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P R O C E S S  C R E A T I O N

In this and the next three chapters, we look at how a process is created and termi-
nates, and how a process can execute a new program. This chapter covers process
creation. However, before diving into that subject, we present a short overview of
the main system calls covered in these four chapters.

24.1 Overview of fork(), exit(), wait(), and execve()

The principal topics of this and the next few chapters are the system calls fork(),
exit(), wait(), and execve(). Each of these system calls has variants, which we’ll also
look at. For now, we provide an overview of these four system calls and how they
are typically used together.

The fork() system call allows one process, the parent, to create a new process,
the child. This is done by making the new child process an (almost) exact dupli-
cate of the parent: the child obtains copies of the parent’s stack, data, heap,
and text segments (Section 6.3). The term fork derives from the fact that we can
envisage the parent process as dividing to yield two copies of itself.

The exit(status) library function terminates a process, making all resources
(memory, open file descriptors, and so on) used by the process available for
subsequent reallocation by the kernel. The status argument is an integer that
determines the termination status for the process. Using the wait() system call,
the parent can retrieve this status.
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514 Chapter 24

The exit() library function is layered on top of the _exit() system call. In Chapter 25,
we explain the difference between the two interfaces. In the meantime, we’ll
just note that, after a fork(), generally only one of the parent and child termi-
nate by calling exit(); the other process should terminate using _exit().

The wait(&status) system call has two purposes. First, if a child of this process
has not yet terminated by calling exit(), then wait() suspends execution of the
process until one of its children has terminated. Second, the termination status
of the child is returned in the status argument of wait().

The execve(pathname, argv, envp) system call loads a new program (pathname,
with argument list argv, and environment list envp) into a process’s memory.
The existing program text is discarded, and the stack, data, and heap segments
are freshly created for the new program. This operation is often referred to as
execing a new program. Later, we’ll see that several library functions are layered
on top of execve(), each of which provides a useful variation in the program-
ming interface. Where we don’t care about these interface variations, we follow
the common convention of referring to these calls generically as exec(), but be
aware that there is no system call or library function with this name.

Some other operating systems combine the functionality of fork() and exec() into a
single operation—a so-called spawn—that creates a new process that then executes a
specified program. By comparison, the UNIX approach is usually simpler and
more elegant. Separating these two steps makes the APIs simpler (the fork() system
call takes no arguments) and allows a program a great degree of flexibility in the
actions it performs between the two steps. Moreover, it is often useful to perform a
fork() without a following exec().

SUSv3 specifies the optional posix_spawn() function, which combines the effect
of fork() and exec(). This function, and several related APIs specified by SUSv3,
are implemented on Linux in glibc. SUSv3 specifies posix_spawn() to permit
portable applications to be written for hardware architectures that don’t pro-
vide swap facilities or memory-management units (this is typical of many
embedded systems). On such architectures, a traditional fork() is difficult or
impossible to implement.

Figure 24-1 provides an overview of how fork(), exit(), wait(), and execve() are com-
monly used together. (This diagram outlines the steps taken by the shell in executing
a command: the shell continuously executes a loop that reads a command, performs
various processing on it, and then forks a child process to exec the command.)

The use of execve() shown in this diagram is optional. Sometimes, it is instead
useful to have the child carry on executing the same program as the parent. In either
case, the execution of the child is ultimately terminated by a call to exit() (or by
delivery of a signal), yielding a termination status that the parent can obtain via wait().

The call to wait() is likewise optional. The parent can simply ignore its child
and continue executing. However, we’ll see later that the use of wait() is usually
desirable, and is often employed within a handler for the SIGCHLD signal, which the
kernel generates for a parent process when one of its children terminates. (By
default, SIGCHLD is ignored, which is why we label it as being optionally delivered in
the diagram.)
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Process Creat ion 515

Figure 24-1: Overview of the use of fork(), exit(), wait(), and execve()

24.2 Creating a New Process: fork()

In many applications, creating multiple processes can be a useful way of dividing
up a task. For example, a network server process may listen for incoming client
requests and create a new child process to handle each request; meanwhile, the
server process continues to listen for further client connections. Dividing tasks up
in this way often makes application design simpler. It also permits greater concur-
rency (i.e., more tasks or requests can be handled simultaneously).

