
San FranCiSCo

The CS DeTeCTive. Copyright © 2016 by Jeremy Kubica.

all rights reserved. no part of this work may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, recording, or by any information storage or

retrieval system, without the prior written permission of the copyright owner and the publisher.

Printed in USa

First printing

20 19 18 17 16 1 2 3 4 5 6 7 8 9

iSBn-10: 1-59327-749-0

iSBn-13: 978-1-59327-749-9

Publisher: William Pollock

Production Editor: riley Hoffman

Cover Design: Beth Middleworth

Illustrator: Miran Lipovac� a
Developmental Editor: Liz Chadwick

Technical reviewer: Heidi newton

Copyeditor: rachel Monaghan

Compositor: riley Hoffman

Proofreader: Paula L. Fleming

For information on distribution, translations, or bulk sales, please contact no Starch Press, inc.

directly:

no Starch Press, inc.

245 8th Street, San Francisco, Ca 94103

phone: 415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

a catalog record of this book is available from the Library of Congress.

no Starch Press and the no Starch Press logo are registered trademarks of no Starch Press, inc.

other product and company names mentioned herein may be the trademarks of their respective

owners. rather than use a trademark symbol with every occurrence of a trademarked name, we are

using the names only in an editorial fashion and to the benefit of the trademark owner, with no inten-

tion of infringement of the trademark.

The information in this book is distributed on an “as is” basis, without warranty. While every pre-

caution has been taken in the preparation of this work, neither the author nor no Starch Press, inc.

shall have any liability to any person or entity with respect to any loss or damage caused or alleged to

be caused directly or indirectly by the information contained in it.

all characters in this publication are fictitious or are used fictitiously.

acknowledgments . vii

a note to readers . ix

chapter 1 Search Problems. .1

chapter 2 Exhaustive Search for an informant.9

chapter 3 arrays and indexes on a Criminal’s Farm17

chapter 4 Strings and Hidden Messages25

chapter 5 Binary Search for a Smuggler’s Ship29

chapter 6 Binary Search for Clues .39

chapter 7 adapting algorithms for a Daring Escape47

chapter 8 Socks: an interlude and an introduction57

chapter 9 Backtracking to Keep the Search Going65

chapter 10 Picking Locks with Breadth-First Search.71

chapter 11 Depth-First Search in an abandoned Prison . . .83

chapter 12 Cafeteria Stacks and Queues.93

chapter 13 Stacks and Queues for Search103

chapter 14 Let’s Split Up: Parallelized Search109

chapter 15 iterative Deepening Can Save Your Life117

chapter 16 inverted indexes: The Search narrows.127

chapter 17 a Binary Search Tree Trap135

chapter 18 Building Binary Search Ladders145

chapter 19 Binary Search Trees for Suspects151

chapter 20 adding Suspects to the Search Tree163

chapter 21 The Binary Search Tree Property171

chapter 22 Tries for Paperwork .175

Contents

chapter 23 Best-First Search: a Detective’s

Most Trusted Tool .183

chapter 24 Priority Queues for investigations193

chapter 25 Priority Queues for Lock Picking201

chapter 26 Heuristics in Search. .207

chapter 27 Heaps in Politics and academia213

chapter 28 Difficult Search Problems223

chapter 29 Search Termination .231

Epilogue. .237

T
his book focuses on computational thinking and search algo-

rithms. The stories introduce and illustrate computational

concepts at a high level, exploring the motivation behind them and

their application in a noncomputer domain. This book is not a com-

prehensive text, and the stories are not intended as a substitute for

a solid technical description of computer science. instead, they are

meant to be used like illustrations: they supplement the full concept

and aid understanding.

The book covers a variety of computational approaches that all

share the broad categorization of search algorithms. Concepts are

presented first within the context of the story, and then explained

more technically in a section laid out as lecture notes at the end of

each chapter. readers can safely skip these technical sections with-

out missing any of the story.

This book assumes some experience with basic computer science

concepts but does not require knowledge of any specific program-

ming language. The algorithms in this book are meant to apply to

a range of programming languages and problem domains.

a note to readers

The CS Detective (excerpt), © 2016 by Jeremy Kubica

The CS Detective (excerpt), © 2016 by Jeremy Kubica

T
he door opened without a knock—only the hinge’s creak

announced the visitor. Frank started for his crossbow, but

pulled up short. if the Vinettees were coming for him, they would

have knocked—with an axe. Whoever was coming through the door

must want to talk. Frank reached for his mug instead and downed

the remainder of his now-cold coffee.

“Captain Donovan,” he said as the man entered. “What brings

you to this fine neighborhood? i thought you didn’t venture below

Fifteenth Street anymore.”

“it’s been a while,” the captain said simply. “How’ve you been,

Frank?”

“Spectacular,” Frank answered dryly, eyeing the captain as he

walked a slow circuit around the room.

Donovan scanned Frank’s shabby office. His red officer’s cloak

swished gently behind him. “How’s the private eye game?”

“it pays the bills,” Frank lied.

The captain nodded. He paused for a moment, then moved to the

bookshelf and browsed the contents.

“So is this a social visit then?” Frank said. “Should i be asking

after Marlene and the kids?”

— 1 —

Search Problems

The CS Detective (excerpt), © 2016 by Jeremy Kubica

2 CHaPTEr 1

“They’re quite well,” replied Donovan without turning around.

“Marlene’s turtle-grooming business is doing well these days. Bill

joined the force last year. and Veronica is an accountant, just about

the last thing we would have—”

“i wasn’t actually asking,” Frank interrupted.

The captain shrugged. He pulled a book from the shelf and leafed

through the pages. Frank craned his neck to see the cover—Police

Academy Yearbook: Class XXI.

“What do you want, Captain?” Frank demanded.

The captain met Frank’s stare at last. “i need your help, Frank,”

he said.

Frank straightened. in the five years since Frank had left the

force, the captain had paid him exactly two visits, and both had been

to warn him to stay away from active cases. Threats were all Frank

had come to expect, but now it seemed the captain had a special

kind of problem—perhaps the kind that would mean an end to

Frank’s delinquent rent.

“i’m not on the force anymore,” said Frank airily. “Why don’t you

get one of your trusted detectives to do it?”

“i need someone outside of the force,” said the captain. “Drop the

act, Frank. if you don’t know what it means for me to be here, you’re

not the person i need.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

SEarCH ProBLEMS 3SEarCH ProBLEMS 3

Frank chuckled. “a leak? on your force?”

“Worse. Last night someone broke into the station’s record room

and stole over 500 scrolls.”

“What were they after?” asked Frank. Without thinking, he

leaned forward in his chair and reached for a fresh scroll and a

quill. The movement came automatically to him, like drinking coffee

or avoiding stairs.

“i don’t know,” said Donovan. “There was no pattern. They stole

whole shelves of documents, everything from property disputes to

expense reports. They took all the ledgers we keep on assassins,

celebrities, private investigators, notaries . . . They even took both

boxes of Farmer Swinson’s noise complaints. But other shelves

were completely untouched. We counted at least 512 missing

documents.”

“Maybe it was one of Farmer Swinson’s neighbors,” joked Frank.

“They must’ve heard that after a mere hundred complaints, an

intern will come to your house and give you a stern lecture.”

Captain Donovan didn’t bother to reply. He just stared pityingly

until Frank cleared his throat and broke the silence. “So you want

me to find these documents?”

The captain shook his head. “i want you to find the thieves. We

have backups of the documents. i want to know what information

they needed and what they plan to do with it.”

“a search problem,” Frank mused. During his time on the force,

his two specialties had been search problems and annoying the

captain.

“Does the king know?” Frank asked.

“i briefed him yesterday,” said the captain, a hint of annoyance

in his voice. “Ever since the trouble with that crackpot wizard, the

king insists on daily briefings on everything.” Two years ago, a

megalomaniac wizard named Exponentious had tried to destroy the

entire kingdom. Since then King Fredrick had personally instituted

The CS Detective (excerpt), © 2016 by Jeremy Kubica

4 CHaPTEr 1

sweeping upgrades to the kingdom’s security, with over 300 new

security regulations, at least 5 of which dealt with the storage of

official documents in government buildings under 10 stories tall.

“i can’t blame him though,” Donovan grumbled. “it was a close

call. if it hadn’t been for Princess ann, who knows where the king-

dom would be now.”

Frank nodded silently. Exponentious had attacked the algorithmic

foundations of the kingdom by cursing the scholars who studied

those algorithms. Within months he had rendered even simple oper-

ations inefficient, and the kingdom had started to grind to a halt.

Evidence of the damage had been everywhere; even in his local

bakery, Frank had himself witnessed panic break out as customers

discovered they couldn’t remember how to arrange themselves into

a line.

“The king has, of course, taken a personal interest in the matter,”

the captain continued irritably. “He wants all the details: Who’s

assigned to the case? Which search algorithms are we using? Have

we scoured all of the neighboring buildings?”

Frank stifled a chuckle and mulled over the proposition. a con-

sulting gig for the capital’s police force would be good money. He

glanced down at his feet, where the tip of a toe peeked through a

hole in his shoe. “if i’m going to consult,” he said, “i’m going to do

things my way.”

This was the moment of truth. Five years ago he’d been kicked off

the force for doing things his way. The captain was a man of rules

and order. Frank’s last use of heuristics had been the final straw—

Captain Donovan had claimed his badge that very afternoon. But,

then again, doing things his own way had always gotten Frank

results.

“i figured as much,” the captain responded at last. He pulled a thin

folder from under his trench cloak and dropped it on Frank’s desk.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

SEarCH ProBLEMS 5

“i’ll be in touch,” Donovan said. Then, without ceremony, he

turned and left the office.

Three hours and twelve mugs of coffee later, Frank sat hunched

over his desk and thumbed through the thin folder of information

for the seventh time. The words jumped and swayed in the flickering

candlelight, but didn’t provide any new insights.

There wasn’t a lot to go on. The captain had given him a list of

missing documents and the duty roster for the night in question, but

nothing more.

Finally, with an exaggerated sigh, Frank grabbed a piece of

parchment and started making notes.

The first step in any search problem is determining what it is

you hope to find—the target, as his old instructor in Police

algorithms 101 called it. Frank had learned that lesson early; he’d

been tasked in his first week as an officer with finding the duke’s

prize stallion, and he’d proudly returned to the station that same

afternoon with a 42-pound horned turtle. apparently, the impres-

sive reptile wasn’t good enough. a good search algorithm means

nothing if you’re looking for the wrong thing.

in this case it wasn’t a what, but rather a who. The captain had

been right about that point. once the thieves had the documents, it

didn’t matter if the police got them back. The thieves already had

whatever information they needed.

So his target was simple: the person or persons who stole the

documents.

The second step in any search problem is identifying the search

space. What are you searching? During Frank’s daily search for his

keys, the search space was every flat surface in his office. and when

The CS Detective (excerpt), © 2016 by Jeremy Kubica

6 CHaPTEr 1

Frank wanted to find a criminal, his search space was every person

in the vicinity of the capital.

Frank sat back and rubbed his eyes. it was a big search problem,

finding a specific criminal in a city of criminals. But he had seen

worse.

now that he had defined the problem, he could start on an algo-

rithm. a linear search was out; he couldn’t afford to question

everyone in the city. He could also rule out many of the other, fancier

algorithms he had studied in the academy. For a problem like this,

he would have to go back to his toolkit of basic search algorithms—

the private investigator’s most trusted friends.

Frank made a note on the parchment. He had the target to find,

he knew the search space, and he had his algorithm. it was time to

get to work.

police algorithms 101: search problems

Excerpt from Professor Drecker’s Lecture

in this class we’ll discuss several different algorithms (and

related data structures) for solving search problems. a

search problem is defined as any problem that requires us

to find a specific value (or target) within a space of possible

values (a search space).

The CS Detective (excerpt), © 2016 by Jeremy Kubica

SEarCH ProBLEMS 7

Those of you who graduate and go on to become police

officers will find yourselves facing problems that fall into

this category every single day. This broad definition of a

search problem encompasses a lot of different computa-

tional problems, from searching the police log for a specific

entry to finding rooms within a hideout to finding all

arrest records that match some criteria. This class won’t

be exhaustive—that would take years—but i’ll give you

some simple examples of basic and important algorithms

as we go.

The algorithms described in this class will have three

common components:

Target The piece of data you’re searching for. The target

can be either a specific value or a criterion that signifies

the successful completion of a search.

Search space The set of all possibilities to test for the

target. For example, the search space could be a list of

values or all the nodes in a graph. a single possibility

within the search space is called a state.

Search algorithm The set of specific steps or instruc-

tions for conducting the search.

Some search problems will have additional requirements

or complexities, which we’ll touch upon as we go over differ-

ent algorithms.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

The CS Detective (excerpt), © 2016 by Jeremy Kubica

T
he key to efficient algorithms is information.” it was Professor

Drecker’s mantra, barked at the cadets at the start of every

Police algorithms class, ferociously enough to sear itself perma-

nently into Frank’s memory. “a good algorithm depends on finding

the structure in the data and using it. it depends on information.”

Frank smiled to himself at the memory as he turned onto Three

Bit Lane, a rutted dirt road lined with a combination of seedy bars

and upscale coffee shops. He nodded politely to a pair of passing

knights, who clanged as they jittered past in their armor, and made

a mental note to grab a Triple-Bold Espresso before he left. First he

needed information, something to help guide his search. He knew

exactly where to start.

Glass Box Billy would be in one of the establishments by now,

sitting quietly and listening to the wisps of conversation drifting

through the room. People didn’t mean to say things around Billy;

they simply didn’t notice he was there. Billy had been blessed with

a single notable talent: utter inconspicuousness. Whatever he tried,

there was something about Billy that meant people just didn’t notice

him. Maybe it was his pale skin or his small physique; maybe it was

— 2 —

Exhaustive Search for an informant

The CS Detective (excerpt), © 2016 by Jeremy Kubica

10 CHaPTEr 2

his exceptionally mundane taste in clothing. Whatever it was, Billy

had long ago decided to put his one talent to use by eavesdropping,

collecting information, and selling it to anyone who would buy.

Frank eyed the eight storefronts hunched together in Three Bit

Lane and wondered which one Billy would have chosen. He ran

through half a dozen search algorithms in his head, but it was point-

less. Frank didn’t have any information to go on. Billy could be in

any one of the bars or coffee shops.

He’d have to use an exhaustive search—simply try all the possi-

bilities until he found Billy. it didn’t sit well with him. Years of the

detective and private investigation game had taught him that there

was almost always a better algorithm than exhaustive search, and

he hated resorting to something so inefficient.

Grumbling, Frank started his search. He walked into the first

bar on the street, The absolute Value.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

ExHaUSTiVE SEarCH For an inForManT 11ExHaUSTiVE SEarCH For an inForManT 11

The bartender, a surly man named abe, glared at Frank as he

entered and pointedly dropped his hand below the scarred counter.

The message was clear: “i am now holding a weapon. i’ll let you

guess what kind. But if you hassle me, i’ll give you a very close look.”

“i don’t want any trouble, abe,” said Frank, holding up his hands.

“i’m just here to see Billy.”

“Well, Billy ain’t here,” said the barman.

Frank almost smiled in relief. “Then i’ll be on my way,” he said.

abe gave a curt nod and watched Frank leave, his hand still

under the counter.

Frank took a couple of deep breaths and shook his head in the

cool air. abe held a grudge longer than anyone else Frank had ever

met. Then again, Frank had arrested four of his siblings.

The next establishment on the street was The Brazen Boolean, a

modern coffee shop decorated in typical Boolean style—stark black

and white. The inhabitants of the City of Bool were renowned for

their fanatic devotion to the absolute concepts of logic, viewing

everything as either True or False. They made good witnesses. as

the only Boolean café in town, The Brazen Boolean was a haven for

expats. after all, either you were a Boolean or you weren’t.

Daring
Double

Constant
Const

Brazen
Boolean

Absolute
Value

G’Raph’s
Garrison

Exponentiated
Expresso

Faulty
Register

Helpful
Heap

Frank popped his head in the door and asked everyone in general,

“is Billy here?” There was a brief silence as twenty pairs of eyes

carefully scanned every inch of the cafe. Booleans wouldn’t answer

a question until they were absolutely sure.

Daring
Double

Constant
Const

Brazen
Boolean

Absolute
Value

G’Raph’s
Garrison

Exponentiated
Expresso

Faulty
Register

Helpful
Heap

The CS Detective (excerpt), © 2016 by Jeremy Kubica

12 CHaPTEr 2

“no,” came the precise reply.

Frank continued his exhaustive search.

Daring
Double

Constant
Const

Brazen
Boolean

Absolute
Value

G’Raph’s
Garrison

Exponentiated
Expresso

Faulty
Register

Helpful
Heap

The third and fourth shops proved equally fruitless, although

significantly more pleasant. The bartender of the Constant Const

greeted Frank warmly and invited him in to reminisce about the

good old days together, which was odd considering Frank had only

met him the month before. and the crowd of the Daring Double, a

notoriously loud wizards’ hangout, cheered at each new arrival and

sang happily over their steaming mugs.

Daring
Double

Constant
Const

Brazen
Boolean

Absolute
Value

G’Raph’s
Garrison

Exponentiated
Expresso

Faulty
Register

Helpful
Heap

Frank found Billy in the fifth shop, the Exponentiated Expresso.

it was by far the loudest and tackiest coffee shop on the street, but

it managed to draw the most devoted following on account of its

triply caffeinated beans. on a good day, every table would be packed

with jittery people who seemed to think the key to a good conversa-

tion was volume.

Daring
Double

Constant
Const

Brazen
Boolean

Absolute
Value

G’Raph’s
Garrison

Exponentiated
Expresso

Faulty
Register

Helpful
Heap

The CS Detective (excerpt), © 2016 by Jeremy Kubica

ExHaUSTiVE SEarCH For an inForManT 13

This morning, the Exponentiated Expresso hosted a compara-

tively subdued crowd. only a handful of tables were occupied, and

most of those by lone coffee drinkers who shook and mumbled

quietly to themselves.

