89–91
role of, 53–55
setting up, 55–56
working with built-in hooks

handling side effects with
useEffect, 62–63

managing internal state with
useState, 62

sharing global data with
useContext and context
providers, 63–64

reading
data, 99–100
document, 122
files, 25

Redis, 117
refactoring code, 136–138
refresh token, 160
registered claims, 164–165
relational databases, 116–117
remote data, fetching, 281–284
rendering components

dynamic rendering, 268–269
fetching data, 266–267
static rendering, 267–268

replacing dependencies, 139–143
creating doubles folder, 141

306 Index

replacing dependencies (continued)
creating module with

dependencies, 140–141
using fakes, 142
using mocks, 143
using stubs, 142

replay attack, 165
report, test-coverage, 138–139
require statement, 16
resolveJsonModule option, 260
resolvers, 210–212

implementing, 109–110
overview, 103–106

resource owner, 159–160
resource providers, 159
REST APIs, 75, 93–101, 212

comparing GraphQL to
over-fetching, 106–107
under-fetching, 107–108

creating end-to-end query, 123–125
HTTP methods, 98–99
overview, 94–95
performing end-to-end test of,

151–153
specification, 95–97
state and authentication, 97–98
URLs, 95
working with

reading data, 99–100
updating data, 100–101

restarts, 191–192
RESTful APIs, 159
return value, type annotations

declaring, 39
reusable behavior, 61
root entry point, 95
root privileges, 192
route handlers, 285–287
routing applications, 72–78

API routes, 75–77
dynamic URLs, 77–78
nested page routes, 73–75
simple page routes, 73

S
--save-dev flag, 36–37, 46
scaffolding process, 55
scalar types, 102

Schema Definition Language (SDL), 101
schemas

GraphQL APIs, 101–103, 108–109
custom types and directives,

208
merging typedefs into final

schema, 209–210
mutation schema, 209
query schema, 209

Mongoose, 118–119, 199–200
scope, variable, 17
scope-abiding variables, 19
scope property, 22
screenshots, 145
script, executing once using npx, 12
SDL (Schema Definition Language), 101
secrets, 233
securing GraphQL mutations, 247–252
seeding the database, 124, 186–187
semantic versioning, 5–6
SEO metadata, 80, 86
server components, 264–265
server-side rendering (SSR), 84–85
services, 121
session information, 97–98
sessions, sharing across pages and

components, 235
SHA-256 hash algorithm, 161
side effects, 62–63
SIGKILL command, 182
signature, JWT tokens, 166–168
signed tokens, 161
SIGTERM command, 182
single-factor authentication, 158
skipLibCheck option, 260
snapshot tests, 145

evaluating user interface with,
153–156

writing for header, 256–257
specification, 95–97
spies, 146–148
spread operator (...), 27–28, 78
SQL (Structured Query Language),

116–117
square brackets ([]), 77, 102
SSG (static site generation), 86–87, 215
SSR (server-side rendering), 84–85
SSR (static site rendering), 216, 244

Index 307

start page, 216–222
list item component, 216–218
location list component, 218–219

state-based tests, 132
stateless, REST APIs, 97–98
statically typed languages, 36
static exports

API routes and, 76
HTML, 89

static HTML file, 66
static rendering, 267–268
static site generation (SSG), 86–87, 215
static site rendering (SSR), 216, 244
steps, test, 130
sticky header, 222–223
strings

benefits of TypeScript, 34
creating, 22–24
as primitive types, 40
template literals for, 22–24

String scalar type, 102
Structured Query Language (SQL),

116–117
stubs, 142
styles folder, 71–72
styles object, 80
styling applications, 78–80

component styles, 79–80
global styles, 79

subject claim, 164
suites, test, 130
sum function, 131–132, 135
super function, 59–60
Swagger, 95–97

T
--tag flag, 176
tagged template literal, 22–24
target option, 260
template literals, 22–24
test-coverage report, 138–139
test doubles, 139
test-driven development (TDD),