The fork() system call creates a new process, the child, which is an almost exact
duplicate of the calling process, the parent.
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516 Chapter 24

The key point to understanding fork() is to realize that after it has completed its
work, two processes exist, and, in each process, execution continues from the point
where fork() returns.

The two processes are executing the same program text, but they have separate
copies of the stack, data, and heap segments. The child’s stack, data, and heap seg-
ments are initially exact duplicates of the corresponding parts the parent’s memory.
After the fork(), each process can modify the variables in its stack, data, and heap
segments without affecting the other process.

Within the code of a program, we can distinguish the two processes via the
value returned from fork(). For the parent, fork() returns the process ID of the
newly created child. This is useful because the parent may create, and thus need to
track, several children (via wait() or one of its relatives). For the child, fork() returns 0.
If necessary, the child can obtain its own process ID using getpid(), and the process
ID of its parent using getppid().

If a new process can’t be created, fork() returns –1. Possible reasons for failure
are that the resource limit (RLIMIT_NPROC, described in Section 36.3) on the number of
processes permitted to this (real) user ID has been exceeded or that the system-
wide limit on the number of processes that can be created has been reached.

The following idiom is sometimes employed when calling fork():

pid_t childPid;             /* Used in parent after successful fork()
                               to record PID of child */
switch (childPid = fork()) {
case -1:                    /* fork() failed */
    /* Handle error */

case 0:                     /* Child of successful fork() comes here */
    /* Perform actions specific to child */

default:                    /* Parent comes here after successful fork() */
    /* Perform actions specific to parent */
}

It is important to realize that after a fork(), it is indeterminate which of the two
processes is next scheduled to use the CPU. In poorly written programs, this indeter-
minacy can lead to errors known as race conditions, which we describe further in
Section 24.4.

Listing 24-1 demonstrates the use of fork(). This program creates a child that
modifies the copies of global and automatic variables that it inherits during the
during the fork().

The use of sleep() (in the code executed by the parent) in this program permits
the child to be scheduled for the CPU before the parent, so that the child can com-
plete its work and terminate before the parent continues execution. Using sleep() in

#include <unistd.h>

pid_t fork(void);

In parent: returns process ID of child on success, or –1 on error;
in successfully created child: always returns 0
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Process Creat ion 517

this manner is not a foolproof method of guaranteeing this result; we look at a better
method in Section 24.5.

When we run the program in Listing 24-1, we see the following output:

$ ./t_fork
PID=28557 (child)  idata=333 istack=666
PID=28556 (parent) idata=111 istack=222

The above output demonstrates that the child process gets its own copy of the stack
and data segments at the time of the fork(), and it is able to modify variables in
these segments without affecting the parent.

Listing 24-1: Using fork()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_fork.c

#include "tlpi_hdr.h"

static int idata = 111;             /* Allocated in data segment */

int
main(int argc, char *argv[])
{
    int istack = 222;               /* Allocated in stack segment */
    pid_t childPid;

    switch (childPid = fork()) {
    case -1:
        errExit("fork");

    case 0:
        idata *= 3;
        istack *= 3;
        break;

    default:
        sleep(3);                   /* Give child a chance to execute */
        break;
    }

    /* Both parent and child come here */

    printf("PID=%ld %s idata=%d istack=%d\n", (long) getpid(),
            (childPid == 0) ? "(child) " : "(parent)", idata, istack);

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_fork.c

24.2.1 File Sharing Between Parent and Child
When a fork() is performed, the child receives duplicates of all of the parent’s file
descriptors. These duplicates are made in the manner of dup(), which means that
corresponding descriptors in the parent and the child refer to the same open file
description. As we saw in Section 5.4, the open file description contains the current
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518 Chapter 24

file offset (as modified by read(), write(), and lseek()) and the open file status flags
(set by open() and changed by the fcntl() F_SETFL operation). Consequently, these
attributes of an open file are shared between the parent and child. For example, if
the child updates the file offset, this change is visible through the corresponding
descriptor in the parent.