Billy sat at a central table, leaning awkwardly toward a nearby

conversation. nobody seemed to notice him. Frank had even missed

him on his first scan of the room.

“Billy!” Frank called.

Billy jumped up guiltily. “Frank?” He grinned, happy that some-

one had acknowledged him, and sat back down. “Pull up a chair.”

“i’m looking for some information,” explained Frank as he took a

seat across from Billy.

“Could be that i have some,” said Billy. “i have such a hard time

remembering these days,” he said, glancing toward a long-empty

mug that probably wasn’t his.

Frank signaled the barista, who soon placed a fresh mug on the

table. “remember anything about a theft at the police station?”

Frank asked Billy.

Billy’s eyes widened and he flinched. “a robbery, you say?” he

asked unconvincingly. His eyes darted around the room, but, as

always, nobody paid him any attention.

Frank laid two gold pieces on the table, ignoring the sour feeling

in his gut. He couldn’t afford to spend this type of money, especially

without knowing if he was paying for a lead or idle gossip. But he’d

known this wasn’t going to be cheap. He leaned in close. “Two nights

ago,” he said quietly, “the thieves took a whole pile of documents.”

“Doesn’t sound like the sort of thing that would be healthy to

remember,” said Billy. He eyed the gold pieces. “afraid you’re asking

the wrong guy, Frank.”

“That’s gold,” Frank growled.

“Sorry. i can’t help you,” Billy said. He surveyed the room again

before adding, “Even if i did know something about a robbery, it’s

The CS Detective (excerpt), © 2016 by Jeremy Kubica

14 CHaPTEr 2

the sort of thing i would try to forget. Even if i did know something

small, like who might have helped with logistics, it’s not worth the

risk of waking up to find my shoes packed with yak dung.”

Frank stared, but Billy had gone silent. For someone who made

a living sharing information, Billy had an odd habit of not saying

things.“Yak dung?” asked Frank.

Billy nodded, but didn’t offer any more.

“You couldn’t be more specific, could you?” asked Frank. “are we

talking about northern or Southern yaks?”

“Does it matter?” asked Billy. “The point is that if i knew any-

thing about who arranged transportation, i wouldn’t remember it.

Especially not if those people happened to have a large farm about

five miles out of town where they could easily make someone disap-

pear. and very doubly especially if the family that owns the farm

has a history of illegal activity and an unhealthy sense of humor.

nope. it definitely wouldn’t be healthy to remember anything in

that case.”

“Too bad,” Frank said with a smile. “Maybe next time then.” He

nodded toward the coins. “incentive to remember things in the

future.”

With that, Frank stood and strode from the Exponentiated

Expresso. He turned left and continued up the street. once off Three

Bit Lane, he could swing around and make for Crannock’s farm—

the only farm remotely matching Billy’s description.

as he passed the Faulty register, he noticed a shadow dart into

a nearby alley. He cursed under his breath, but kept going. of course

he had a tail already; the captain hadn’t exactly been discreet about

his visit.

But by the time he left the city and was on the rough dirt lane to

Crannock’s farm, he found himself in a good mood. Billy hadn’t given

him much, but even a little information could mean the difference

between an efficient search algorithm and an exhaustive one.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

ExHaUSTiVE SEarCH For an inForManT 15

police algorithms 101: exhaustive search

Excerpt from Professor Drecker’s Lecture

an exhaustive search algorithm searches every possibility in

the entire search space for the target value. The most common

exhaustive search is a linear search, which simply checks all

the different possibilities in order.

Consider what happens when you chase a robber into the

second-floor hallway of an abandoned hotel. The hall has 30

doors, all of them closed. if you’ve followed correct police

procedures, your partner has already blocked off the oppo-

site staircase, and the robber is trapped somewhere on that

floor. How do you find him? Do you pick random doors, run-

ning back and forth until you get lucky? no! You search

down the hall, kicking in one door at a time.

or consider an algorithm that scans a list of numbers (an

array), searching for a target value. The algorithm moves

along the list from number to number, checking each value in

turn so as not to miss any, and stops when it reaches the

target. if we are searching an array for the number 5, then

the search would progress as follows:

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

16 CHaPTEr 2

The advantage of linear search algorithms is that they

are simple to implement in the field and they work even on

unstructured data. You don’t have to make any assumptions

about which room the robber chose; you just check every-

thing. The downside is that exhaustive algorithms are often

not the most efficient algorithm if the data has structure

that can be used. if you know where the robber went, you

can save yourself from kicking a lot of doors by using that

information.

The key to efficient algorithms is information!

The CS Detective (excerpt), © 2016 by Jeremy Kubica

F
rank swore aloud when he saw the police horse tied outside

Crannock’s house. Since the captain had gone so far as to hire

Frank in person, he hadn’t expected to run into any officers. if the

captain didn’t trust his officers, either they were under suspicion—

so he’d shuffle them to some case far across the city—or they simply

weren’t good enough. But, from the looks of it, someone was on the

case and Frank was already behind.

He slid through the open front door and joined the officer and

Mr. Crannock in the foyer. Mr. Crannock shot him a disgusted look

but didn’t seem surprised to see him. The officer, however, seemed

caught off guard.

“Who are you?” she demanded, turning on him with parchment

and quill in hand.

Frank ignored her. “Mr. Crannock,” he said. “So wonderful to see

you again.”

“Come to harass us, too?” Crannock asked. “You’re not welcome

here, Frank.”

“i’m not looking for a welcome,” replied Frank. “i’m looking for

your wife. i have a few simple questions for her.”

— 3 —

arrays and indexes on a Criminal’s Farm

The CS Detective (excerpt), © 2016 by Jeremy Kubica

18 CHaPTEr 3

The officer stared at him. “Frank?” she asked. “Frank runtime?

Former detective turned private eye? What are you doing here?

Someone lose a pet dragon?” she scoffed.

Frank ignored her again. “Your wife, Mr. Crannock. Where can

i find her?”

The old man threw up his hands. “She didn’t do anything! She’s

gone straight, you know. For real this time.” His acting wasn’t half-

bad for an amateur.

Frank smiled; he knew its effect was unnerving. Sure enough,

Crannock cringed.

“i know that, Mr. Crannock. i’m here to tap her professional

knowledge. or i could just leave the conversation to . . .”

“officer notation,” the young officer snapped. “and this is my

investigation.”

That was a lie. officers always worked these investigations in

pairs. More importantly, Frank recognized notation’s name from

the duty roster the captain had given him. She had been at the sta-

tion on the night of the crime.

“officer notation,” Frank said. “Who said i’m here on an investi-

gation? Maybe i’m simply searching for a lost dragon.”

She scowled.

There was a commotion coming from the back of the house.

Someone called for Crannock, but was cut off by a loud braying

noise. “My wife is with the horses,” Mr. Crannock said impatiently.

“Barn #2. now go on, get out of my house!” Crannock waved them

toward the front door and scurried away through the back.

“Thank you,” Frank called as he turned to leave. “always a plea-

sure, Mr. Crannock.”

officer notation followed Frank across the yard. She walked

hard, stomping her anger into the ground. “Do you know where

you’re going?” she asked.

“Barn #2,” answered Frank.

“i know that,” seethed notation. “But where is barn #2?”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

arraYS anD inDExES on a CriMinaL’S FarM 19

Frank stopped and turned to her. “Just out of the academy,

notation?” he asked.

“What?”

“only a rookie would ask a search question like that. Didn’t you

take Police Procedures and Data Structures? or have they replaced

that course with something less rigorous—introduction to Turtle

Graphics, perhaps?”

notation seemed taken aback. “of course i took Police Procedures

and Data Structures,” she said, though she sounded uncertain. “But

what i meant was—”

Frank cut her off, “Then you know about arrays and indexes.”

“Yes, but—” started notation.

“Finding a barn on a farm is a simple enough search task,” Frank

interrupted again. “We could use an exhaustive search to check each

building. FOR EACH building on the farm: check if it is barn #2.

Back in my day, you learned that search on the first day of Police

algorithms.

“But we can do better here. The Crannocks have six barns in a

nice line—just like a giant array. Mr. Crannock was kind enough

to supply us with the barn number, the index into that array. all we

have to do is walk to the corresponding barn.”

0 1 2 3 4 5

“That’s not what i meant!” shouted notation, waving her arms.

“i know how to use the index of an array. i know that we only have

to walk up to the barn with a giant #2 outside. i graduated first in

my class in both Data Structures and Police algorithms, so don’t

lecture me on the correct use of arrays.”

“Well, you asked,” Frank replied.

“What i was asking is: Do you know where this wonderful array

of barns is located?”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

20 CHaPTEr 3

“of course you were,” said Frank. He began walking again. “You

still sound like a rookie, though, quoting class rank.”

“Where are the barns?” shouted the officer, stamping to catch up.

Frank shot her a smile over his shoulder. “over this hill.”

as Frank had learned years ago, the Crannock family embraced

the concept of arrays with an almost fanatical devotion. They orga-

nized everything into linear structures with clearly labeled indexes

for each element. as he passed barn #0, Frank noted 15 pig troughs,

each capable of storing one serving of food. a farm hand was iterat-

ing down the line and ladling out the next meal into each array

location.

Frank and officer notation moved on to barn #2, labeled with a

sign outside its door. Mrs. Crannock’s icy greeting was almost

pleasant, compared to previous encounters; she hadn’t even thrown

anything . . . yet.

“What do you want?” Mrs. Crannock demanded.

“Mrs. Crannock,” notation cut in before Frank could steal her

witness. “i was hoping i could ask you a few questions.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

arraYS anD inDExES on a CriMinaL’S FarM 21

Frank let officer notation ask the questions. Billy’s clue hadn’t

yielded anything more than a lead to the farm, but notation

appeared to be working from a better collection of clues.

Mrs. Crannock sneered and spat on the ground. “i didn’t do any-

thing,” she said. “i’ve gone straight, you know.”

“i’m not here to arrest you,” said notation. “i need to ask you

about a certain donkey cart—the arrayCart?”

a flicker of doubt went through Frank. Could officer notation be

here for a different case? He doubted it. His gut told him that she

was after the lost documents, and he had learned to trust his gut.

“The arrayCart,” said Mrs. Crannock suspiciously, though with

the barest note of pride. “My own invention. Based it off of an array.

it’s got individual storage pens for our animals. Each pen stores

exactly one animal. Since they all have separate doors, you can walk

up to any pen and take an animal out or put one in. Easy access to

any storage location. Saves hours of wrangling.”

0 1 2 3 4 5

“it’s quite ingenious,” officer notation conceded. “You’ve found

a way to apply the concept of arrays and indexes to livestock

transportation.”

“and that’s just the beginning,” added Mrs. Crannock. “i’m working

with a certain wizard on a completely new type of arrayCart—

one with magical pointers! i bet they’d be perfect for the police force.

Tell your captain that i can give him a good price.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

22 CHaPTEr 3

Frank had to hand it to notation. The surest way to get a Crannock

talking was to bring up arrays.

“You have a few arrayCarts that you rent out now. is that correct?”

probed officer notation.

Mrs. Crannock’s eyes became instantly cold. “it’s a legitimate

business. We pay our taxes.”

Frank held back a derisive snort.

 “Did you happen to rent an arrayCart to anyone two nights ago?”

pressed officer notation. “a smaller model with six pens.”

“i might’ve,” said Mrs. Crannock. Her cold demeanor was creep-

ing toward hostile.

“Do you have a record of who rented it?” asked the officer.

“no,” said Mrs. Crannock. “We shred the records once the carts

are returned. i don’t happen to recall who rented that one.”

it seemed like Billy’s hint had paid off. if you were a criminal in

need of transportation, there were few places that would rent you a

cart, and fewer still that would forget your name afterward. Mrs.

Crannock may have claimed to have gone straight, but apparently

she still, at the very least, provided a valuable service to her former

associates.

“are you sure you don’t remember anything about your cus-

tomer?” prompted officer notation, but Frank knew it was pointless.

He had once questioned her for three hours about a stolen yak. She

hadn’t given him a single peep, despite being the one who had been

robbed. Mrs. Crannock wouldn’t talk.

While officer notation tried a few variations of the same ques-

tion, Frank quietly slipped out of the barn and found the cart lot.

as he expected, the lot was organized as an array with 10 labeled

parking spots. only spots #2, #4, and #8 were occupied. The carts

in positions #2 and #4 had 10 pens apiece, so were too large to fit

notation’s description. But slot #8 held a six-pen arrayCart, its

wheels still coated with fresh mud.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

arraYS anD inDExES on a CriMinaL’S FarM 23

0 1 2 3 4 5 6 7 8 9

after a quick glance around, Frank heaved himself into the back

of the six-pen arrayCart. a scattering of straw covered the floor, but

the cart was otherwise empty. Frank opened each pen in turn, scan-

ning the empty storage spaces for any clues. Then, getting down on

his hands and knees, he sifted through the straw until he found a

few scraps of parchment.

He collected six tiny pieces in all, probably corners that had

caught on nails as the scrolls were unloaded. only two of the pieces

contained writing, and those appeared to be from ledgers. it wasn’t

exactly a solid lead, but it tied the cart to the crime.

Frank moved his search to the front of the cart, carefully inspect-

ing everything around the driver’s seat. The seat itself gave him his

first real clue. There he found a few black and orange threads caught

by the seat’s splintered wood. From the vividness of the colors alone,

Frank could tell the cloak must have been new. Satisfied, he pock-

eted the threads and stepped down from the cart.

only when a gust of fresh air hit him did he notice he’d been hold-

ing his breath. around the cart was a stench of rotting fish. He

sniffed lightly, following the smell, and arrived at the mud-caked

wheels. He took a great, deep sniff and immediately regretted it.

The smell of rotting eel emanating from the mud was as unmistak-

able as it was unpleasant.

Frank half-smiled, half-gagged as he staggered back from the

cart. He might not know who had rented it, but now he knew where

it had been.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

24 CHaPTEr 3

police algorithms 101: arrays

Excerpt from Professor Drecker’s Lecture

arrays are simple data structures that allow you to store

multiple values. an array is like a row of bins. Each bin can

store a single piece of information, such as a number or a

character.

20 15 19 1 10 1 5Value:

Index:

33 9

0 1 2 3 4 5 6 7 8

The structure of an array means you can access any value

(or element) within the array, whether to write to it or read

from it, by specifying its location, or index, within the array.

Many programming languages use 0-indexed arrays, which

means the first value of the array resides at index 0, the

second at index 1, and so forth. Commonly, you reference the

value at index i of array A as A[i]; for example, the third

element of array A would be A[2] and equal to 19.

You likely recognize this structure from your introductory

tour of the holding cells in the capital’s police station yester-

day. The king personally suggested the use of indexed,

single-person cells to streamline the retrieval of prisoners.

Each station is equipped with an array of four to eight hold-

ing cells, depending on the size of the local criminal

population.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

F
rank shook off officer notation and left through the back gate

of the farm, where a large sign faced the road. For years the

Crannocks had used this sign to broadcast coded messages about

various illegal activities. These days it was something of a tourist

attraction for visiting criminals—a place thugs took their younger

protégés and gathered to reminisce about stories that invariably

began “Back in my day . . . ”

The sign itself was an anyText model. it held 3 arrays of letters,

each array with 12 slots. Each letter, space, or punctuation mark

took up a single slot in an array, meaning the board could hold a

total of 36 individual characters—enough to advertise a whole range

of illegal activities. Every Monday morning, one of the Crannocks

would drag a basket of letters to the sign and individually place the

appropriate character in each slot of the array.

During his first week on the force, Frank’s partner had brought

him out here to “check the board.” The message at the time—Apple

picker wanted. Got slugs?—sounded innocuous enough to Frank.

The Crannocks were looking for an apple picker to help with the

harvest and were offering to get rid of people’s slugs. When he said

this to his partner, a 20-year veteran, she laughed.

— 4 —

Strings and Hidden Messages

The CS Detective (excerpt), © 2016 by Jeremy Kubica

26 CHaPTEr 4

“That’s what they want you to think,” Detective rossile explained.

“You have to look beyond the obvious meaning and see what the

criminal mind would see. in this case, Apple picker wanted indicates

that they are trying to hire a petty thief. Someone who would steal

apples from a cart or such.”

“and the slugs?” Frank asked.

“illegal slug racing,” she replied. “They hold races here every few

months. You’ll get to know that one.”

Thus, Frank had learned to check the Crannocks’ board weekly

to get a pulse on the criminal world. after the first few months, he

had learned to decipher most of the codes. Farmhands meant hench-

men, with additional modifiers if strength, brutality, or just plain

numbers were needed. a print artist referred to a forger, while a

vocal artist was a con man, and so forth. The phrase a flock of

chickens had stumped Frank for a few days before rossile trans-

lated it as “a large number of warm bodies to run around noisily and

cause a distraction; no intelligence required.”

By the end of his first year, Frank had become an expert at read-

ing the board. The only time in the past few years that Frank had

a hard time deciphering a criminal tip from the board was during

the wizard Exponentious’s attack on the kingdom. Exponentious

had unleashed the Spell of incorrect indexes on all the kingdom’s

arrayDesignBoards. as its name implied, the spell changed the

indexes, so the locations Mrs. Crannock thought she was setting

the letters to were wrong. For a week, the Crannocks’ board held

gibberish.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

STrinGS anD HiDDEn MESSaGES 27

Since the spell only mixed up letters within an array and the

anyText model was implemented as three separate arrays, Frank

had to unscramble each line individually. He puzzled out the

message: Defensive wizard wanted.

Today, though, the message was clear. in fact, it was the least

subtle message he had ever seen on the Crannocks’ board. it read

ArrayCarts for rent. No questions.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

28 CHaPTEr 4

police algorithms 101: strings

Excerpts from Professor Drecker’s Lecture

arrays don’t just store lists of numbers; they can also be

used to store strings of text characters. Many programming

languages implement strings using arrays. Each block in the

array holds a single character, which can be a letter, number,

symbol, or space. as with arrays of other data, characters in

these strings can be accessed directly through their index

in the array.