135–139
evaluating test coverage,

138–139
overview, 130
refactoring code, 136–138

testing, 129–156
adding test cases to weather app

creating mocks to test the
services, 148–151

evaluating user interface with
snapshot test, 153–156

performing end-to-end test of
REST API, 151–153

testing middleware with spies,
146–148

anatomy of test case
act, 133
arrange, 132–133
assertion, 133–134

creating example module to test,
131–132

model services, 206
replacing dependencies, 139–143

creating doubles folder, 141
creating module with

dependencies, 140–141
using fakes, 142
using mocks, 143
using stubs, 142

rerunning, 181–182
running automated tests in

Docker, 253–257
adding Jest to project, 254
setting up, 254–256
writing snapshot tests for

header element, 256–257
setting up, 130–131
test-driven development, 135–139

evaluating test coverage,
138–139

overview, 130
refactoring code, 136–138

types of
end-to-end tests, 145
functional tests, 144
integration tests, 144–145
snapshot tests, 145

unit testing, 130
testing-library/dom assert package, 134
testing-library/react assert package, 134
test runner, 130
testWatch command, 254–256
then method, 25–26

308 Index

third-party APIs, 93–94
this keyword, 21–22, 59
time to first paint, 86
toBeCloseTo matcher, 290
toBeGreaterThan/toBeGreater

ThanOrEqual matcher, 290
toBeInTheDocument matcher, 292
toBeLessThan/toBeLessThanOrEqual

matcher, 290–291
toBe matcher, 289–290
toBeTruthy/toBeFalsy matcher, 291
toContainElement matcher, 293
toContain matcher, 291
toEqual matcher, 290
toHaveAttribute matcher, 293
toHaveClass matcher, 293
toMatch matcher, 291
toStrictEqual matcher, 290
toThrow matcher, 291
transpilers, 36
TSC. See TypeScript Compiler
tsconfig.json file, 37–38
tuple type, 42–43
type annotations, 38–40

declaring parameters of functions,
39–40

declaring return value, 39
declaring variables, 39

type declaration files, 45–46
typedefs, 101, 209–210
type keyword, 44–45
TypeScript, 16, 33–51

benefits of, 34–36
built-in types

any, 43
array, 41–42
object, 42
primitive types, 40–41
tuple, 42–43
union, 41
void, 43–44

custom types and interfaces
defining custom types, 44–45
defining interfaces, 45
using type declaration files,

45–46
extending Express.js server with,

46–51

setting up
dynamic feedback, 38
installation in Node.js, 36–37
tsconfig.json file, 37–38

type annotations, 38–40
declaring parameters of

functions, 39–40
declaring return value, 39
declaring variables, 39

using JSX with, 57
TypeScript Compiler (TSC), 36

fixing warning, 198–199
options, 259–261

@types scope, 46

U
UMD format, 16
undefined type, 40–41
under-fetching, 107–108
underscore (_), 105
union type, 41
unit testing, 130
untagged template literal, 22–23
updateOne function, 122–123
useContext hook, 63–64
useEffect hook, 61–63, 89, 244
user ID, 215, 244
user interfaces

evaluating with snapshot tests,
153–156

frontend container, 215–216
showing optional loading user

interface, 279–281
user property, 192
useSession hook, 240
useState hook, 61–62, 89

V
-v (version) flag, 4
variables, 17–20

constant-like data, 20
hoisted variables, 18–19
scope-abiding variables, 19
type annotations declaring, 39

var keyword, 18–19
version field, 5
versioning APIs, 95
viewport, 81

Index 309

virtual DOM, 54
Visual Studio Code, 38
void type, 43–44
--volume flag, 177
volumes, 177
vulnerabilities, 10

W
W3Schools tutorials, 14, 67
weather app

creating mocks to test the services,
148–151

evaluating user interface with
snapshot test, 153–156

performing end-to-end test
of REST API,
151–153

testing middleware with spies,
146–148

wish list Next.js page, 243–244
WORKDIR keyword, 175

Y
YAML, 188
yarn, 4