The fact that these attributes are shared by the parent and child after a fork() is
demonstrated by the program in Listing 24-2. This program opens a temporary file
using mkstemp(), and then calls fork() to create a child process. The child changes
the file offset and open file status flags of the temporary file, and exits. The parent
then retrieves the file offset and flags to verify that it can see the changes made by
the child. When we run the program, we see the following:

$ ./fork_file_sharing
File offset before fork(): 0
O_APPEND flag before fork() is: off
Child has exited
File offset in parent: 1000
O_APPEND flag in parent is: on

For an explanation of why we cast the return value from lseek() to long long in
Listing 24-2, see Section 5.10.

Listing 24-2: Sharing of file offset and open file status flags between parent and child

––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_file_sharing.c
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/wait.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int fd, flags;

char template[] = "/tmp/testXXXXXX";

    setbuf(stdout, NULL);                   /* Disable buffering of stdout */

    fd = mkstemp(template);
    if (fd == -1)
        errExit("mkstemp");

    printf("File offset before fork(): %lld\n",
            (long long) lseek(fd, 0, SEEK_CUR));

    flags = fcntl(fd, F_GETFL);
    if (flags == -1)
        errExit("fcntl - F_GETFL");
    printf("O_APPEND flag before fork() is: %s\n",
            (flags & O_APPEND) ? "on" : "off");
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Process Creat ion 519

    switch (fork()) {
    case -1:
        errExit("fork");

    case 0:     /* Child: change file offset and status flags */
        if (lseek(fd, 1000, SEEK_SET) == -1)
            errExit("lseek");

        flags = fcntl(fd, F_GETFL);         /* Fetch current flags */
        if (flags == -1)
            errExit("fcntl - F_GETFL");
        flags |= O_APPEND;                  /* Turn O_APPEND on */
        if (fcntl(fd, F_SETFL, flags) == -1)
            errExit("fcntl - F_SETFL");
        _exit(EXIT_SUCCESS);

    default:    /* Parent: can see file changes made by child */
        if (wait(NULL) == -1)
            errExit("wait");                /* Wait for child exit */
        printf("Child has exited\n");

        printf("File offset in parent: %lld\n",
                (long long) lseek(fd, 0, SEEK_CUR));

        flags = fcntl(fd, F_GETFL);
        if (flags == -1)
            errExit("fcntl - F_GETFL");
        printf("O_APPEND flag in parent is: %s\n",
                (flags & O_APPEND) ? "on" : "off");
        exit(EXIT_SUCCESS);
    }
}

––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_file_sharing.c

Sharing of open file attributes between the parent and child processes is frequently
useful. For example, if the parent and child are both writing to a file, sharing the
file offset ensures that the two processes don’t overwrite each other’s output. It
does not, however, prevent the output of the two processes from being randomly
intermingled. If this is not desired, then some form of process synchronization is
required. For example, the parent can use the wait() system call to pause until the
child has exited. This is what the shell does, so that it prints its prompt only after
the child process executing a command has terminated (unless the user explicitly
runs the command in the background by placing an ampersand character at the
end of the command).

If sharing of file descriptors in this manner is not required, then an application
should be designed so that, after a fork(), the parent and child use different file
descriptors, with each process closing unused descriptors (i.e., those used by the
other process) immediately after forking. (If one of the processes performs an
exec(), the close-on-exec flag described in Section 27.4 can also be useful.) These
steps are shown in Figure 24-2.
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520 Chapter 24

Figure 24-2: Duplication of file descriptors during fork(), and closing of unused descriptors