H E L L O !Value:

Index: 0 1 2 3 4 5

During your career in the police force, you will come to

know this representation of text very well. all standard

police forms require officers to record their names within a

32-block array at the top of each page. in a typical month,

you will fill in over 400 such arrays.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

T
he port of Usb was little more than a fishing village. a dozen

weathered buildings clustered around the end of a single long

pier. a few pockets of meager activity surrounded the most recent

arrivals, but otherwise the town was reassuringly quiet.

Frank headed straight for the Crab’s Pinch, a fisherman’s bar

renowned for its clam chowder and Wednesday night sea shanty

contests. With any luck, one of his contacts would turn up before the

day was out. after all, the Crab’s Pinch was the only place to go in

Usb. So Frank planted himself at a table in the back corner, ordered

the chowder, and waited.

it wasn’t long before a freelance smuggler named Mavis entered

the dank little bar. Careful by nature, Mavis had never technically

been convicted of a crime, though it was well-known that she’d once

set her own ship on fire to destroy evidence. Frank got along with

her well enough, at least once he’d left the force, and they even

exchanged the occasional scrap of information.

Frank, having nursed his chowder for a solid hour, finally pushed

away his bowl and motioned to Mavis. She hesitated a moment by

the door before jostling her way through the bar.

— 5 —

Binary Search for a Smuggler’s Ship

The CS Detective (excerpt), © 2016 by Jeremy Kubica

30 CHaPTEr 5

“Mavis,” said Frank as she joined him in the corner, “how

are you?”

“i was doing a lot better 10 minutes ago,” she spat.

Before Frank could ask, officer notation strode through the door

and held up her hands. “Ladies and gentlemen,” she called. “if i

could have your attention for a moment. i’m looking for a cart that

came through here two nights ago.”

Frank cursed under his breath. So much for his lead.

“i come in from the dawn run, hoping for a bowl of hot chowder

and a few minutes of peace,” Mavis complained. “instead i get this

copper clammering about donkey carts.”

Frank laughed dryly. “and until she goes away, you can’t unload

your cargo. right?”

Mavis scowled at him but didn’t object. Usb had never found suc-

cess in either the fishing or shipping industries. The port did,

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BinarY SEarCH For a SMUGGLEr’S SHiP 31

however, appeal to those criminals concerned with moving merchan-

dise without dealing with nosy government officials. Frank would

wager a month’s rent that there wasn’t a single ship at dock that

wasn’t smuggling something.

“Do you know anything about the cart?” Frank dropped his voice

to just above a whisper.

Mavis shrugged. “There’s always carts on the docks. This is a

port, Frank. People move things.”

“This is a special cart,” Frank pressed. “a bunch of individual

animal pens, like a giant array on wheels.”

“Sounds fancy,” said Mavis. “But i haven’t heard of any ships

moving animals. i might have heard a rumor about a crate or two

of miniature turtles, but nothing large enough to need a pen. You

sure it came through here?”

Frank nodded. The smell had been like a fish-scented air fresh-

ener in an outhouse, and few places smelled as bad as Usb.

“anybody casting off at that time?” he asked. if the thieves had

transported the stolen documents this far, they wouldn’t have waited

around.

“only the Retry Loop,” said Mavis. “and i’m only telling you that

because it’s public knowledge. i don’t know what it was carrying,

and i don’t care.”

“Do you know when it returns?” asked Frank.

“Got back into port 19 hours ago,” replied Mavis. “Don’t know

what it was carrying then either.”

Frank smiled widely. “Sounds like it’s time for me to take a stroll

around town,” he said.

Mavis smiled halfheartedly at him and turned to flag down a

waiter.

Frank made it less than 20 meters down the pier before officer

notation marched up beside him.

“Mr. runtime, this is my investigation,” she began. “if you have

information—”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

32 CHaPTEr 5

Frank stopped, causing her to pull up short. “What exactly are

you investigating, officer?” he asked.

it was better than Frank had hoped. notation opened and closed

her mouth a few times as a red flush spread up her neck.

“The captain doesn’t know you’re here, does he?” Frank asked.

“This isn’t exactly an official investigation.”

“i don’t know what you’re—” started officer notation, but Frank

cut her off.

“Cut the act,” he said. “The fact you’re out here alone is all the

proof i need. You’re running this investigation on your own time.

The question is, why?”

The flush had now finished its ascent of officer notation’s face.

Her ears burned a particularly vivid shade of red.

“That’s none of your concern,” she said.

“it is when the captain comes to me because he can’t trust his own

officers,” Frank replied calmly.

“The captain hired a washed-up gumshoe like you?”

“Yes. Because he can trust me.”

officer notation’s face grew hard and her eyes burned. For a

second, Frank thought she might end this conversation with her

billy club. But almost as quickly as her anger had flared, it deflated.

“i need to recover those documents,” she said mournfully. “it was

my fault—i was on guard duty that night.”

“i see,” said Frank thoughtfully.

“i need to recover those documents,” repeated officer notation,

sounding agitated. “i’ve only been on the force for a few months

and—”

Frank cut her off and gave her what he hoped was a reassuring

smile. This was what he had expected. rookies rarely dealt well

with their first mistakes, and notation seemed more tightly wound

than most. “We’re looking for the Retry Loop,” he said. “The

Crannocks’ cart unloaded something there the night of the robbery.

The ship docked 19 hours ago.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BinarY SEarCH For a SMUGGLEr’S SHiP 33

He didn’t trust her, of course, but he wanted to keep her close, keep

an eye on her. The fact that she had found the Crannocks meant she

knew more than she had put in her report. Something was missing

from her story, and he needed to find out what else she knew.

“We better get started,” said notation, looking worriedly down

the pier. “There are a lot of ships to check. Should we start at the

front?” as most of the vessels in port belonged to smugglers, none

of them displayed identification. They would have to ask each ship’s

name in turn.

“We can do better than that,” Frank explained. “The harbor-

master is fanatical about organization. He insists that the docked

ships be sorted in order of their arrival time. The newest arrival

gets a prime spot near town, where the crew can easily load and

unload, but when a new ship arrives, the rest of them are forced to

shift down to give it space in front.”

“That’s absurd,” protested notation. “What a tremendous amount

of wasted effort. Why would he do that?”

Frank chuckled. “He claims it’s for efficiency, but anyone who’s

spent a week in Usb knows the truth. The harbormaster can’t stand

the smell of rotting fish. Ships that remain in harbor without selling

their loads become, well . . . fragrant. The harbormaster’s organiza-

tional scheme moves the ones that have been here longer away from

his shack.”

officer notation stared at him. “are you serious?” she asked

finally.

Frank chuckled again. “Yes. You’ll start picking up these useful

bits of information, too, once you’ve walked the beat awhile. The

point is that we know the ships are in sorted order and we know the

Retry Loop has been here for 19 hours, so we can just do a binary

search.

“our target value is 19, and our algorithm is binary search. right

now the search space is that whole line of ships, so we already have

an upper and lower bound. if we use inclusive bounds, our lower

The CS Detective (excerpt), © 2016 by Jeremy Kubica

34 CHaPTEr 5

bound is the first ship and our upper bound is the last ship. if the

Retry Loop is here, it obviously can’t be in front of the first ship or

after the last ship.

“So we start with the middle ship and ask how long it’s been in

port. if it’s been there less than 19 hours, then it must come before

the Retry Loop. That will split our search space in two. and—”

“if it’s been there more than 19 hours, then it must come after the

Retry Loop,” interrupted notation. “i know about binary search. My

Police algorithms final was just two and a half months ago.”

With that, the two of them set off in search of the Retry Loop. The

middle ship, a yellow schooner that smelled oddly of bananas, had

been in port for 17 hours.

? ? ? ? ? 17 ? ? ? ? ?

MidLow High

That meant they could rule out the half of the ships at the front,

including the middle ship. Frank adjusted the lower bound to the

first ship that could be the Retry Loop, one ship past the yellow

schooner.

? ? ? ? ? 17 ? ? ? ?

Low Mid High

?

With the reduced search space, they chose a new middle point. it

took a while to convince the captain of the next ship that they

weren’t undercover customs officials. after 10 minutes, notation

shoved her badge under the captain’s nose, and his tone changed

immediately to an irate whine as he informed them that his ship,

the Corrupt Packet, had been stuck in port for 22 agonizing hours.

He demanded they speak to the harbormaster on his behalf.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BinarY SEarCH For a SMUGGLEr’S SHiP 35

? ? ? ? ? 17 ? 22? ? ?

Low Mid High

Since their target was 19 hours, they knew the Retry Loop would

have to come before the Corrupt Packet. They changed the bounds

again so that the ship to the left of the Corrupt Packet was now the

upper bound.

? ? ? ? ? 17 ? 22? ? ?

Low High

This left only two ships in the search range; they were rapidly

nearing the end of the search. if neither of these ships was the Retry

Loop, they would know for certain that it had left port, as once there

were no more elements in the search space, they could rule out the

entire search space.

Since there were only two ships left, they could choose either as

their new middle point. Going with his gut, Frank picked the earlier

ship, which happened to also be their lower bound. a quick chat with

a crewmember loitering on the pier confirmed that the ship was

indeed the Retry Loop and it had been in port for 19 hours.

? ? ? ? ? 17 19 22? ? ?

Retry Loop

“now what?” asked officer notation as they stood watching

the ship.

“We use your shiny badge again,” Frank replied.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

36 CHaPTEr 5

police algorithms 101: binary search

Excerpts from Professor Drecker’s Lecture

a binary search algorithm is used to efficiently find a target

value v in a sorted array A. Unlike in a linear scan, a binary

search uses information about the structure of the data to

make the search more efficient. The key to efficient algo-

rithms is information. in this case, we use the fact that the

array is sorted in increasing order:

A[i] ≤ A[j] for any pair of indexes i and j such that i < j

This might not seem like a lot of information, but it’s

enough to make the search more efficient.

The binary search algorithm works by repeatedly dividing

the search space in half and limiting the search to only one

of those halves. The algorithm limits the active search space

by tracking two bounds. The upper bound (IndexHigh)

marks the highest index of the array that’s part of the active

search space. The lower bound (IndexLow) marks the lowest

index. Throughout the algorithm, if the target value is in

the array, we guarantee the following:

A[IndexLow] ≤ v ≤ A[IndexHigh]

at each step in the search, we check the value halfway

between the lower and upper bounds:

IndexMid =
2

IndexHigh + IndexLow

We can then compare the value at this middle location,

A[IndexMid], with the target value, v. if the middle point is

less than the target value, A[IndexMid] < v, we know that

the target value must lie after the middle index. This allows

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BinarY SEarCH For a SMUGGLEr’S SHiP 37

us to chop the search space in half again by making

IndexLow = IndexMid + 1.

if the middle point is greater than the target value,

A[IndexMid] > v, we know the target value must lie before

the middle index, which allows us to chop the search space

in half by making IndexHigh = IndexMid – 1.

of course, if we find A[IndexMid] equals v, we can imme-

diately conclude the search. We found the target.

Let’s consider searching the following (sorted) array for

the value 15. The boxes with dotted outlines correspond

to the values the algorithm has checked, and the shaded

elements are ones that have been eliminated from the

search.

0 1 2 3 4 5 6 7 8 9 10 11

L H

-5 0 1 3 7 11 15 30 52 54 55 93

0 1 2 3 4 5 6 7 8 9 10 11

L H

-5 0 1 3 7 11 15 30 52 54 55 93

M

The first midpoint check finds a value of 11, which is less

than our target value of 15. Since we know the array is

sorted in increasing order, we can rule out the midpoint and

anything before it. We move our lower bound index appro-

priately (IndexLow = IndexMid + 1).

0 1 2 3 4 5 6 7 8 9 10 11

L H

-5 0 1 3 7 11 15 30 52 54 55 93

M

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

38 CHaPTEr 5

Similarly, after the second comparison, we find a mid-

point value of 52, which is greater than the target value. We

can rule out the midpoint and everything after it. We move

our upper bound index (IndexHigh = IndexMid – 1).

0 1 2 3 4 5 6 7 8 9 10 11

L&M H

-5 0 1 3 7 11 15 30 52 54 55 93

note that even though the lower bound’s index pointed

to the target value (v = 15) for several iterations, we con-

tinued the search until the midpoint pointed to the target

value. This is because our search checks only the value at

the midpoint. We don’t check the values at the lower or

upper indexes until the midpoint reaches them.

What happens if the target value is not in the array? as

the search progresses, the bounds will move closer until

there are no unexplored values between them. Since we are

always moving one of the bounds past the midpoint index,

we can stop the search when IndexHigh < IndexLow. at that

point we can guarantee the target value is not in the array.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

F
ood inspectors,” Frank called out as he and officer notation

strode up the narrow gangplank and onto the ship. at Frank’s

instigation, notation waved her badge in a blur, too fast for anyone

to read.

“Food inspectors?” asked a crew member. “We aren’t transporting

any food.”

Frank looked the man over. He wasn’t an officer or hired security,

probably just a sailor who had taken charge while the officers were

away. it wasn’t uncommon. Smugglers rarely employed guards to

watch their ships. it drew too much attention.

Frank turned on the sailor, growling out his words. “We’ll see

about that. i’m told there’s a load of rotting eels on this dock, and i

intend to find them.”

“Eels?” The sailor was clearly out of his depth.

“Rotting eels,” Frank shot back. “We’re going down to check the

stores.” Then, without waiting for a response, he strode to the hatch

leading below deck.

notation hurried after him.

“We don’t have much time before they get the captain. We need

to find the logbook,” Frank said as he climbed down the ladder. The

— 6 —

Binary Search for Clues

The CS Detective (excerpt), © 2016 by Jeremy Kubica

40 CHaPTEr 6

logbook would contain a manifest of items shipped and a list of ports

visited. The manifest would be fake, of course. Smuggling ships

never documented their true cargo. But with any luck, he could read

between the lies and find a clue.

officer notation found the logbook at the back of the hold and

pulled it out. Frank checked the cover and swore:

Manifest and Log of the Retry Loop

Captain: a. James

Home Port: Usb

owner: Vinettees Shipping Group LLC

after months of successfully avoiding the Vinettees, Frank had

walked right onto one of their ships. He found himself reflexively

scanning the hold for hidden henchmen, stashes of weaponized farm

equipment, or evidence of a slug racetrack. Frank discarded the last

possibility—everyone knew slugs wouldn’t race on a ship; it had

something to do with being surrounded by large quantities of

saltwater.

He shook his head and focused on the problem at hand. Frank

had to find a clue before the Vinettees knew he was on the ship, or

he might not get back off again. He turned to the end of the book

and started flipping toward the front, one page at a time.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BinarY SEarCH For CLUES 41

“What are you doing?” asked notation.

“Looking for the last entry,” said Frank.

“one page at a time?” asked notation. “There’s got to be a thou-

sand pages. Why don’t you use binary search again? We just used

it two minutes ago.”

Frank paused. He wasn’t looking for a specific page number, but

he could still use a binary search to find the last entry. He would

just refine the search bounds depending on whether the current

page had text or not.

“okay. Binary search,” he agreed.

He opened to the last page again and confirmed the book had

exactly 1,000 pages, giving him a lower bound of page 1 and an

upper bound of page 1,000. He added the numbers, divided by 2, and

computed a midpoint of 500. He flipped to that page.

501500

Pages 500 and 501 were both blank, so Frank knew the last writ-

ten page was on or before 499—his new upper bound. after another

midpoint computation, he flipped to page 250. again it was blank.

251250

“Looks like a new book,” added notation. “Good thing you didn’t

keep going from the back.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

42 CHaPTEr 6

Frank didn’t bother replying. With a lower bound of 1 and an

upper bound of 249, he computed a midpoint of 125. This time he

found writing, so he adjusted his lower bound accordingly to 125.

125124

“187,” supplied notation before Frank could finish the midpoint

computation in his head. He turned to 187, again finding writing

and adjusting his lower bound.

187186

“218,” said notation. The pages were blank, so Frank adjusted his

lower and upper bounds to 187 and 217, respectively.

219218

“202,” said notation before Frank had even finished adding the

upper and lower bounds.

“How are you doing that so fast?” asked Frank.

“Practice,” she replied. “We used to have binary search competi-

tions at the academy whenever we needed a break from studying. i

was undefeated.”

Frank shook his head. “Sounds like a wild time,” he muttered.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BinarY SEarCH For CLUES 43

Pages 202 and 203 were filled. “210,” supplied notation.

203202

at page 210, they finally found the last entry, detailing the Retry

Loop’s last voyage. “What now?” asked notation.

211210

“We search for an interesting package or port. on the last voyage,

they made about 70 entries. We’ll have to scan through them.”

“Exhaustive search?” asked notation. “Can’t we use something

more efficient? aren’t the entries sorted by pickup and delivery

time?”

“The sorting doesn’t help us here,” answered Frank. “We don’t

know the time. Sorted data only helps when it’s sorted by a useful

dimension. They didn’t bother to sort by suspiciousness. Go

figure.”

“oh. it’s the Weather records problem,” said notation.

“What problem?” asked Frank.

“it’s an illustration of how sorting data by the wrong value doesn’t

help a search,” explained notation. “Professor Drecker gave the

example of finding the coldest day in the last 10 years. if the logs

are sorted by day, you can use binary search to efficiently find any

specific day. But that doesn’t help us to find the coldest day, so we’d

still have to scan through all the data. i hadn’t expected to see such

a clear example outside of class, though.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

44 CHaPTEr 6

“Welcome to the real world,” said Frank. “out here, you have to

check when the structure in the data is helpful to you and when it

isn’t. Don’t worry, it’s a common rookie mistake.”