24.2.2 Memory Semantics of fork()
Conceptually, we can consider fork() as creating copies of the parent’s text, data,
heap, and stack segments. (Indeed, in some early UNIX implementations, such
duplication was literally performed: a new process image was created by copying the
parent’s memory to swap space, and making that swapped-out image the child pro-
cess while the parent kept its own memory.) However, actually performing a simple
copy of the parent’s virtual memory pages into the new child process would be
wasteful for a number of reasons—one being that a fork() is often followed by an
immediate exec(), which replaces the process’s text with a new program and reinitializes

descriptor y

descriptor x

Parent file descriptors
( close-on-exec flag )

Open file table
( file offset, status flags)

Parent file descriptors Open file table

Child file descriptors

Child file descriptors

Parent file descriptors Open file table

a) Descriptors and open
    file table entries
    before fork()

b) Descriptors after
      fork()

c) After closing unused
    descriptors in parent
    (y) and child (x)

Descriptors
duplicated

in child

descriptor y

descriptor x

descriptor y

descriptor x

descriptor y

descriptor x

descriptor y

descriptor x

OFT entry m

OFT entry n

OFT entry m

OFT entry n

OFT entry m

OFT entry n

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi



Process Creat ion 521

the process’s data, heap, and stack segments. Most modern UNIX implementa-
tions, including Linux, use two techniques to avoid such wasteful copying:

The kernel marks the text segment of each process as read-only, so that a pro-
cess can’t modify its own code. This means that the parent and child can share
the same text segment. The fork() system call creates a text segment for the
child by building a set of per-process page-table entries that refer to the same
virtual memory page frames already used by the parent.

For the pages in the data, heap, and stack segments of the parent process, the
kernel employs a technique known as copy-on-write. (The implementation of
copy-on-write is described in [Bach, 1986] and [Bovet & Cesati, 2005].) Initially,
the kernel sets things up so that the page-table entries for these segments refer
to the same physical memory pages as the corresponding page-table entries in
the parent, and the pages themselves are marked read-only. After the fork(), the
kernel traps any attempts by either the parent or the child to modify one of
these pages, and makes a duplicate copy of the about-to-be-modified page. This
new page copy is assigned to the faulting process, and the corresponding page-
table entry for the child is adjusted appropriately. From this point on, the parent
and child can each modify their private copies of the page, without the changes
being visible to the other process. Figure 24-3 illustrates the copy-on-write
technique.

Figure 24-3: Page tables before and after modification of a shared copy-on-write page

Controlling a process’s memory footprint

We can combine the use of fork() and wait() to control the memory footprint of a
process. The process’s memory footprint is the range of virtual memory pages used
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522 Chapter 24

are called and return, calls to exec(), and, of particular interest to this discussion,
modification of the heap as a consequence of calls to malloc() and free().

Suppose that we bracket a call to some function, func(), using fork() and wait()
in the manner shown in Listing 24-3. After executing this code, we know that the
memory footprint of the parent is unchanged from the point before func() was
called, since all possible changes will have occurred in the child process. This can
be useful for the following reasons:

If we know that func() causes memory leaks or excessive fragmentation of the
heap, this technique eliminates the problem. (We might not otherwise be able
to deal with these problems if we don’t have access to the source code of func().)

Suppose that we have some algorithm that performs memory allocation while
doing a tree analysis (for example, a game program that analyzes a range of
possible moves and their responses). We could code such a program to make
calls to free() to deallocate all of the allocated memory. However, in some cases,
it is simpler to employ the technique we describe here in order to allow us to
backtrack, leaving the caller (the parent) with its original memory footprint
unchanged.

In the implementation shown in Listing 24-3, the result of func() must be expressed
in the 8 bits that exit() passes from the terminating child to the parent calling wait().
However, we could employ a file, a pipe, or some other interprocess communica-
tion technique to allow func() to return larger results.