He could see notation bristle at his words and tried not to enjoy

her reaction too much. Every rookie came out of the academy think-

ing they knew it all, and every one had a lot to learn. notation was

getting off easy with a lecture. His own education with binary

search had involved hours of scooping through barrels of pig waste

while he questioned his career choice.

after about three minutes, they found their only clue. The Retry

Loop had recently made two suspicious stops, at the Port of Mudwall

and Frayed Cable island. Even for smugglers, these were strange

destinations. The Port of Mudwall boasted little trade beyond its

outlying mud farms. and Frayed Cable island was even more deso-

late; the small, rocky island possessed only a single building—the

now abandoned iron ring Prison.

“There,” said Frank, pointing. “That’s where they took your docu-

ments. Either the Port of Mudwall or Frayed Cable island. They

probably dropped the documents off at one and picked up the pay-

ment at the other.”

“How do you know?” asked notation. She looked skeptical.

“Shouldn’t we consider all the ports as—”

Frank cut her off. “no time to check them all.” He didn’t elabo-

rate. He was using his own brand of algorithm now, the heuristic

searches that had gotten him in trouble with the captain in the past.

But he had a gut feeling, and Frank had learned to trust his gut.

“are you sure that—” notation began, but was cut off by noises

above them.

Frank couldn’t make out the words, but he could recognize the

tone clearly. Trouble was on its way.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BinarY SEarCH For CLUES 45

police algorithms 101: binary search ii

Excerpts from Professor Drecker’s Lecture

The key to efficient algorithms is information. in the case of

binary search, we require that the data be sorted and that

we have information on how that data is sorted. in order to

rule out (or prune) large regions of the search space, the

algorithm must be able to guarantee that the target value

can’t be in that region. We can only do that if we know how

the values behave as we move along the array. in computa-

tional problems, we say the array is sorted if all its values

are arranged in increasing (or decreasing) order.

However, just because the data is sorted by one dimension

doesn’t mean that you will be able to binary search along

another dimension. Say you’re searching an accounting

ledger for clues. Ledgers are sorted by transaction number,

which indicates when the transaction was recorded. This

means that the transaction number for each entry will be

less than the transaction number for the following entry. if

the current entry has a transaction number of 105, we know

that all entries before it will have transaction numbers less

than 105 and all entries after it will have trans action num-

bers greater than 105.

August 15 Bob’s Pizza 20.00

August 15 Wands and More 150.00

August 15 Spell Shoppe 100.00

August 16 Zed’s Coffee 8.00

August 16 Zed’s Coffee 8.00

August 16 Spell Shoppe 50.00

August 17 Zed’s Coffee 8.00

101

102

103

104

105

106

107

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

46 CHaPTEr 6

However, this also means that the entries in other fields,

such as the actual date of the transaction, the mechant’s

name, or the transaction amount, are not in sorted order.

What if you’re interested in finding transactions above a

certain suspicious amount or with a known weapons mer-

chant? Does the sorting help you here? no, you would still

find yourself using an exhaustive linear search. Knowing

that transaction 105 was at Zed’s Coffee doesn’t tell you any-

thing about the merchants or amounts in transactions before

or after that one.

Similarly, if you sorted the ledger in increasing order of

transaction amount, this would allow you to quickly find

all transactions costing $250, but it would not help you

search for a given transaction date, iD, or merchant.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

H
eavy footsteps pounded the wooden deck above. Frank glanced

around, assessing their limited options. The only hatch led up

to the deck and the new arrivals. The hold itself was nearly empty,

the crew having unloaded the cargo upon arriving in Usb. Trying

to hide here would amount to standing in a corner and whispering

“You can’t see me.”

as Frank listed and discarded every possible option, including

the rarely effective ploy of lying down and playing dead, he saw

notation pull out her badge and stand at attention.

“What are you thinking?” he hissed.

“i am an officer of the law on an official investigation,” explained

notation.

Frank shook his head in disbelief. “The ‘Stop in the name of the

law’ routine isn’t about to work here. or most places, for that matter.

We’re on a smuggler’s ship, investigating the theft of police property.

no one on the force even knows you’re here, do they? and i’d be will-

ing to bet whoever is coming through that door knows that.”

notation opened her mouth to argue, but paused and closed it

again. She slid her badge back into her jacket as a stream of large

and surprisingly well-dressed thugs poured through the door. They

— 7 —

adapting algorithms for a Daring Escape

The CS Detective (excerpt), © 2016 by Jeremy Kubica

48 CHaPTEr 7

spread out in the hold and formed a loose circle around Frank and

notation.

“Ladies and gentlemen,” said Frank. “We have concluded our

inspection and it appears that you are not carrying any rotting eels.

Thank you for your patience as we strive to ensure the safety of this

kingdom’s food supply. We’ll be on our way now.”

By way of reply, two of the larger thugs grabbed Frank’s arms.

Together they lifted him off the ground and proceeded to carry him

back up onto the deck. Years of experience had prepared Frank for

this reaction and he had developed a technique for positioning him-

self so as to minimize discomfort, but he could still almost feel the

bruises forming under their powerful grip.

“Hey!” notation’s shout indicated that she was being similarly

escorted outside.

Frank blinked as they emerged into the sunlight. The men car-

ried him to the middle of the deck and dumped him on the wooden

floor. notation thudded next to him, and the thugs again formed a

loose circle around them.

Frank slowly pushed himself into a sitting position and eyed their

captors. They swayed with the ship but otherwise didn’t move. They

appeared to be waiting, which meant that whoever was in charge

hadn’t arrived yet. Frank seized the opportunity and turned to the

nearest thug.

“What’s the plan then?” asked Frank. “Lock us away? Drop us

over the side? Hand us over to your boss’s employer?”

The man shrugged. “Don’t look at me, i’ve only been working here

for fifteen days.”

“a newbie, huh?” said Frank.

The Vinettees were fanatical about limiting information. They

only shared their plans with the most senior person on the crew.

new hires were required to prove their loyalty as they worked their

way up the ranks. To get any useful information, Frank would need

to find the most senior person aboard.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

aDaPTinG aLGoriTHMS For a DarinG ESCaPE 49

a plan started to form in Frank’s mind. The Vinettees’ crews

always arranged themselves in order of seniority. it had something

to do with mentorship—the most junior crew member served as a

new hire’s mentor and so forth up the ranks. in group situations,

they all tended to stand next to their mentors.

?

?

??

?

??

?

?

?

?

??

15

?

?

The circle of thugs was nothing more than a sorted array that had

been bent into a loop. Binary search would almost work here, but it

would have to be adapted to fit the organization of the data: a circle,

rather than a straight line of values. Unfortunately, this meant that

Frank didn’t know where the array started or ended. Quickly he

developed a new algorithm to efficiently search for the most senior

crew member. in this case, efficiency meant both minimizing the

number of thugs with whom he would have to converse and maximiz-

ing his chances of getting answers before they caught on.

He turned to the woman on the thug’s right. “How about you? are

you the veteran here then?”

“nineteen days,” she said.

?

?

?19

?

??

?

?

?

?

??

15

?

?

The CS Detective (excerpt), © 2016 by Jeremy Kubica

50 CHaPTEr 7

now Frank expected that he had an ordering—that seniority

increased as he went counterclockwise around the circle. But he

couldn’t be sure yet. as absurd as the possibility was, Fifteen-Days

and nineteen-Days could be the most junior and senior thugs,

respectively. He had been careless with choosing how to start

searches before; it never ended well. He need another data point. So

he chose the middle of the remaining range of thugs.

“How about you?” he asked a woman across from Fifteen-Days.

“Thirty-seven days,” replied the thug. “What’s it to you?”

?

?

?19

?

??

?

?

37

?

??

15

?

?

With this piece of information, his hunch of a counterclockwise

ordering was confirmed. Therefore, he discarded everyone between

Fifteen-Days and the person before Thirty-Seven-Days from

consideration—the most senior thug, if it wasn’t Thirty-Seven-

Days, would have to be counterclockwise from her, but before

Fifteen-Days.

?

?

?19

?

??

?

?

37

?

??

15

?

?

The CS Detective (excerpt), © 2016 by Jeremy Kubica

aDaPTinG aLGoriTHMS For a DarinG ESCaPE 51

Frank stifled a rising swell of annoyance. He had never faced

such a junior crew before. He actually felt a little insulted. “This is

getting embarrassing,” Frank said to their captors. “We were caught

by a bunch of newbies. What are you all, the backup team?”

“What are you doing?” whispered notation.

“a modified binary search,” Frank growled back.

notation sighed. “i figured that out. it looks like you’re searching

for the most senior one. You’re not exactly being subtle. But why?

and how do you know they’re standing in order?”

Frank ignored her. He took a deep breath and refocused on the

task at hand. He didn’t know how much time he had before The Boss

showed up. He chose the middle of the remaining range. “and you?”

“This is my third day,” replied the man, hesitantly.

“Come on!” shouted Frank. “really?”

“Three days? You’re not in training or anything?” notation asked,

sounding genuinely curious.

?

?

?19

?

??

?

?

37

?

3?

15

?

?

Frank refined his range again, accounting for the fact that the

most senior person couldn’t be Three-Days, Fifteen-Days, or anyone

in between.

Frank divided the remaining range in half again. “You must be

a relative veteran then, right?” Frank asked.

“Uh . . . this is my first day, sir,” stammered the thug. He began

sweating profusely as everyone’s attention turned to him.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

52 CHaPTEr 7

Frank cursed under his breath.

“Don’t call him sir,” shouted nineteen-Days. “He’s our prisoner.”

?

?

?19

?

??

?

1

37

?

3?

15

?

?

Frank had now limited the search to a very small window. “and

i suppose this is your first day too?” he asked the last thug under

consideration. He didn’t bother hiding his disdain.

The woman laughed. “i’ve been with the Vinettees for over a

month,” she said. “Forty-two days of keeping nosy cops out of the way.”

?

?

4219

?

??

?

1

37

?

3?

15

?

?

Bingo. “really?” said Frank. “What are you doing here then?”

The thug frowned. “What do you mean?”

“The Vinettees usually reserve their senior henchmen for more

important tasks. Babysitting a shipment of smuggled cabbages

seems like a waste of your time,” he said, struggling to remember

whether there had been anything about cabbages in the log. it was

a reasonable bluff anyway. all smugglers dealt in cabbages at some

point. The recent increase in cabbage taxes had practically doubled

the black market trade in Usb.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

aDaPTinG aLGoriTHMS For a DarinG ESCaPE 53

“Cabbages?” the woman scoffed. “i did the cabbage route on my

first day. We have more important work now.”

“really?” said Frank. “Move all the way up to carrots?”

The thug turned a bright shade of red. Even though they often

accounted for over 80 percent of a smuggler’s profit, somehow vege-

table smuggling remained the embarrassing side of the business.

“no,” she said. “a hundred times better than carrots. a private

contract.”

“really?” said Frank. “i hear that fencing carrots is good busi-

ness. Pays well, they say.”

“oh, don’t worry about that,” said the thug with an air of smug-

ness. “The League pays us well for our service. We were told—”

“Mr. runtime.” a familiar voice cut through the air. “Stop trying

to weasel information out of my employees. You will find that the

information is no more useful than it is challenging to procure.

They, of course, know nothing of value.”

Frank looked up to see rebecca Vinettee join the circle. His

stomach clenched.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

54 CHaPTEr 7

“and you are?” prompted Vinettee, looking at officer notation.

“This is Susan Pointer from the Bureau of Food Safety, Pickled

Eel Division,” said Frank. “We’re looking into a bad shipment of Usb

Greytails.”

rebecca Vinettee made a soft tsking sound. “no, Mr. runtime. i

don’t think so.” She paused, studying notation carefully. “if i am

not mistaken, this is officer Elizabeth notation. First year on the

police force.”

“i’m on an official—” started notation.

“no,” interrupted rebecca Vinettee. “You are not on an official

investigation, officer notation. i know all the officers currently

assigned to official investigations, from grand theft aquatic all the

way down to slug racing. My sources keep me well informed about

such things, and you are not on any of their lists. But you are tres-

passing on my ship. So the question is what to do with you?”

“i thought the question was ‘why?’” said Frank.

“Mr. runtime,” said rebecca Vinettee with exaggerated patience.

“Please do not underestimate me. i know the why. i knew the why

before you did. i also know the who, when, what, and even the how.

“But the question remains, how should i deal with two nosy

officers—oh, my apologies. You are an officer no longer, are you,

Frank? i should ask: How should i deal with a nosy officer and a

nosy disgraced former officer?”

Frank clenched his fists. His thoughts flashed back to his last

month on the force and rebecca’s mocking laugh as she was released

from the cells. He hadn’t been able to build a case, at least not while

following the book, and the captain had been forced to let her go.

“How about you bore us to death with a monologue?” asked Frank.

“Why don’t you tell us about the League?”

rebecca laughed. “Don’t worry, Mr. runtime, i have no intention

of keeping you around long enough to bore. i had, of course, already

decided how to deal with you, if you ever chanced to get in my way

again. The question was merely a kindness to give you the illusion

of control over your own demise.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

aDaPTinG aLGoriTHMS For a DarinG ESCaPE 55

“Demise?” notation squeaked.

rebecca Vinettee nodded at the circle of henchmen, and they

advanced, drawing an assortment of fancy weaponry from their

expensive suits like magicians performing elaborate conjuring acts.

one tall man produced a three-foot-long spiked club from under his

tie; another thug slide a broadsword out of her sleeve.

Then, to absolutely everyone’s surprise, a barrel landed on the

deck with a loud thwack and burst open, spraying pickled eels across

the planks.

police algorithms 101:
adapting your binary search

Excerpt from Professor Drecker’s Lecture

not every computational problem you face during your

career is going to have a nice, prepackaged solution. Sure,

scholars have spent years studying a vast range of problems

and writing up solutions. But in the field you’ll find new

problems with new wrinkles. if you leave this class having

just memorized a sheet of algorithms, you’re soon going to

find yourself in deep trouble.

in order to handle novel problems, it is important to

understand how an algorithm works and how it can be

adapted to new problems. The basic idea behind binary

search—using the structure in the data to repeatedly halve

the search space—is more important than the details of a

particular application. Using that one piece of intuition, you

can adapt binary search to search circular (but still sorted)

arrays or even determine the optimal temperature for your

coffee, by testing warmer and cooler coffee until it’s “just

right.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

The CS Detective (excerpt), © 2016 by Jeremy Kubica

C
haos erupted on the deck as the thugs danced away from the

wash of pickling juices and sliding eels. a second barrel landed

a moment later, sending out a fresh wave. The eels, Deepwater

Longbacks by the look of them, measured around four feet from end

to end and threatened to trip and tangle, not to mention disgust. a

group of three thugs fell into a heap as they tried to escape the

splash zone.

Frank jumped to his feet, grabbed notation’s arm, and yanked

her up.

“What’s going on?” she shouted as a third barrel sailed over their

heads and hit the railing.

“no idea,” said Frank. “But now’s our chance. This way!”

He pulled notation toward the railing at the ship’s edge, sliding

through the puddles of pickling juices and piles of eels. a fourth

barrel hit the deck and sent the thugs scurrying again. The deck

was beginning to look like a grotesque bowl heaped with long, pale

gray noodles.

alongside the ship bobbed a small, nondescript, but oddly familiar

schooner loaded with more barrels. a teenage boy, dressed in wiz-

ard’s robes, was rolling a new barrel onto a contraption composed of

planks.

— 8 —

Socks: an interlude and an introduction

The CS Detective (excerpt), © 2016 by Jeremy Kubica

58 CHaPTEr 8

“We should jump for it,” said notation.

“Jump,” agreed Frank, eyeing the other ship. He didn’t recognize

the boy but figured that he must be an enemy of the Vinettees.

nobody in their right mind would fling pickled eels at the Vinettees

unless they were already at war. Then again, very few people in their

right mind would chose eels as a weapon under any circumstance.

notation nodded, pulled herself onto the railing, and jumped with-

out hesitation. She sailed through the air, clearing the gap easily,

and landed on the schooner’s deck.

Frank pulled himself up onto the railing, muttered a handful of

Boolean curse words, and hesitated again as he balanced on the

wooden beam. Then, after counting to three a few times, he jumped.

Frank missed the schooner by two feet and plunged into the freezing

water. He surfaced in time to see another barrel soar overhead. He

paused briefly to wonder if the boy was still flinging eels or whether

he had moved onto something else—soft cheeses, perhaps.

notation reached down and pulled him onto the ship. He got to

his feet and began wringing out his cloak while he assessed their

The CS Detective (excerpt), © 2016 by Jeremy Kubica

SoCKS: an inTErLUDE anD an inTroDUCTion 59

new situation. The teenager was continuing his barrage of the Retry

Loop. Sailors hurried around the deck, pushing the smaller ship

away from the Retry Loop with long wooden poles.

“Mavis?” Frank called loudly. “i know you’re here somewhere.”

Mavis appeared a second later from the hold. “He paid for the

cargo,” she said, pointing at the teenager. “it’s up to him how he

wants to unload it.”

“i thought you couldn’t—”

Mavis waved him off. “i owed the Vinettees one anyway,” she

explained. “Last month they stole one of my caches—17 bushels of

carrots!”

Frank stared at her in amazement. Going against the Vinettees

was dangerous business. a hundred bushels of carrots wouldn’t be

close to worth it.

“Don’t look at me like that, Frank,” she said. “i’m not doing this

out of the goodness of my heart. it’s a paid contract. Simple as that.

Socks made it worth my while.”

“Socks?” asked Frank.

“Socks?” asked notation.

Mavis motioned toward the boy, then shrugged. “That’s what he

called himself. in my business, you don’t press for real names.”

“You didn’t ask for official identification before letting him board?”

asked notation. Mavis gave her a skeptical look.

By now, Mavis’s crew had gotten the TCP Flyer turned around,

and they were heading out to sea. Dirty sails were hoisted into the

air, blocking Socks’s barrel throwing. He took a last long look at the

Retry Loop, smiled, and turned finally to Frank.

“Hi,” he said with all too much cheerfulness, “i’m Socks.” He held

out his hand. Frank shook it warily.

“Thank you for saving us, Socks,” notation said as she shook his

hand too. She eyed him beadily, then, apparently unsatisfied with

the subtlety of her approach, followed with, “What’s your real name,

Socks?”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

60 CHaPTEr 8

“Unfortunately, that is my real name,” replied Socks a little sadly.

“My full name is Socks repellent, officer.”

“oh . . . ” notation trailed off. Evidently failing to find any suit-

able consolation for such a misfortune, she repeated, “Thank you for

saving us.”

“anytime,” replied Socks. “i didn’t have any experience flinging

barrels, so i’m glad it worked.”

“Why did you help us, Socks?” Frank asked. “More importantly,

how did you know we needed help?”

“Well,” said Socks. “You see . . . i’ve been following you both all

morning.”

“The alley on Three Bit Lane?” asked Frank.

“Yes,” replied Socks, blushing. “and behind the big arrayCart in

parking space #2.”

“i missed that one,” Frank admitted.

“His legs were clearly visible by the wheels,” said notation.

“Why were you following me?” asked Frank.

“Us,” corrected notation.

“Because we’re after the same people,” said Socks as though it

were the most obvious answer in the world.

“We are?” asked notation.

“i think so,” said Socks, suddenly looking uncertain. “You’re

investigating one of the police department thefts, right? i saw

Captain Donovan visit Frank last night, so i assumed it had some-

thing to do with the one at headquarters.”

“Thefts?” asked Frank. “There’s been more than one?”

“oh,” said Socks. “You didn’t know. Sorry. Maybe i wasn’t sup-

posed to say anything. But i don’t think that was supposed to be

secret. i guess—”

“Why are the wizards concerned about thefts from police sta-

tions?” Frank cut in.

“The king called them in. a few weeks ago, King Fredrick sum-

moned some of the kingdom’s most senior and respected wizards to

The CS Detective (excerpt), © 2016 by Jeremy Kubica

SoCKS: an inTErLUDE anD an inTroDUCTion 61

investigate a theft. i’m Gretchen’s apprentice, of course. it’s only my

second year, but—”

“Why did he call in senior wizards?” Frank interrupted again.

Gretchen wasn’t a name he’d heard before. Evidently, the more

power ful wizards had been occupied with more pressing tasks, and

the king had worked his way down the list, but Frank didn’t want

to embarrass the boy by questioning his mentor’s seniority.

“The Capital Police are well equipped to handle thefts,” added

notation. “it should be their investigation.”

“The king called in the wizards to consult about the mask and

whether they could find it,” explained Socks.

“What mask?” asked notation.

“You don’t know about the mask?” said Socks, now a little pan-

icked. “oh, dear. Maybe i shouldn’t have said anything.”

“What mask?” growled Frank. He rubbed his temples and took a

few deep breaths.

“Mr. repellent,” took up notation in her official police voice, “we

are on an important investigation. if you have information that

would help in this case, it is your duty to provide it. Please tell us

everything.”

“Start at the beginning,” added Frank.

it took 10 minutes for Socks to finish his excessively detailed

story concerning a monthlong crime spree in which a multitude of

unrelated items were stolen from secure locations. The most disturb-

ing revelation involved the theft of a dangerous magical artifact, an

enchanted mask, from a military convoy. When pressed for details

on what the mask did or why it needed an armed escort, Socks

would only repeat that it was “extremely powerful.” The awe in his

voice made Frank nervous.

“You think this theft is related to the one at the police station?”

asked notation.

“Gretchen thinks so,” Socks answered. “in every case, the

guards were completely unaware that a theft had occurred until

The CS Detective (excerpt), © 2016 by Jeremy Kubica

62 CHaPTEr 8

the next day. She thinks the thief used a memory spell or a sleep

charm.”

“i did not fall asleep,” notation said with such force that even

Frank leaned away.

“i . . . i didn’t mean,” Socks stammered.

Frank left him to flail about for words as he pondered the kid’s

story. Something about it didn’t add up. “Why tail us?” he asked

finally. “You’re on an investigation sanctioned by the king himself,

right? You could have just walked up and introduced yourself.”

“Yes! But . . . ” Socks trailed off.

“But?” asked Frank.

“i wasn’t sure it would be worthwhile,” admitted Socks.

Frank glared at him until he continued.

“i wasn’t sure you were going to find anything interesting,”

explained Socks. “once i introduced myself, i would be obliged to

come with you and help out, right? i wanted to keep my options

open. What if i heard about a better, magical lead or something?

Sorry,” the boy muttered.

They lapsed into thoughtful silence as the ship’s crew continued

to dash around them, doing whatever was needed to make a ship

move. as far as Frank could tell, it seemed to primarily involve

pulling on ropes.

“So . . . what now?” asked Socks.

“We follow leads,” said Frank.

“We found two suspicious ports in the Retry Loop’s logs,” notation

explained. “our next step is to investigate them, starting with the

Port of Mudwall. in fact, i should inform the captain of the ship. of

course, we’ll need to borrow her vessel for the investigation.”

Frank laughed. “Good luck explaining that to Mavis.”

“no need,” said Socks hurriedly. “i already paid to contract the

ship. You just need to tell Mavis where to sail.”

“Excellent,” said notation.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

SoCKS: an inTErLUDE anD an inTroDUCTion 63

“Which means you’re coming with us, doesn’t it?” asked Frank,

without trying to conceal the irritation in his voice.

“of course,” said Socks. “i paid for the ship. and i saved you. and

i seem to know more about the case than anyone else here. and i’m

an apprentice wizard. That could come in handy.” His desperation

seemed to increase with every additional reason.

“Mr. repellent, we would be grateful for your assistance,”

notation assured him. “Wouldn’t we, Frank?”

“Yeah. Great,” mumbled Frank. He had collected yet another tag-

along whom he didn’t trust. at this rate, he would have a boatful by

nightfall.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

The CS Detective (excerpt), © 2016 by Jeremy Kubica

T
he Port of Mudwall didn’t even live up to its unimpressive name.

it wasn’t much of a port; the rickety wooden dock could fit no

more than two modestly sized ships. The mudwall itself, in theory

a 20-foot-tall earthen city wall, had never actually been constructed,

and was only hinted at here and there with 2-foot-tall humps sur-

rounding about a third of the city.

Frank stepped over the dirt hump and made his way to the sole

shop in the city, with notation and Socks trailing along behind him.

as they entered the store, the shopkeeper’s face transformed from

surprise to outright delight with the progression of a powerful

sneeze. He knocked a stack of carrot-themed tourist pamphlets off

the counter as he hurried around to greet them.

“Hello!” he nearly shouted. “Welcome to Mudwall, home of the

famous mud carrot farms. What can i get for you? Food? Supplies?

Carrots? Carrot-flavored baked goods? We have a simply wonderful

carrot pie.”

“information,” said Frank.

The shopkeeper’s face dropped. “oh,” he said. “You’re not here for

the Carrot Festival, then?”

— 9 —

Backtracking to Keep the Search Going

The CS Detective (excerpt), © 2016 by Jeremy Kubica

66 CHaPTEr 9

“Carrot Festival?” asked notation.

The shopkeeper nodded. “it’s the 50th annual Carrot Festival

later this week.”

“You get a lot of visitors for that?” she asked.

“not recently,” admitted the shopkeeper. “Mudwall isn’t the tour-

ist draw that it used to be. not since G’raph started hosting its Mud

radish Festival. People would rather go there for the big-city

atmosphere.”

notation and Socks looked at each other. Socks mouthed, “What’s

a mud radish?” notation shrugged.

“What do you know about a ship that came through here a few

days ago?” Frank asked.

“What ship?” asked the shopkeeper. “We haven’t had a ship here

in a few months. We’ve had a few donkey carts pass through on the

coastal road. But no ships.”

“are you sure?” asked notation. “Because we are on an official

investigation, and it is very important that you tell us anything you

might know about all ships that have come through here recently.”

“i would have known if there was a ship,” said the shopkeeper. “i

have a wonderful view of the dock from my window. Even if i hadn’t

seen it, i would have heard about it. We don’t get many ships these

days. People would’ve been all excited. The Sound of Carrots, our

three-person marching band, usually greets each ship. i certainly

would have heard them.”

notation looked as though she was preparing for a new round of

questions, but Frank cut in first. “Thank you, sir,” he said. “We

appreciate your time.”

He herded notation and Socks from the building and back into

the muddy street.

“Do you think he was telling the truth?” asked notation.

Frank nodded, scanning the street. “He seemed genuinely sur-

prised at the mention of a ship,” he said. “But it wouldn’t hurt to ask

around a bit more.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BaCKTraCKinG To KEEP THE SEarCH GoinG 67

They interviewed a dozen of the town’s residents, a sample that

made up approximately half the population, before admitting defeat.

no one had seen a ship. no one had heard of anyone seeing a ship.

and no one could even understand why a ship would visit. The port

clearly didn’t receive much traffic.

“Maybe it came at night,” mused notation as they walked the

dock toward the TCP Flyer. “They sent a small party ashore on a

rowboat, handed off the documents, and left. Someone could have

been waiting with a cart right here.” She pointed to an arbitrary

plank on the dock, which didn’t look any more or less suspicious

than its neighbors.

“Maybe,” said Frank. “it doesn’t matter, though. Without a wit-

ness, there’s no trail.”

“What does that mean? We can’t find them? The investigation is

over?” asked Socks.

Frank grunted a laugh. “no, kid. Dead ends are part of investiga-

tion work. That’s why we use a backtracking search.”

Socks stared blankly back at Frank. When comprehension failed

to dawn on the boy’s face, Frank added, “We keep exploring along

the most promising direction until that trail hits a dead end. Then

we backtrack to a previously unexplored, but promising, lead and

search from there.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

68 CHaPTEr 9

“So you have other leads?” asked Socks.

“a few,” admitted Frank.

“if we backtrack to the next unexplored clue,” notation mused,

“we return to the logbook. There was another destination listed:

Frayed Cable island.”

Frank nodded and considered which leads remained. The senior

thug had mentioned a League of something. That meant Frank’s

pitiful list of unexplored leads currently consisted of:

Frayed Cable island

Threads from the arrayCart

Vinettees

League?

The search would now backtrack to the logbook and the unex-

plored island. if they failed to pick up a trail on Frayed Cable island,

he would be forced to follow one of their more tenuous leads. The

colored threads from the cart were unique enough to be moderately

promising.

“So we aren’t done yet?” Socks confirmed for the tenth time as the

TCP Flyer traveled to Frayed Cable island. “You still have a few

leads, right?”

“investigations backtrack all the time,” notation assured him yet

again. “Don’t you ever have to backtrack in your work? What about

while making a potion?”

Socks looked shocked. “How would you backtrack while mixing a

potion? You can’t unadd spider legs or unstir the mixture.”

“i meant backtrack while developing a potion. You try adding

spider legs and realize that it destroys the magical consistency or

something? So you cross out that instruction and try a different

approach the next time you mix the potion. Each recipe you try is a

The CS Detective (excerpt), © 2016 by Jeremy Kubica

BaCKTraCKinG To KEEP THE SEarCH GoinG 69

single state in your search space, and you backtrack by returning

to the last good recipe.”

“oh,” said Socks. “You mean revising. You have to revise spells

and potions as you develop them. You’re still moving toward your

goal, just not in a straight line. nobody gets it right the first time.”

“Exactly. it’s the same thing,” said notation.

Mavis joined the group, adding, “it’s like when you’re searching

a cave for a ‘forgotten’ stash of goods, you explore down different

paths and backtrack when you don’t see anything of value.”

“Yes,” notation agreed, hestitantly. “Backtracking search is much

like exploring caves. although i have to point out that it would be

difficult to tell if an object found was forgotten or not. i guess you

could—”

“and speaking of searches, we’re at your next destination,” inter-

rupted Mavis. “Frayed Cable island doesn’t have any docks. We’ll

anchor the TCP Flyer here, but you lot will have to row in the rest

of the way.”

police algorithms 101: backtracking

Excerpt from Professor Drecker’s Lecture

almost every investigation will involve some backtracking.

Even the best officers can’t always follow clues in a straight

path from start to finish. The world is filled with useless

information, ambigious clues, and red herrings. on top of

that, you’ll make mistakes. So it’s important to know how

to backtrack a search when you hit a dead end. Simply put,

this means backing up your search to a previous state and

trying a different option.

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

70 CHaPTEr 9

Up until this point, algorithms have been presented on

search spaces where they can efficiently jump from any state

to any other arbitrary state. For example, in an array, you

can easily examine the value at any location using just its

index. and in a hotel hallway, you can run between rooms.

This flexibility provides efficiency for the algorithms.

However, many search spaces come with constraints on

how you can move from state to state. if you are searching

a castle in the physical world, you can’t jump arbitrarily

between rooms—you have to traverse the halls and rooms

in between. Similar constraints can apply in the computa-

tional realm for data structures like graphs or linked lists.

Even in cases where you can jump between states, it is

often useful to picture backtracking as moving through pre-

vious states on your way to explore new states. in the

algorithmic world, this can be significantly less costly than

physically retracing your route. However, the processes are

conceptually similar: you back up the search and proceed

down a different avenue.

in the following lectures, we’ll see many examples of

searches that backtrack when they hit dead ends. and once

you join the force, you’ll experience more dead ends than you

ever imagined.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

F
rank, Socks, and officer notation huddled by the back gate of

the prison’s outer wall. Despite its truly impressive coating of

rust, the locked gate had resisted both of Frank’s attempts to kick

it open. He had only succeeded in clouding the air with red dust and

introducing notation to at least six new Boolean curse words.

“So . . . that didn’t work,” supplied Socks. Frank ignored him and

studied the locking mechanism. it was a standard carved keypad

with buttons labeled 1, 2, 3, a, B, and C in a single ordered row and

an enter button beneath.

1 2 3 A B C

“We’ll have to do this the old-fashioned way,” said Frank.

“Wasn’t kicking down the gate the old-fashioned way?” asked

notation.

Frank ignored her as well. “Socks, do you know any magic lock-

picking spells?”

“no,” Socks protested loudly. “Those are illegal!”

“How about something to weaken the lock? or maybe the hinges?”

asked Frank.

— 10 —

Picking Locks with Breadth-First Search

The CS Detective (excerpt), © 2016 by Jeremy Kubica

72 CHaPTEr 10

“You want me to help you destroy property?” Socks looked aghast.

“That’s worse than lock picking. Do you know how much trouble—”

“Search spells, then? The Spell of all Combinations or the Spell

of Breadth-First Search?” notation interrupted. She’d heard enough

on the topic of proper and improper spellwork after Frank had casu-

ally inquired about the feasibility of replication spells on gold

coins—a use of magic that fell firmly on the wrong side of both

Socks’s and her own ethical line.

“i’ve used the Spell of Breadth-First Search a few times,” Socks

answered. “My real expertise is binary search trees, but i’m famil-

iar with a range of computational techniques. once i—”

“Will breadth-first search work on the lock?” interrupted Frank.

over the years, Frank had worked cases with a handful of wizards

of varying levels of respectability. He’d seen at least a dozen differ-

ent lock-picking spells but had never seen a door opened with an

explicit breadth-first search.

notation smiled. “Definitely! it’s a bit abstract, but i saw a simi-

lar problem recently in my Police algorithms course. When you

think about it, a code lock is just a search problem; you enter a

string of characters to open it. The search space is all possible

strings that can be made from those characters. Every string is a

The CS Detective (excerpt), © 2016 by Jeremy Kubica

PiCKinG LoCKS WiTH BrEaDTH-FirST SEarCH 73

valid search option, from a single character like 1 or a to complex

sequences like aBC123CBa321. The search target is the one string

that opens the lock.”

“But we don’t even know how many characters we need,” pro-

tested Socks. “The lock could have a 30-character combination.”

“That’s why she suggested breadth-first search,” said Frank,

thinking aloud as much as addressing Socks’s concern.

“i don’t understand,” said Socks.

notation quickly picked up the explanation. “You see, breadth-first

search expands outward from a starting point, exploring along a fron-

tier of solutions. naturally it will try the shorter solutions first.”

“Huh?” asked Socks, now looking confused to the point of panic.

“i thought breadth-first search used magic lists. i’ve always used a

magic list. isn’t it just a magic list?”

“Yes,” agreed notation. “Breadth-first search maintains a list of

options to try next if the current option doesn’t work. The algorithm

is basically a loop that keeps pulling options from the front of the

list and adding new options to the back. on each iteration, we pick

a new option to try from the front of the list. and, if that’s not what

we want, we check if there are any new options reachable from the

current one and add those unexplored options to the back of the list.

“You start at a single point in the search space, in this case at a

password of length zero. Then for each password you try, you add

new search possibilities to the end of the list. in this case, each time

we try a password, we’ll add all single-character extensions to the

list. For example, here we know the password can only contain the

characters 1, 2, 3 and a, B, and C. once we’ve tested 3a, we’ll add

3a1, 3a2, 3a3, 3aa, 3aB, and 3aC to the end of our list.”

Socks screwed his face up in concentration, then asked, “How do

we know which options to add?”

“Think of it like a tree of possibilities,” suggested notation. “Each

branch, or node, is a password from our list, like 3a. The neighbor-

ing options are the nodes under it—the passwords we would get by

The CS Detective (excerpt), © 2016 by Jeremy Kubica

74 CHaPTEr 10

adding one more character to the end. Breadth-first search pro-

gresses down each level of the tree before moving onto the next.”

3A

“Since we add the new, longer passwords to the end of our list, we

try all the short stuff first,” Frank threw in. “now, can you do it?”

“This isn’t a proper use of—”

“Come on! really?” interrupted Frank.

“it’s basically a lock-picking spell,” responded Socks.

“Yes. That’s exactly what it is!” shouted Frank.