Listing 24-3: Calling a function without changing the process’s memory footprint

–––––––––––––––––––––––––––––––––––––––––––––––––– from procexec/footprint.c
    pid_t childPid;
    int status;

    childPid = fork();
    if (childPid == -1)
        errExit("fork");

    if (childPid == 0)              /* Child calls func() and */
        exit(func(arg));            /* uses return value as exit status */

    /* Parent waits for child to terminate. It can determine the
       result of func() by inspecting 'status'. */

    if (wait(&status) == -1)
        errExit("wait");

–––––––––––––––––––––––––––––––––––––––––––––––––– from procexec/footprint.c

24.3 The vfork() System Call

Early BSD implementations were among those in which fork() performed a literal
duplication of the parent’s data, heap, and stack. As noted earlier, this is wasteful, espe-
cially if the fork() is followed by an immediate exec(). For this reason, later versions of
BSD introduced the vfork() system call, which was far more efficient than BSD’s fork(),
although it operated with slightly different (in fact, somewhat strange) semantics.
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Modern UNIX implementations employing copy-on-write for implementing fork() are
much more efficient than older fork() implementations, thus largely eliminating the
need for vfork(). Nevertheless, Linux (like many other UNIX implementations) pro-
vides a vfork() system call with BSD semantics for programs that require the fastest
possible fork. However, because the unusual semantics of vfork() can lead to some
subtle program bugs, its use should normally be avoided, except in the rare cases
where it provides worthwhile performance gains.

Like fork(), vfork() is used by the calling process to create a new child process.
However, vfork() is expressly designed to be used in programs where the child per-
forms an immediate exec() call.

Two features distinguish the vfork() system call from fork() and make it more efficient:

No duplication of virtual memory pages or page tables is done for the child
process. Instead, the child shares the parent’s memory until it either performs
a successful exec() or calls _exit() to terminate.

Execution of the parent process is suspended until the child has performed an
exec() or _exit().

These points have some important implications. Since the child is using the parent’s
memory, any changes made by the child to the data, heap, or stack segments will be
visible to the parent once it resumes. Furthermore, if the child performs a function
return between the vfork() and a later exec() or _exit(), this will also affect the parent.
This is similar to the example described in Section 6.8 of trying to longjmp() into a
function from which a return has already been performed. Similar chaos—typically
a segmentation fault (SIGSEGV)—is likely to result.

There are a few things that the child process can do between vfork() and exec()
without affecting the parent. Among these are operations on open file descriptors
(but not stdio file streams). Since the file descriptor table for each process is main-
tained in kernel space (Section 5.4) and is duplicated during vfork(), the child process
can perform file descriptor operations without affecting the parent.

SUSv3 says that the behavior of a program is undefined if it: a) modifies any
data other than a variable of type pid_t used to store the return value of vfork();
b) returns from the function in which vfork() was called; or c) calls any other
function before successfully calling _exit() or performing an exec().

When we look at the clone() system call in Section 28.2, we’ll see that a
child created using fork() or vfork() also obtains its own copies of a few other
process attributes.

The semantics of vfork() mean that after the call, the child is guaranteed to be
scheduled for the CPU before the parent. In Section 24.2, we noted that this is not
a guarantee made by fork(), after which either the parent or the child may be sched-
uled first.

#include <unistd.h>

pid_t vfork(void);

In parent: returns process ID of child on success, or –1 on error;
in successfully created child: always returns 0
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Listing 24-4 shows the use of vfork(), demonstrating both of the semantic features
that distinguish it from fork(): the child shares the parent’s memory, and the parent
is suspended until the child terminates or calls exec(). When we run this program,
we see the following output:

$ ./t_vfork
Child executing           Even though child slept, parent was not scheduled
Parent executing
istack=666

From the last line of output, we can see that the change made by the child to the
variable istack was performed on the parent’s variable.

Listing 24-4: Using vfork()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_vfork.c

#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int istack = 222;

    switch (vfork()) {
    case -1:
        errExit("vfork");

    case 0:             /* Child executes first, in parent's memory space */
        sleep(3);                   /* Even if we sleep for a while,
                                       parent still is not scheduled */
        write(STDOUT_FILENO, "Child executing\n", 16);
        istack *= 3;                /* This change will be seen by parent */
        _exit(EXIT_SUCCESS);

    default:            /* Parent is blocked until child exits */
        write(STDOUT_FILENO, "Parent executing\n", 17);
        printf("istack=%d\n", istack);
        exit(EXIT_SUCCESS);
    }
}
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_vfork.c

Except where speed is absolutely critical, new programs should avoid the use of
vfork() in favor of fork(). This is because, when fork() is implemented using copy-on-
write semantics (as is done on most modern UNIX implementations), it approaches
the speed of vfork(), and we avoid the eccentric behaviors associated with vfork()
described above. (We show some speed comparisons between fork() and vfork() in
Section 28.3.)

SUSv3 marks vfork() as obsolete, and SUSv4 goes further, removing the specifi-
cation of vfork(). SUSv3 leaves many details of the operation of vfork() unspecified,
allowing the possibility that it is implemented as a call to fork(). When implemented
in this manner, the BSD semantics for vfork() are not preserved. Some UNIX systems
do indeed implement vfork() as a call to fork(), and Linux also did this in kernel 2.0
and earlier.
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Where it is used, vfork() should generally be immediately followed by a call to
exec(). If the exec() call fails, the child process should terminate using _exit(). (The
child of a vfork() should not terminate by calling exit(), since that would cause the
parent’s stdio buffers to be flushed and closed. We go into more detail on this point
in Section 25.4.)

Other uses of vfork()—in particular, those relying on its unusual semantics for
memory sharing and process scheduling—are likely to render a program nonportable,
especially to implementations where vfork() is implemented simply as a call to fork().

24.4 Race Conditions After fork()

After a fork(), it is indeterminate which process—the parent or the child—next has
access to the CPU. (On a multiprocessor system, they may both simultaneously
get access to a CPU.) Applications that implicitly or explicitly rely on a particular
sequence of execution in order to achieve correct results are open to failure due to
race conditions, which we described in Section 5.1. Such bugs can be hard to find, as
their occurrence depends on scheduling decisions that the kernel makes according
to system load.

We can use the program in Listing 24-5 to demonstrate this indeterminacy.
This program loops, using fork() to create multiple children. After each fork(), both
parent and child print a message containing the loop counter value and a string
indicating whether the process is the parent or child. For example, if we asked the
program to produce just one child, we might see the following:

$ ./fork_whos_on_first 1
0 parent
0 child

We can use this program to create a large number of children, and then analyze the
output to see whether the parent or the child is the first to print its message each
time. Analyzing the results when using this program to create 1 million children on
a Linux/x86-32 2.2.19 system showed that the parent printed its message first in all
but 332 cases (i.e., in 99.97% of the cases).

The results from running the program in Listing 24-5 were analyzed using the
script procexec/fork_whos_on_first.count.awk, which is provided in the source
code distribution for this book.

From these results, we may surmise that, on Linux 2.2.19, execution always continues
with the parent process after a fork(). The reason that the child occasionally printed
its message first was that, in 0.03% of cases, the parent’s CPU time slice ran out
before it had time to print its message. In other words, if this example represented
a case where we were relying on the parent to always be scheduled first after fork(),
then things would usually go right, but one time out of every 3000, things would go
wrong. Of course, if the application expected that the parent should be able to
carry out a larger piece of work before the child was scheduled, the possibility of
things going wrong would be greater. Trying to debug such errors in a complex
program can be difficult.
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Listing 24-5: Parent and child race to write a message after fork()
––––––––––––––––––––––––––––––––––––––––––––––  procexec/fork_whos_on_first.c
#include <sys/wait.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int numChildren, j;
    pid_t childPid;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [num-children]\n", argv[0]);

    numChildren = (argc > 1) ? getInt(argv[1], GN_GT_0, "num-children") : 1;

    setbuf(stdout, NULL);                /* Make stdout unbuffered */

    for (j = 0; j < numChildren; j++) {
        switch (childPid = fork()) {
        case -1:
            errExit("fork");

        case 0:
            printf("%d child\n", j);
            _exit(EXIT_SUCCESS);

        default:
            printf("%d parent\n", j);
            wait(NULL);                   /* Wait for child to terminate */
            break;
        }
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––  procexec/fork_whos_on_first.c

Although Linux 2.2.19 always continues execution with the parent after a fork(), we
can’t rely on this being the case on other UNIX implementations, or even across
different versions of the Linux kernel. During the 2.4 stable kernel series, experi-
ments were briefly made with a “child first after fork()” patch, which completely
reverses the results obtained from 2.2.19. Although this change was later dropped
from the 2.4 kernel series, it was subsequently adopted in Linux 2.6. Thus, pro-
grams that assume the 2.2.19 behavior would be broken by the 2.6 kernel.