“Forget it,” said notation, throwing her arms up in frustration.

“if he doesn’t feel comfortable picking the lock, we’re not going to

change his mind by yelling.” She turned and studied the stone wall

itself, which stood at least 10 feet tall. after a moment she contin-

ued, “Frank, if you give me a boost, maybe i can climb over.”

Frank gave the wall a skeptical look. Despite having been aban-

doned for years, the wall lacked the large cracks and rambling vines

that often aid mountaineering efforts on old castle walls. The work-

manship was impressive. Someone had taken real pride in building

this wall; you could tell from the artistic way the metal spikes

twisted as they jutted up. Those little details took effort.

“Maybe. it’s pretty high, though, and those spikes look awfully

sharp,” he said.

“it’ll be just like the obstacle course at the academy,” said

notation. “aside from the hard-packed ground, the lack of hand-

holds, and the large metal spikes, that is.”

“Those’ll probably add some excitement,” Frank offered.

“Shut up and give me a boost, Frank.”

“no. no. i’ll do it,” said Socks hurriedly. “i’ll use the Spell of

Breadth-First Search. i’ll need something for the list, though. a roll

of parchment, perhaps?”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

PiCKinG LoCKS WiTH BrEaDTH-FirST SEarCH 75

Frank and notation looked at each other. “no can do, kid. Use the

ground; it’s muddy enough.”

“oh. Yes. of course.”

a few minutes later, the lock began to glow. “Here we go,” said

Socks.

The word enter glowed briefly, followed by a clicking noise. But

the gate remained locked. The spell had tried the first password,

which was nothing at all. next a series of numbers and letters

appeared in the mud:

1, 2, 3, a, B, C

Frank could picture the tree of possible passwords that the list

represented.

an instant later, the number 1 glowed, followed by enter. again

the gate clicked, but didn’t open. The list on the ground changed,

showing the new list of passwords to try, branching out to the third

level of the tree.

2, 3, a, B, C

11, 12, 13, 1a, 1B, 1C

But these were added to the end of the list. The search itself con-

tinued on the current level, trying 2.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

76 CHaPTEr 10

The password 2 didn’t work, and the list grew again.

3, a, B, C

11, 12, 13, 1a, 1B, 1C

21, 22, 23, 2a, 2B, 2C

again the tree branched out with new possibilities, but the search

still worked its way along the current level, trying all one-character

passwords before moving deeper.

in other words, the search explored the full breadth of each level

before moving on to deeper levels.

The search finished the first level, trying the passwords 3, a, B,

and C, before Socks broke the silence. “This could take a while.”

Frank nodded, eyes fixed on the ever-growing list of numbers.

“notation, why don’t you scout around the front?”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

PiCKinG LoCKS WiTH BrEaDTH-FirST SEarCH 77

“okay,” she agreed, her expression betraying great relief. rookies

didn’t tend to handle stakeouts well. Sitting still for hours on end

with nothing to do wasn’t something you could teach at the academy,

although Professor Cloud’s Philosophy of Law Enforcement lectures

came close.

Five minutes after notation left, the lock gave a loud click, and

the gate swung open noisily on its well-rusted hinges. The list in the

mud faded as the search algorithm completed.

“1111,” said Frank, without a trace of surprise. it often paid to

keep the codes simple enough for the henchmen to remember.

He used a stick to write the code in a patch of mud and circled it

twice. Even a rookie couldn’t miss the message. Then he turned to

Socks. “Let’s go.”

police algorithms 101:
breadth-first search

Excerpt from Professor Drecker’s Lecture

Breadth-first search is an algorithm that explores search

states in the order in which they are encountered. in other

words, it always attempts to explore the oldest unsearched

state first.

You can visualize breadth-first search as keeping a list

(or, more formally, a queue) of known but unexplored states.

at each step, the algorithm picks the next state to explore

from the front of the queue. as the algorithm discovers new

options, it adds them to the back of the queue, to make sure

all previous options are explored before it moves on to new

options.

it’s helpful to describe breadth-first search in terms of how

it explores a graph. a graph is a data structure composed of

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

78 CHaPTEr 10

individual nodes, with edges linking those nodes. if two nodes

are connected by an edge, we say they are neighbors, which

means you can move between those nodes. During your ori-

entation, you studied at least one graph—the Kingdom

Highway Map. This map represents each city as a node and

the highways connecting them as edges. Make sure you own

a good copy of that map. Criminals have a tendency to flee

the city, and you’ll need to know to which neighboring cities

they are most likely to go.

Searching the Kingdom Highway Map is a classic graph

search problem. our search states are the nodes of the

graph—the cities on the map. imagine that a crime has

occurred in city a and it is your job to find the fleeing

criminal.

Next

Breadth-first search explores along an expanding frontier,

checking each node X steps away from the initial node before

proceeding to any nodes X + 1 steps away. after you explore

city a, its two neighbors, B and D, are added to the back of

the queue. no other cities were in the queue, so B is the next

city you’ll visit.

Next

The CS Detective (excerpt), © 2016 by Jeremy Kubica

PiCKinG LoCKS WiTH BrEaDTH-FirST SEarCH 79

if each node has many neighbors, maintaining the queue

of nodes to explore can use a large amount of memory. This

memory requirement can become expensive in large search

problems. as an officer, you’ll want to invest in a number of

good notebooks.

at each step in breadth-first search, we test whether the

current node is the target node. in this example, that means

thoroughly checking the city for our criminal. if the current

node isn’t the target node, we add only its previously unseen

neighbors to the list. (a node that is unseen hasn’t been

added to the list yet.) We thus avoid adding either nodes that

we have already explored or unexplored nodes that are

already on our list. in this case, for instance, after checking

city B, we would not add a to our list again.

Next

note that checking whether a neighbor is unseen requires

even more memory because we must keep track of previously

seen nodes. However, the benefit is significant—we avoid

loops through previously explored nodes. again, carefully

keeping track of your search can pay off significantly.

Next Next

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

80 CHaPTEr 10

Next Next

Next Next

in this particular example, we find our suspect hiding in

city H. We can stop our search there and make the arrest.

in search problems where moving between any two neigh-

boring nodes has the same cost (time, energy, etc.),

breadth-first search is guaranteed to find a path with the

least total cost. it accomplishes this by expanding outward

from the starting node, exploring every node that is X steps

away before exploring any state that is X + 1 steps away.

Breadth-first search can even be adapted to return the

shortest path by keeping back pointers. Each node keeps

track of the node that preceded it. Then, upon finding the

goal state, you can trace the pointers backward to re-create

the path.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

PiCKinG LoCKS WiTH BrEaDTH-FirST SEarCH 81

However, keep in mind that this works only if each move

between neighbors has the same cost. in the general case,

minimizing the number of steps in the search space can be

very different from minimizing the cost of the path to the

goal. For example, if hikers want to minimize their energy

expended (cost), they would prefer a longer route that avoids

crossing a mountain range. While the mountain pass would

be shorter, and arguably more scenic, it could require sig-

nificantly more energy.

Start

Huge

Mountains

Goal

The CS Detective (excerpt), © 2016 by Jeremy Kubica

The CS Detective (excerpt), © 2016 by Jeremy Kubica

T
wo steps into the prison, and Frank knew they had walked into

a maze. The old computational prisons used to rely on their

bizarre structure as much as on guards. Potential escapees think

twice about sneaking through a door when they don’t know what

lies on the other side: freedom or the guard’s breakroom.

“How about some light?” suggested Frank.

“oh. right,” agreed Socks. He muttered an incantation and a

bluish flame flickered from the end of his staff, lighting up the com-

pletely unremarkable room.

The square room, rough stone walls, and heavy oaken door were

enough to confirm what Frank already knew: the entire structure

was a grid of rooms, each with doors to only some of its neighbors.

They would have to navigate from room to room. But since they

didn’t know which rooms had doors between them, they would have

to search out a path as they went.

“Time for another search,” he said.

“a search?” asked Socks. “For what?”

“The papers, of course,” responded Frank. He had no doubt that

the papers were stashed here. an abandoned prison provided an

— 11 —

Depth-First Search in an abandoned Prison

The CS Detective (excerpt), © 2016 by Jeremy Kubica

84 CHaPTEr 11

ideal location for stashing stolen goods, clearly surpassing the more

commonly used warehouse. arguably, the only better location would

be an abandoned castle—provided it had a moat. The question now

was whether they could find the documents and then, if they did,

whether the documents would provide any valuable clues.

“not another breadth-first search,” protested Socks.

Frank considered the idea. in theory, breadth-first worked fine

on a grid. Each state of the search space was a grid square. once

you explored one grid square, you could add its unexplored neighbor-

ing squares to your list of things to try. Frank could clearly picture

the search propagating out over an empty grid, like a wave moving

across the water.

Start

1

Current

1

Current

2

However, breadth-first search had one major drawback in the

physical world—an excessive amount of backtracking. Since you

The CS Detective (excerpt), © 2016 by Jeremy Kubica

DEPTH-FirST SEarCH in an aBanDonED PriSon 85

were always adding items to the end of the list, the next square to

explore could be annoyingly far away. Even on an empty grid, with-

out walls blocking your path, you could find yourself hiking back to

the other end of the search space.

1

Current

2

3

4

Next

5

6

7

8

it was the type of unnecessary movement that Frank made it a

policy to avoid.

“no,” said Frank. “Too much backtracking. We’re better off going

depth-first here.”

“Depth-first search. Depth-first search,” Socks mumbled to him-

self as though willing the spell into his memory. “i—i don’t think i

remember—”

Frank waved him off, and strode confidently down the corridor.

“We don’t need a spell for this one. i’ve been doing depth-first

searches through buildings since you were in diapers.”

“no backtracking with depth-first search then?” asked Socks.

“There’s backtracking with most search algorithms. But back-

tracking in a depth-first search is better suited for walking.”

“Um . . . i see.”

“no, you don’t,” said Frank bluntly. “if you don’t know the algo-

rithm, just ask. Pretending to know algorithms is a recipe for

disaster. i’ve seen too many rookies tripped up due to bad searches.

Good kids, like you.”

“okay. What is depth-first search?” Socks asked.

“it’s a simple algorithm,” explained Frank. “Basically we explore

deeply down each path. We go down one path until we hit a dead

end. Then we backtrack to the most recent path that we didn’t take

and try that. We’ll stop when we find the target.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

86 CHaPTEr 11

“in this case, we’re going to use clockwise ordering. Whenever

we have multiple options, we’ll try north, east, south, then west—

avoiding paths we’ve already tried, of course. We’ll use the same

ordering at every intersection, so we’ll always prefer going north

if we can. But in this case we have only one option, so we start by

going south.”

1

Even as Frank spoke, they reached their first decision point.

Frank surveyed the options. They had come from the north, so he

chose east—the next unexplored direction in his ordering. Before

leaving the intersection, he retrieved a piece of chalk from his pocket

and made a small mark on the wall.

2

1

2

after two more intersections—turning north, then east—they

reached their first dead end. So far the rooms had either been com-

pletely empty or contained only the odd prison cell—the cells being

enclosures within the rooms. With the complete lack of other distin-

guishing characteristics, Frank chalked a number onto a wall in

each room and linked that number in his mind to the different mold

formations he found there.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

DEPTH-FirST SEarCH in an aBanDonED PriSon 87

5 6

2 3 4

1

2

5 6

4

“now we backtrack to the last room, room 5, with the mold that

looked like a horse,” explained Frank as they retraced their steps.

This time they chose the only unexplored option from room 5,

heading west. Unfortunately, they immediately hit another dead

end—an empty room that sported a complex floral pattern of green

and blue fuzz.

They backtracked through the most recent intersection whose

options had been exhausted until they had a new option at room 4.

The eastern option was a dead end, and they’d already explored the

northern option, so this time they went south.

They ventured through two new empty rooms (8 and 9), differenti-

ated only by the occurrence of a large stalactite of orange mold,

which they stayed as far away from as possible. orange mold was

not known for its structural stability. after hitting another dead

end, they found themselves retracing their steps all the way back to

the first intersection in room 2.

7 5 6

2 3 4

1

89

7 5 6

2 3 4

9 899

The CS Detective (excerpt), © 2016 by Jeremy Kubica

88 CHaPTEr 11

“What if we miss it?” asked Socks in his now-standard worried

tone. “or what if we end up in a loop? We could be stuck forever!”

Frank groaned. “Listen, kid. This isn’t my first time depth-first

searching. i know what i’m doing.”

“But loops.”

“Why do you think i’m marking the walls?” asked Frank. “if we

avoid taking passages that we’ve already explored, we avoid going

in loops.”

Frank had learned that lesson during a Police algorithms exer-

cise. With the whole class watching, Frank had done six loops of the

hedge maze before he heard another student loudly joke, “There he

goes again.”

They explored deeper into the maze, following snaking paths and

backtracking at dead ends.

7 5 6

2 3 4

1

8910

11 12 13 14

15

16

89

1

7 5 6

2 3 4

1

8910

11 12 13 14

15

16

171819

7 5 6

2 3 4

10

11 12 13 14

15

16

17189 119

89

1

Then, in room 23, they found a small cell packed high with rolls

of parchment and stacks of ledgers.

7 5 6

2 3 4

1

8910

11 12 13 14

15

16

1718192021

22

23

7 5 6

2 3 4

10

11 12 13 14

15

16

171892021

22

119

23 89

1

“We found it!” said Socks enthusiastically. His staff’s flame cast

a flickering blue glow through the room.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

DEPTH-FirST SEarCH in an aBanDonED PriSon 89

Frank felt the hairs on his neck rise as he took in the scene. He

compared the height of the stacks with the mountains of paperwork

he had completed through the years and did some quick calcula-

tions. The captain had never been shy about dumping paperwork on

him, but Frank had still never seen anything like this. There were

even mold-stained pages at the bottom of the stacks. Everything felt

wrong.

Frank walked to the nearest stack and pulled off a sheet of parch-

ment: a notice on the proper use of duck fences. The date and station

number marked it as belonging to the stolen files. The next sheet,

listing noise complaints in the Port of West Serial, also came from

the stolen collection. it appeared equally random and unhelpful.

He knelt down and pried open a gap near the bottom, yanking a

ledger free. The pages were spotted with a trio of mold-butterflies,

but Frank could clearly make out supply lists for the castle guards.

This ledger could have come only from the castle itself. He grabbed

another book and found castle guard rotations for last november.

“This is wrong,” he muttered. “There’s too much here. There’s

castle ledgers as well.” Frank shifted to an adjacent pile, starting

again at the top.

“is there a pattern?” asked Socks, as though he had just noticed

the extent of the document piles.

“i—” started Frank, but he pulled up short as he opened another

ledger, entitled Transfer Requests. Four pages had been torn from

the middle of the ledger.

“Very strange,” said Frank, flipping through the undamaged

pages. “This could be—”

Frank was cut off as Socks stumbled toward him, flailing for bal-

ance. Behind him, Frank could see motion in the gloom. it wasn’t

until he heard the rusty shriek of the door’s hinges that he realized

what was happening.

“Door!” Frank yelled as the junior wizard fell into him.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

90 CHaPTEr 11

The two of them tumbled to the ground. The door slammed. a

loud click sounded as the lock engaged. Socks’s staff, which had

been dropped in the commotion, spun lazily into a tall stack of dry

parchment. The staff’s blue flame seemed much larger than Frank

remembered.

Frank lay stunned on the stone floor as he watched the papers

ignite.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

DEPTH-FirST SEarCH in an aBanDonED PriSon 91

police algorithms 101:
depth-first search

Excerpt from Professor Drecker’s Lecture

Unlike breadth-first search, depth-first search is an algo-

rithm that explores more recently encountered search states

first. The algorithm progresses down paths until it hits

either the target or a dead end.

as with breadth-first search, you can visualize depth-first

search as keeping a list (in this case, a stack) of known but

unexplored states. at each step, the algorithm picks the next

state to explore from the top of the stack. But unlike

breadth-first search, depth-first search adds new options to

the top of the stack.

Consider our graph example from the lecture on breadth-

first search. remember, graphs are data structures composed

of individual nodes and edges linking those nodes. They can

be used to represent all sorts of concepts, like city maps, net-

works of criminals, or even the layout of a castle. We’ll use

the Kingdom Highway Map from the same lecture and start

our search from city a—the scene of the crime.

Next

Depth-first search explores down one path until it hits a

dead end (or a node it has already explored). in this way, the

algorithm prioritizes exploring deeply down paths over

exploring broadly over the options, as in breadth-first

search.
continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

92 CHaPTEr 11

Next

Next

Next

Next

Next

Next

Next

Next

once again, we find our suspect hiding in city H—

although this time we travel a different path during our

search.

as with breadth-first search, we avoid exploring nodes

more than once by keeping track of previously visited

nodes. This check is particularly important if you want to

avoid falling into endless loops, checking the same nodes

over and over again. in the above example, we avoid adding

previously seen nodes (either explored or unexplored) to our

list altogether.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

F
rank pushed himself into a crouch and hurried to the door. He

tugged and pulled, rattling and thumping the door against its

lock. He grasped the rusted iron bars and threw his full weight into

the effort, but succeeded only in producing louder clanking sounds.

Frank turned to Socks, hoping the young wizard knew a bar-

bending spell. Given the circumstances, he felt confident that Socks

would even consent to using a lock-picking spell. But as Frank’s eye

caught the smoldering stacks of parchment and the trails of smoke

wisping to the ceiling, he froze. an image of a smoke-filled kitchen

flashed across his mind, dredging up forgotten memories of his first

year in the academy. He could almost hear the cook shouting. Frank

shut his eyes hard, trying to force the memory away.

During his first two months at the academy, Frank had balanced

his classes with a work-study job in the school cafeteria. The job

wasn’t anything glamorous; they didn’t let new arrivals wash dishes,

let alone prepare the food. instead, Frank spent 15 hours a week

transporting loads of clean trays, plates, and cutlery from the

kitchen to the appropriate locations in the cafeteria.

— 12 —

Cafeteria Stacks and Queues

The CS Detective (excerpt), © 2016 by Jeremy Kubica

94 CHaPTEr 12

Despite the tedious nature of the work, Frank found himself enjoy-

ing it. “Look at me! i’m undoing your work. i’m the anti-busboy,” he

would shout to the trio of busboys clearing tables and filling bins with

dirty dishes. He unsuccessfully tried to break the school record for

the most number of dishes transported in two minutes. He created

an entirely new cafeteria game called Fling the Spoon. But it wasn’t

until a fortuitous run-in with Professor Heappens that he actually

learned something from the job.

“Ugh. There are some data structures that just don’t belong in the

cafeteria,” Professor Heappens muttered loudly as he studied the

food options.

at 2:30 in the afternoon, the lunch rush had vanished, and Frank

runtime was hard at work transporting a load of bowls to the soup

station. Though the comment wasn’t directed at him, he found him-

self asking the professor, “What data structures?”

“Stacks,” Professor Heappens said, looking up at Frank. “Stacks

almost never belong in a cafeteria.”

“Sure they do,” Frank replied with the level of certainty that only

new students and the truly ignorant can muster. He nodded down

The CS Detective (excerpt), © 2016 by Jeremy Kubica

CaFETEria STaCKS anD QUEUES 95

at the stack of bowls he was carrying. “Stacks of bowls. Stacks of

plates. Stacks of pancakes.”

Professor Heappens made a dismissive gesture and started walk-

ing away. “What do you know about data structures anyway?”

“How else are you supposed to arrange plates?” Frank asked. “if

you laid them out end to end, they would take too much room.”

The professor stopped and stared at Frank with an expression of

profound concern. after nearly a minute, he asked, “Do you know

the difference between a stack and a queue?”

Frank shook his head. He hadn’t taken Police Data Structures yet.

“a stack is a last-in, first-out data structure,” explained the pro-

fessor. “it has two operations. You can push something onto the top

of the stack. or you can pop something off the top of the stack.

He gestured at the stack of plates waiting at the front of the line.

“it’s just like the stack of plates over there. You can push a plate

onto the stack.”

He placed his empty plate on top of the stack.

“or you can pop a plate off the top.” He grabbed his plate back.

“and whenever you pop something off a stack, you get the newest

item on the stack. The oldest item will stay at the bottom of the

stack until you have popped off everything above it.”

“So?” Frank asked. “What’s wrong with that?”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

96 CHaPTEr 12

“nothing’s wrong with a last-in, first-out data structure if you

use it correctly. Stacks are wonderful if you are writing a depth-first

search; you just keep pushing new search options onto the stack and

popping them off when you backtrack. But cafeterias have misused

stacks for decades!

“Take this stack of plates right here. Do you know how long the

bottom plate has been there?”

Frank tried to recall the last time he had seen the stack empty,

but couldn’t even conjure the image.

“Five years!” shouted Professor Heappens. “i know, because i

marked it. For five years that bottom plate has sat there unused,

while students like yourself dump other clean plates on top. it sits

there collecting dust around the edges.

“But that isn’t even the worst. Look at what they are doing to the

mashed potatoes!”

Frank glanced over at the large wooden bowl of mashed potatoes.

a cook was in the process of refilling it. He held a large pot in one

hand and was gleefully ladling fresh mashed potatoes into the bowl.

it took a moment for Frank to realize the older food was simply

being buried. His stomach turned.

“How long?” he croaked, not really wanting to know the answer.

“Don’t worry. They wash out the serving bowl at least once a

week, so the old mashed potatoes are less than a week old.”

Frank didn’t feel reassured. in fact, he felt rather ill. a quick scan

of the cafeteria showed the last-in, first-out pattern being utilized

everywhere. He stopped when he reached the vats of salad dressing,

his stomach roiling with a mixture of nausea and panic.

“What can we do?” he asked.

“Queues,” responded the professor. “Queues were practically

designed for cafeterias.”

“Queues?” asked Frank.

“First-in, first-out data structures,” explained Professor Heappens.

“Like stacks, they also store things and have two operations. You can

The CS Detective (excerpt), © 2016 by Jeremy Kubica

CaFETEria STaCKS anD QUEUES 97

enqueue something by adding it to the back of the queue. or you can

dequeue something by taking it from the front. That way, you are

always taking out the oldest item.”

Frank tried to picture always taking the bottom plate from a

stack. “But how?”

“That’s just how the data structure works. Look at the sandwich

line; it’s a queue. right now it has four people in it, and the person

at the front has been waiting the longest.”

A B C D

Even as Professor Heappens said that, another person joined the

line. “See, they enqueue at the back!” he noted.

A B C D

E
Front

They stood watching the line until the person at the front received

her sandwich and departed.

A

B C D
E

New

“and dequeue at the front,” said the professor happily. “What this

cafeteria needs is more queues. Every cafeteria needs more queues.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

98 CHaPTEr 12

Frank thought back to the mashed potato stack and realized the

professor was right. How the data was stored could have a signifi-

cant impact on how it was accessed. in cases like mashed potatoes,

order mattered.

Despite the seemingly simple revelation, Frank struggled for days

to integrate queues into the cafeteria. The plates and bowls were

relatively easy. He would simply lift the old pile up and slide new

plates underneath. Convincing the cooks to change how they ladled

food proved more difficult. They thoroughly enjoyed ladling giant

spoonfuls of potatoes, smiling as the large gobs smacked down into

the bowl. Frank ultimately suggested a two-bowl method where the

old potatoes were ladled onto the top of the new bowl. While it wasn’t

strictly a queue, it preserved all the fun of slopping mashed pota-

toes, and the old food didn’t get buried at the bottom.

Unfortunately, disaster struck when he filled in for a sick baker.

not paying attention to the fact that the bread was baked in batches

for a reason, Frank insisted that loading the oven last-in, first-out

was unfair to the bread at the back. He devised a rotation scheme

that, every 25 seconds, inserted a new loaf, rotated all the loaves in

the oven, and removed the oldest loaf.

Frank’s attempt at a baking queue might have worked if the oven

had two doors, one at the front and one at the back. Unfortunately,

the cafeteria used an older, single-door model, which made rotat-

ing the loaves in and out extremely difficult. While the constant

churn ensured a more consistent cooking time for all loaves, Frank

found himself unable to keep up with the schedule. Soon, dense

smoke poured from the hearth as the loaves blackened.

as the other cooks dashed to the fire with buckets of water,

Frank stared numbly at the charred loaves. a sense of hopeless

confusion crept in as he realized that queues might not be the solu-

tion to every cafeteria problem. He still had a lot to learn about

data structures.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

CaFETEria STaCKS anD QUEUES 99

police algorithms 101: stacks and queues

Excerpt from Professor Drecker’s Lecture

Stacks and queues are two simple structures for storing

data. at first glance, both data structures resemble nothing

more than lists of values. How these two data structures

differ, though, is in how data is inserted or removed.

a stack is a last-in, first-out data structure that operates

much like the pile of papers you’ll find on every officer’s

desk. new elements are pushed onto the top of the stack, and

elements are removed by being popped off the top of the

stack. if five elements are pushed onto an empty stack in

the order 1, 2, 3, 4, 5, they will be popped off in the reverse

order, 5, 4, 3, 2, 1. of course, as soon as your pile of papers

is gone, your captain will just give you more paperwork.

You can implement stacks using an array and a single

variable to track the index corresponding to the top of the

stack. When you push a new element onto the stack, you add

it to the next open slot in the array: index = top + 1. You also

increment the top index accordingly.

When you pop an element off the stack, you can again use

the top index to find the correct element. You can then

remove this from the array and decrement the top index

accordingly.

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

100 CHaPTEr 12

of course, you must be careful when adding elements to

an array of fixed size to avoid going past the end of the

array.

a queue is a first-in, first-out data structure, much like a

line of suspects waiting to be processed. new elements are

enqueued at the back of the queue, and elements are removed

by being dequeued from the front. if five elements are

enqueued in an empty queue in the order 1, 2, 3, 4, 5, they

will be dequeued in the same order, 1, 2, 3, 4, 5.

Queues can also be implemented with arrays. in this case,

you need to track two indexes—the first and last element in

the queue. When you enqueue a new element, you add it

behind the current last element and increment the back index.

and when you dequeue an element, you remove the front

element and increment the front index accordingly.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

CaFETEria STaCKS anD QUEUES 101

as you enqueue and dequeue elements in a fixed array, a

block of empty space will build up at the front of the array.

While you can design the queue to wrap, you must take care

during both enqueuing and dequeuing to handle indexes

being incremented past the end of the array.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

The CS Detective (excerpt), © 2016 by Jeremy Kubica

F
rank shook the image of burnt bread from his mind and

returned to the present situation—trapped in a small cell filled

with parchment about to burst into flame. The fire was still small,

burning the loose sheets at the edge of the piles. But once the large

stacks fully caught fire, the heat would be unbearable.

Socks crawled to the door and leaned against it. “is it locked?” he

asked.

Frank swallowed half a dozen snarky answers and simply nodded.

“Can you open it?” he asked. “it’s an old two-pin lock. it can’t have

that many combinations.”

Socks shook his head. “There’s no time. i know a spell to weaken

the metal, though. it will ruin the door, but . . . i think that’s okay

given the circumstances and all.”

He retrieved his staff and immediately set to work, mumbling

incantations and running his hands over the bars. Spots of rust

bloomed under his hands and crept over the metal. Less than a

minute later, Socks stood back. The door looked thoroughly rusty,

though still very much made of metal.

— 13 —

Stacks and Queues for Search

The CS Detective (excerpt), © 2016 by Jeremy Kubica

104 CHaPTEr 13

“The bars should be significantly weakened,” he said. He stepped

back and gave Frank an expectant look as if to say, “You can smash

through the door anytime now.”

Frank took a couple of steps back and eyed the door. “How

weak?” he asked. “are we talking toothpick weak or thick plank

of wood weak?”

“Well . . . definitely weaker than normal metal,” Socks answered.

“i added a lot of rust. The bars are thick, but i think they should be

pretty weak now.”

Frank groaned. He took a deep breath and charged, lowering his

shoulder and barrelling into the door. The impact jolted his entire

body, but he broke through.

Frank lay sprawled on the floor while a cloudy mixture of rust

particles and smoke swirled over him.

Socks hurried over to his side. “are you okay?” He looked back at

the door and broke into a wide smile. “it worked!” he said, beaming

with pride. “Were they really weak? What did it feel like?”

“Like inch-thick pine,” Frank said. “it hurt a lot.”

The smile dimmed slightly. “oh.”

Frank pushed himself to his feet. His shoulder throbbed and he’d

have a nasty bruise there tomorrow, but the temporary euphoria of

escaping a flaming death easily offset the pain.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

STaCKS anD QUEUES For SEarCH 105

“Time to go,” he said as he started through the next room.

“Do you remember how to get back?” Socks asked.

“of course,” Frank replied. “We used depth-first search to get

here. We can just follow the stack back out.”

“Stack?” Socks asked as he started after Frank.

“Yeah,” said Frank, still feeling the lingering thrill of their

escape. “it’s easy to think of searches in terms of the data structures

they use. For example, breadth-first search uses a queue and depth-

first search uses a stack.” The explanation poured out of him like

one of notation’s textbook answers.

“actually, there are a few different ways to keep track of your

options during depth-first search. Some people prefer to use a stack

to keep a list of future rooms to explore, similar to how you use a

queue in breadth-first search. i prefer a different approach.

“You can use the stack to keep track of rooms along your current

path. Every time you explore a new room, you push it onto a stack

representing your current path.

1

Stack

1

1

Stack

2

2

1

2

The CS Detective (excerpt), © 2016 by Jeremy Kubica

106 CHaPTEr 13

1

Stack

2

3

4

5

6

5 6

2 3 4

1

2

5 6

4

“When you backtrack, you pop that room off the stack and return

to the one before it. That way, you always know how to backtrack. i

even numbered the rooms to make backtracking easier.”

1

Stack

2

3

4

5

7

“i thought you always just backtracked to the last decision point,”

Socks said.

“You effectively do,” said Frank. “But keeping the rooms in a

stack makes it much easier to do that. You just backtrack and pop

off the fully explored rooms until you get to one with a new path.”

Socks looked impressed. “You wrote down the rooms we explored?”

“i kept track of the stack in my head and i numbered the rooms

with chalk,” answer Frank. “as i said, this isn’t my first time doing

depth-first search. We have to backtrack through seven rooms.”

1

Stack

2

10

11

20

21

22

237 5 6

2 3 4

1

8910

11 12 13 14

15

16

1718192021

22

23

7 5 6

2 3 4

10

11 12 13 14

15

16

171892021

22

119

23 89

1

The CS Detective (excerpt), © 2016 by Jeremy Kubica

STaCKS anD QUEUES For SEarCH 107

They hurried back through two dark rooms before Socks remem-

bered the staff in his hand. He mumbled the fire incantation again

and blue flame leapt from the tip.

Frank eyed the staff warily. “Keep a tight hold of it this time,” he

advised.

after three more rooms, Socks suddenly asked, “What about

queues?”

“What about them?” Frank asked.

“You said they were used for breadth-first search.”

“They are,” agreed Frank. “Your magic list was just a queue. in

breadth-first search, the queue tracks the unexplored options.

instead of pushing the current state onto a stack, you add new

neighbors to the back of a queue.”

Queue

2

3

4

1 24

3

Queue

3

4

5

6

1

Current

24

3

5

6

“and in depth-first search you can use your list, or stack, to track

either the unexplored neighbors or the current path?” asked Socks,

rather excitedly for someone fleeing an unknown attacker in an

abandoned prison.

“Either approach will work if you’re careful about the bookkeep-

ing,” agreed Frank.

“i had never thought of search in terms of stacks and queues

before,” Socks mused. “i wonder what other data structures i’m over-

looking. i bet the Spell of Disentangled ropes uses a few.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

108 CHaPTEr 13

Frank ignored his ramblings and continued backtracking to the

exit. They moved fast, prioritizing escape over further exploration.

Simple logic told Frank that their attacker was long gone. no one

had tried to stop them from escaping, and, with the evidence burn-

ing, there was nothing for the criminals to gain by waiting around.

Within a few minutes he located the final door, and they rushed

outside. a thin trickle of smoke followed them out. By now the flames

would have consumed the stacks of paper, destroying any leads.

police algorithms 101: stacks and queues

Excerpt from Professor Drecker’s Lecture

The key to efficient algorithms is information. How we orga-

nize that information and the data structures we use can

have a significant impact not only on the efficiency of the

algorithm but also on how the algorithm actually functions.

For a simple example of the importance of data structures,

consider the breadth-first search and depth-first search from

the previous lessons. While the algorithms are conceptually

similar, whether we maintain our list of leads in either a

stack or a queue significantly changes how the searches

progress.

You want to be careful when choosing your data struc-

tures. Data structures should help enable the algorithm.

imagine what would happen if we stored a list of sorted

numbers in a graph. Even if we maintain the sorted prop-

erty, we can’t perform an efficient binary search over the

data because graphs limit how we access the data. Unlike

arrays, graphs don’t have indexes with which we can access

the values. instead, we are forced to perform a linear scan,

moving from one node to the next via the graph’s edges.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

W
hat happened?” asked officer notation, who stood by the gate.

Frank studied her as he tried to catch his breath. Was she

concerned? Confused?

“We were attacked!” Socks blurted out. “We were trapped in a cell

and everything was on fire! But i used a metal weakening spell so

we could escape.” He looked quite pleased with himself.

“attacked?” asked notation. “Who attacked you? Did you see

them? What did they look like?”

“no,” admitted Socks. “He snuck up behind me.”

“Frank?” asked notation, turning to Frank.

Frank shook his head. “all i saw was Socks flying at me.”

“i bet he was big,” offered Socks. “a giant thug. and he was

stealthy. Maybe a trained assassin.”

Frank rolled his eyes. “Sorry, kid. He was an amateur. Professional

assassins don’t lock people in cells and run away.”

“But the fire,” said Socks.

“Your staff started the fire,” Frank reminded him. “You dropped

it on the papers.”

“Papers?” asked notation. “Did you find the logs? Do you know

what they were after?”

— 14 —

Let’s Split Up: Parallelized Search

The CS Detective (excerpt), © 2016 by Jeremy Kubica

110 CHaPTEr 14

Frank and Socks looked at each other. notation glanced from one

to the other. Finally, Frank spoke, “The logs are gone. our junior

wizard here dropped his staff and poof—fire everywhere. any clues

are gone now.”

Socks turned a deep shade of red and stared at the ground.

“Gone?” asked notation. “Everything’s gone? are you sure?”

“Yeah,” said Frank. He nodded toward the smoke trickling from

the door.

“What about the person who attacked you?” asked notation.

“i didn’t get a look at him,” said Frank. “i don’t suppose you saw

anything?” he asked. The question came out sharper than he’d

intended, but after being attacked, getting trapped in a burning

room, and fleeing a darkened prison, he didn’t feel like pulling any

punches.

“no,” she said calmly. “There was nothing around the front.”

“no tracks near any of the doors?” asked Frank. “anything that

could give us a clue about our attacker?”

notation shook her head. “nothing,” she said. “it looked as though

no one had been around the other side in months.”

Frank nodded, but didn’t speak. Something felt wrong. Either the

attacker had cleverly slipped by notation through the same gate

they had used, or she wasn’t telling them something. How long had

she been away from the gate? and why had she stayed outside?

Frank decided not to press the issue. “all right. Let’s head back to

the boat.”

“now what?” asked Socks as they made their way toward the

water.

“Time to backtrack,” said Frank. “no more clues here.”

“Backtrack to where?”

“The open clues,” Frank answered. “We investigate the leads we

still have left.” He paused for a moment, weighing his options. “i

think it’s time we parallelize the search.”