Some more recent experiments reversed the kernel developers’ assessment of
whether it was better to run the child or the parent first after fork(), and, since
Linux 2.6.32, it is once more the parent that is, by default, run first after a fork().
This default can be changed by assigning a nonzero value to the Linux-specific
/proc/sys/kernel/sched_child_runs_first file.
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To see the argument for the “children first after fork()” behavior, consider
what happens with copy-on-write semantics when the child of a fork() performs
an immediate exec(). In this case, as the parent carries on after the fork() to
modify data and stack pages, the kernel duplicates the to-be-modified pages for
the child. Since the child performs an exec() as soon as it is scheduled to run,
this duplication is wasted. According to this argument, it is better to schedule
the child first, so that by the time the parent is next scheduled, no page copy-
ing is required. Using the program in Listing 24-5 to create 1 million child
processes on one busy Linux/x86-32 system running kernel 2.6.30 showed
that, in 99.98% of cases, the child process displayed its message first. (The precise
percentage depends on factors such as system load.) Testing this program on
other UNIX implementations showed wide variation in the rules that govern
which process runs first after fork().

The argument for switching back to “parent first after fork()” in Linux 2.6.32
was based on the observation that, after a fork(), the parent’s state is already
active in the CPU and its memory-management information is already cached
in the hardware memory management unit’s translation look-aside buffer
(TLB). Therefore, running the parent first should result in better perfor-
mance. This was informally verified by measuring the time required for kernel
builds under the two behaviors.

In conclusion, it is worth noting that the performance differences
between the two behaviors are rather small, and won’t affect most applications.

From the preceding discussion, it is clear that we can’t assume a particular order of
execution for the parent and child after a fork(). If we need to guarantee a particular
order, we must use some kind of synchronization technique. We describe several
synchronization techniques in later chapters, including semaphores, file locks, and
sending messages between processes using pipes. One other method, which we
describe next, is to use signals.

24.5 Avoiding Race Conditions by Synchronizing with Signals

After a fork(), if either process needs to wait for the other to complete an action,
then the active process can send a signal after completing the action; the other pro-
cess waits for the signal.

Listing 24-6 demonstrates this technique. In this program, we assume that it is
the parent that must wait on the child to carry out some action. The signal-related
calls in the parent and child can be swapped if the child must wait on the parent. It
is even possible for both parent and child to signal each other multiple times in
order to coordinate their actions, although, in practice, such coordination is more
likely to be done using semaphores, file locks, or message passing.

[Stevens & Rago, 2005] suggests encapsulating such synchronization steps
(block signal, send signal, catch signal) into a standard set of functions for pro-
cess synchronization. The advantage of such encapsulation is that we can then
later replace the use of signals by another IPC mechanism, if desired.

Note that we block the synchronization signal (SIGUSR1) before the fork() call in
Listing 24-6. If the parent tried blocking the signal after the fork(), it would remain
vulnerable to the very race condition we are trying to avoid. (In this program, we

The Linux Programming Interface
© 2010 by Michael Kerrisk

http://www.nostarch.com/tlpi



528 Chapter 24

assume that the state of the signal mask in the child is irrelevant; if necessary, we
can unblock SIGUSR1 in the child after the fork().)

The following shell session log shows what happens when we run the program
in Listing 24-6:

$ ./fork_sig_sync
[17:59:02 5173] Child started - doing some work
[17:59:02 5172] Parent about to wait for signal
[17:59:04 5173] Child about to signal parent
[17:59:04 5172] Parent got signal

Listing 24-6: Using signals to synchronize process actions

–––––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_sig_sync.c

#include <signal.h>
#include "curr_time.h"                  /* Declaration of currTime() */
#include "tlpi_hdr.h"

#define SYNC_SIG SIGUSR1                /* Synchronization signal */

static void             /* Signal handler - does nothing but return */
handler(int sig)
{
}

int
main(int argc, char *argv[])
{
    pid_t childPid;
    sigset_t blockMask, origMask, emptyMask;
    struct sigaction sa;

    setbuf(stdout, NULL);               /* Disable buffering of stdout */

    sigemptyset(&blockMask);
    sigaddset(&blockMask, SYNC_SIG);    /* Block signal */
    if (sigprocmask(SIG_BLOCK, &blockMask, &origMask) == -1)
        errExit("sigprocmask");

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = handler;
    if (sigaction(SYNC_SIG, &sa, NULL) == -1)
        errExit("sigaction");

    switch (childPid = fork()) {
    case -1:
        errExit("fork");

    case 0: /* Child */

        /* Child does some required action here... */
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        printf("[%s %ld] Child started - doing some work\n",
                currTime("%T"), (long) getpid());
        sleep(2);               /* Simulate time spent doing some work */

        /* And then signals parent that it's done */

        printf("[%s %ld] Child about to signal parent\n",
                currTime("%T"), (long) getpid());
        if (kill(getppid(), SYNC_SIG) == -1)
            errExit("kill");

        /* Now child can do other things... */

        _exit(EXIT_SUCCESS);

    default: /* Parent */

        /* Parent may do some work here, and then waits for child to
           complete the required action */

        printf("[%s %ld] Parent about to wait for signal\n",
                currTime("%T"), (long) getpid());
        sigemptyset(&emptyMask);
        if (sigsuspend(&emptyMask) == -1 && errno != EINTR)
            errExit("sigsuspend");
        printf("[%s %ld] Parent got signal\n", currTime("%T"), (long) getpid());

        /* If required, return signal mask to its original state */

        if (sigprocmask(SIG_SETMASK, &origMask, NULL) == -1)
            errExit("sigprocmask");

        /* Parent carries on to do other things... */

        exit(EXIT_SUCCESS);
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_sig_sync.c

24.6 Summary

The fork() system call creates a new process (the child) by making an almost exact
duplicate of the calling process (the parent). The vfork() system call is a more efficient
version of fork(), but is usually best avoided because of its unusual semantics,
whereby the child uses the parent’s memory until it either performs an exec() or
terminates; in the meantime, execution of the parent process is suspended.

After a fork() call, we can’t rely on the order in which the parent and the child
are next scheduled to use the CPU(s). Programs that make assumptions about the
order of execution are susceptible to errors known as race conditions. Because the
occurrence of such errors depends on external factors such as system load, they
can be difficult to find and debug.
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Further information

[Bach, 1986] and [Goodheart & Cox, 1994] provide details of the implementation
of fork(), execve(), wait(), and exit() on UNIX systems. [Bovet & Cesati, 2005] and
[Love, 2010] provide Linux-specific implementation details of process creation
and termination.

24.7 Exercises

24-1. After a program executes the following series of fork() calls, how many new
processes will result (assuming that none of the calls fails)?

fork();
fork();
fork();

24-2. Write a program to demonstrate that after a vfork(), the child process can close a
file descriptor (e.g., descriptor 0) without affecting the corresponding file descriptor
in the parent.

24-3. Assuming that we can modify the program source code, how could we get a core
dump of a process at a given moment in time, while letting the process continue
execution?

24-4. Experiment with the program in Listing 24-5 (fork_whos_on_first.c) on other UNIX
implementations to determine how these implementations schedule the parent
and child processes after a fork().

24-5. Suppose that in the program in Listing 24-6, the child process also needed to wait
on the parent to complete some actions. What changes to the program would be
required in order to enforce this?
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