“really?” asked notation.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

LET’S SPLiT UP: ParaLLELiZED SEarCH 111

“Parallelize?” asked Socks.

“it means we split up and explore different parts of the search

space,” answered notation. “Parallel algorithms divide up work and

do that work in parallel—at the same time, that is. For example, the

work might be distributed over different people. in this case, we can

divide the leads into three sets. Then you, Frank, and i can each

take a set of leads. We can investigate different leads at the same

time, allowing us to work almost three times faster.”

“But,” objected Socks, “i’m not an officer or a private investigator.

i don’t know what to do. Shouldn’t i stay with one of you?”

“no,” said Frank. “i’m still not sure what’s going on, but i have a

feeling we’re working with limited time. Whoever we’re after knows

we’re on the case now and knows we’ve tracked them this far. if

they’re smart, they’ll start destroying the rest of the evidence.”

“it’ll be late by the time we get back to Usb,” noted Socks.

“We can split up tonight and meet at my office tomorrow morn-

ing,” said Frank. “That should give us enough time to follow leads

and possibly grab some sleep.”

“okay,” agreed notation. “How do we divide up the work?”

Frank knew the key to an efficient parallel algorithm was mak-

ing sure that the benefit of using multiple workers was worth the

cost of dividing up the work. Parallelizing work involves a certain

amount of overhead. The problem needs to be broken into pieces.

Each worker has to get a task, get ready to do it, and then actually

do it. and then at the end, the work has to be recombined.

Parallelizing a simple task can sometimes be more costly than just

solving it outright. However, when the problem gets large enough,

parallelization can greatly accelerate an algorithm.

“Easy,” said Frank. “Socks, i need you to talk to your wizard

friends. ask them if they know about a group called the League of

something. The thugs on the boat said they were working for a

league before rebecca Vinettee interrupted them. Judging by pre-

vious cases, the name will be something evil like the League of

The CS Detective (excerpt), © 2016 by Jeremy Kubica

112 CHaPTEr 14

Power-Hungry Maniacs or the League of Darkness. Evil leagues

tend not to be subtle with their names. Find out everything you can

about this group.”

“That’s not much to go on,” Socks complained.

“notation,” continued Frank. “i need you to pull all police transfer

records for the last six months.” While he didn’t like the idea of leav-

ing this lead to notation, she was the only one who could get the

records easily. if he tried to collect them himself, he would be met

with suspicious looks and a small barricade of paperwork. The capi-

tal police department used paperwork with the same determination

and effectiveness as roadblocks.

“Transfers?” asked notation, clearly surprised. “Why?”

“Call it a hunch,” Frank lied. “We’ll meet at my office tomorrow

morning and combine our information.”

“What about you?” asked notation. Her voice now carried a note

of irritation. She obviously knew Frank wasn’t telling her the whole

story.

Frank gave her an innocent smile. “i have to go shopping.”

as the TCP Flyer slowly cruised back to Usb, Frank found an

out-of-the-way corner on the deck and sat down to think. This was

the part of the investigation he hated most, when promising leads

started drying up or, in this case, burning up. The loss of a crucial

clue always filled Frank with a sense of dread—like he was running

one step behind. Frank forced the doubts from his mind and refo-

cused on the clues he did have. The voyage to Usb would give him

time to comb through what he had seen and find connections he had

missed.

He closed his eyes and took a deep breath.

“oh. Sorry. are you sleeping?” asked Socks.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

LET’S SPLiT UP: ParaLLELiZED SEarCH 113

“no. Thinking,” Frank said, and congratulated himself for not

yelling. after all, the boy had saved his life.

When Socks didn’t say anything more, Frank prompted, “What

do you want, Socks?”

“Um . . . i was curious about the search,” Socks responded.

“How so?” said Frank.

To Frank’s dismay, Socks walked over and sat next to him.

“Do you think we’ll find the criminals?” asked Socks.

Frank shrugged. “We’ve still got some good leads,” he offered.

“But do you think we’ll be in time?” asked Socks.

alarm bells went off in Frank’s head. He swiveled and stared

hard at Socks. “Time for what?”

Socks nearly fell backward. His eyes darted around, as though

searching for an appropriate answer. “Whatever they’re planning?”

he finally stammered.

Frank didn’t buy it. “What else do you know?” he asked.

“nothing,” replied Socks. “at least, nothing concrete. it’s just

speculation. not mine—my mentor Gretchen’s. She has good insight

into these types of things, though.”

“Which is?”

“i really shouldn’t say anything. it’s just speculation.”

“Which is?” Frank growled.

“She thinks that whoever is behind this is going to attack the

castle in a few days.”

Frank leapt to his feet. “Why didn’t you mention this sooner?” he

shouted.

“it’s just speculation,” repeated Socks.

“Unless it is a complete guess, she must have some reason,” said

Frank. “is it a guess?”

“no. not entirely,” said Socks. “it’s based on the stolen mask.

Magical artifacts are most effective during the full moon, which is

in two days.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

114 CHaPTEr 14

“What exactly does this mask do?” asked Frank, starting to pace

anxiously.

Socks hesitated for a moment. “it’s an incredibly powerful arti-

fact,” he started. Upon seeing the angry look in Frank’s eyes, he

sped up. “it’s officially called the Mask of Combinatorial Looks. it

was lost hundreds of years ago during the Great Slug War. Everyone

thought it was destroyed until Princess ann recovered it during one

of her quests. She found it—”

“What does it do?” prompted Frank.

“it allows the wearer to look like anyone else. The scholars believe

that it uses a massively parallel search. Each feature runs its own

search to find the best match. The nose will transform into a perfect

match of the target’s nose. The eyes will transform into—”

“a perfect disguise,” offered Frank.

“Yes,” said Socks.

Frank cursed. “and the castle? Why does Gretchen think they’ll

attack the castle?”

“She didn’t say,” admitted Socks. “Maybe that part was a guess,”

he added without any real conviction.

Frank didn’t believe it either.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

LET’S SPLiT UP: ParaLLELiZED SEarCH 115

“i’m sorry i didn’t mention it earlier,” offered Socks. “Since there

isn’t any hard proof . . .” He trailed off, looking miserable.

“What else aren’t you telling us?” asked Frank, staring down at

Socks.

Socks thought about the question for a long while before answer-

ing. “i think that’s it.”

“Everything?”

“Everything i know,” Socks qualified.

Frank took a deep breath and looked up at the sails, wishing they

were fuller. The wind had died down within the last hour, and the

TCP Flyer seemed to be barely inching toward their destination.

He ran the timeline of the next few days through his head and

wondered if they had enough time. Even with three of them search-

ing in parallel, there was no guarantee they would cover enough

ground. Worse, they couldn’t even begin the parallel search until

the TCP Flyer docked. Until then, they were all stuck on the boat.

police algorithms 101:
parallel algorithms

Excerpt from Professor Drecker’s Lecture

a parallel algorithm breaks up a problem into multiple

pieces, performs the computation on those pieces at (approx-

imately) the same time, and then combines the results

when all pieces are finished. it divides up the work among

different workers, allowing them to complete the task

faster than a single worker could. Consider our favorite

example: searching an abandoned building for a suspect.

The more officers you have, the more rooms you can check

at the same time and the faster you can find the suspect.

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

116 CHaPTEr 14

if you have 30 rooms and 30 officers, they can kick in all

the doors at once.

The key to an efficient parallel algorithm is to efficiently

divide the work into independent units and then recombine

it. Some problems are trivial to parallelize. For example, if

you are searching a large stack of scrolls for a particular

clue, you can easily divide the work by giving each worker a

subset of the scrolls.

However, other algorithms are much more difficult or even

impossible to parallelize. Even if you have 100 officers, you

can’t question a suspect any faster. it’s an inherently serial

problem. You need to base your next question on the sus-

pect’s previous answers. and, perhaps more importantly, a

suspect can answer only one question at a time. i’ve seen

eight officers shouting questions at the same time. The inter-

rogation doesn’t go any faster.

another aspect to consider when parallelizing algorithms

is whether the efficiency is even worth the overhead. a paral-

lel algorithm requires additional setup time to divide the

work, as well as completion time to merge the results back

together. individual tasks have to be assigned to different

workers, often requiring some amount of communication.

Consider the task of searching an unsorted array with only

three values. By the time the setup is complete, a single

person could have likely scanned through the array many

times over.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

i
know that look,” said Mavis. Frank looked up at the TCP Flyer’s

captain in annoyance. He preferred to brood quietly, and this was

the second interruption in 10 minutes.

“What look?” he growled.

“That look,” she said, waving in Frank’s general direction. “You’re

questioning your search and wondering if you spent too much time

on dead ends.”

“Why would i be doing that?” Frank asked.

“i heard what the kid said,” Mavis explained. “You’re suddenly on

a tight timeline, and we have at least another hour before we get

back to Usb.”

Frank nodded. “if this piece of junk—”

“Hey, now. Just because you’re questioning your search doesn’t

give you a reason to insult my ship.”

“Yeah. i suppose,” Frank mumbled by way of apology.

He had been running through the leads in his mind, wondering

if one of them would have provided quicker answers. He knew the

log entries were good leads—as good as he could hope to find in a

case like this. But they’d been time-consuming. He’d spent almost

a full day traveling between ports on the TCP Flyer.

— 15 —

iterative Deepening Can Save Your Life

The CS Detective (excerpt), © 2016 by Jeremy Kubica

118 CHaPTEr 15

With a grunt, Mavis lowered herself and sat next to Frank.

“iterative deepening?”

Frank shrugged. The thought had occurred to him. iterative

deepening was a cross between a pure depth-first search and a

breadth-first search. The algorithm searched in rounds, each round

being a depth-first search that was limited to a given path length.

“never was a fan,” Frank admitted. He’d never been able to stom-

ach repeating parts of the search over and over each iteration. So

much of the work seemed to be wasted.

Mavis laughed. “You haven’t faced enough dead ends then.”

Frank raised an eyebrow. “You’re talking to a private investiga-

tor. i run into more dead ends than correct paths.”

“Ever lose a criminal because of one?” asked Mavis.

“a few times,” Frank admitted.

“Then you should appreciate iterative deepening,” said Mavis.

“When i first saw it in action, i was annoyed by the restarts too.

But it’s saved my life more than once.”

“restarting a search over and over saved your life?” asked Frank.

“Limiting how far i could explore along the wrong path saved my

life,” corrected Mavis.

“When did iterative deepening save your life?” asked Frank,

unable to keep the skepticism from his voice.

Mavis stared out over the ocean. “Well . . . the first time was

when i was just a kid. i was an apprentice on a cargo vessel called

the Void Star. it was an amazing ship; it could carry anything.

anyway, we were lost in the middle of the razor ridges—a dense

series of volcanic peaks that effectively form a giant maze—and we

were running out of important provisions.”

“Water?” asked Frank.

“no,” answered Mavis. “We had at least two weeks’ worth of food

and water. We were low on coffee, and that was bad news for the

ship’s officers. after a single day without coffee, the first mate would

get twitchy and sing depressing sea shanties.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

iTEraTiVE DEEPEninG Can SaVE YoUr LiFE 119

“That doesn’t sound too bad.”

“Without coffee, the man’s singing attracted every vicious bird in

an eight-mile radius.”

Frank winced at the thought.

“anyway,” continued Mavis, “coffee was vital for the ship. The

captain estimated we had less than two days to find an island with

a supply station. She knew there had to be one close by, but didn’t

know exactly where. You see, we’d lost the map during an impromptu

paper airplane contest. and with the dense fog throughout the

ridges, we wouldn’t see the station until we were right on top of it.”

Supplies

Supplies

The CS Detective (excerpt), © 2016 by Jeremy Kubica

120 CHaPTEr 15

“We started off searching for an island with coffee. i was still

green in those days and hadn’t heard of iterative deepening, so i

boldly suggested a depth-first search. The captain just laughed and

told me she’d never trust a depth-first search in the razor ridges—

too many long dead ends.

“Well. She gridded off the sea into one-mile-square chunks. one

mile was about as far as you could see through the fog, so we would

need to be in the same grid square as the supply station to see it.

Then we set about exploring with iterative deepening. We used a

depth-first search, but limited it to a single one-cell step. We used

a classic north, east, south, west ordering, backtracking to the start-

ing location each time. We didn’t find anything in this first step, but

at least we were efficient about it. Within a few hours, we had elimi-

nated all neighboring grid squares.

Supplies

Supplies

1

1

1

The CS Detective (excerpt), © 2016 by Jeremy Kubica

iTEraTiVE DEEPEninG Can SaVE YoUr LiFE 121

Mavis shook her head. “no sign of the supply station at all. So we

started over, doing another depth-first search from the original

starting point. This time we explored two steps out and covered a

lot more area. We ended up reexploring the neighboring squares in

the process. Still no sign of a supply station, but we were able to

eliminate all squares within two steps pretty quickly.”

Supplies

Supplies

1

1

1

2

2

2

“Why not just use breadth-first search?” asked Frank. “That’s

what you were effectively doing anyway. Your search explored out-

ward, farther and farther from the starting point.”

Mavis nodded. “Breadth-first search and iterative deepening have

a lot in common. But you’re forgetting one key point. We had lost our

map. it’s really difficult to track your unexplored states in breadth-

first search when you don’t have a map. How do you remember your

The CS Detective (excerpt), © 2016 by Jeremy Kubica

122 CHaPTEr 15

frontier? iterative deepening allowed us to explore outward without

having to explicitly remember all the unexplored states. We just

followed a depth-limited path.”

Supplies

Supplies

“i guess so,” Frank agreed.

“anyway, we were starting to run low on coffee at that point,”

Mavis continued. “a group of volunteers, including the captain her-

self, switched to decaf. But we all knew that would only buy us a

little time. We pushed on. We restarted the depth-first search again,

this time allowing ourselves to venture out farther.”

“Did you find it with a search of length three?” asked Frank.

“Luckily, we did,” replied Mavis. “on that iteration we checked

everything one, two, and three steps away. By that time, the quarter-

master, who had absolutely no use for decaf, had resorted to reusing

the same grounds for a 10th time, but the first mate was already

singing ‘Sea Slugs on Deck.’ Fortunately, that was one of his more

upbeat tunes.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

iTEraTiVE DEEPEninG Can SaVE YoUr LiFE 123

Supplies

Supplies

1

1

1

2

2

2

3

3

3

3 3

3

Supplies

Supplies

The CS Detective (excerpt), © 2016 by Jeremy Kubica

124 CHaPTEr 15

Frank thought about it for a moment. “What if you had skipped

the repeated work? What if you had just used depth-first search?”

“We would have gone down a long dead end and run out of coffee,”

she replied. “Didn’t i start by telling you it saved my life?”

“Fair enough. But that’s a matter of luck. The nearest supply sta-

tion could have been down a depth-first search of length five.”

“Ha! You know better than that, Frank. You can always find

lucky or unlucky problems. iterative deepening can help you hedge

against really unlucky cases. it bounds how far you away you can

go on any iteration.”

“other algorithms do that too,” he countered.

Mavis scowled. “i didn’t say iterative deepening was the only algo-

rithm that could have saved us. i said it was the one we used. and

i have used it ever since.

“once i even used it to track down an angry shoal of squid before

they inked the capital’s harbor. oh, it would have been a grand

mess. Some days i wonder if i should have just let them do it. The

king’s reaction would have been priceless.”

Frank thought for a long while, wondering if iterative deepening

could have saved him time here. By cutting off the search sooner,

he could have backtracked and followed up on the threads or the

mysterious league. But then he wouldn’t have been following the

highest-priority lead.

He shook his head. “i’ll stick with my usual searches,” he said

finally.

Mavis nodded solemnly and looked out over the ocean. “Fair

enough. But be careful, Frank. You don’t have much time and long

dead ends can be costly. With any algorithm, you should at least

think about how to protect yourself from running into the worst-

case problems.”

The CS Detective (excerpt), © 2016 by Jeremy Kubica

iTEraTiVE DEEPEninG Can SaVE YoUr LiFE 125

police algorithms 101:
iterative deepening

Excerpt from Professor Drecker’s Lecture

iterative deepening is a modification of depth-first search

that repeatedly performs limited depth-first searches.

During iteration (or round) k of iterative deepening, the algo-

rithm performs a depth-limited search with max-depth = k.

Consider again the example of searching for a suspect

starting from city a.

We start with a depth-first search but cut it off after the

first node, a. This corresponds to limiting ourselves to

searching just the scene of the crime.

The next iteration restarts the depth-first search but

allows it to explore one city away. We cover the close cities,

visiting a, B, and D.

continued

The CS Detective (excerpt), © 2016 by Jeremy Kubica

126 CHaPTEr 15

as the search progresses, we have to go farther and far-

ther from the scene of the crime. We end up searching the

nearby cities multiple times on different iterations of our

search. in fact, we search a four times and B three times.

While the repeated work increases computational cost,

iterative deepening has advantages. it combines the lower

memory requirements of depth-first search with the abilities

of breadth-first search to find short paths and avoid getting

stuck on some worst-case problems.

The CS Detective (excerpt), © 2016 by Jeremy Kubica

This is an excerpt from The CS Detective by Jeremy Kubica.

Please visit www.nostarch.com/searchtale

for updates and more information.

https://www.nostarch.com/searchtale

	A Note to Readers
	1: Search Problems

	2: Exhaustive Search for an Informant

	3: Arrays and Indexes on a Criminal’s Farm

	4: Strings and Hidden Messages

	5: Binary Search for a Smuggler’s Ship

	6: Binary Search for Clues

	7: Adapting Algorithms for a Daring Escape

	8: Socks: An Interlude and an Introduction

	9: Backtracking to Keep the Search Going

	10: Picking Locks with Breadth-First Search

	11: Depth-First Search in an Abandoned Prison

	12: Cafeteria Stacks and Queues

	13: Stacks and Queues for Search

	14: Let’s Split Up: Parallelized Search

	15: Iterative Deepening Can Save Your Life

