
WORKING IN THE COMMAND
INTERFACE

When you work in a graphical user inter-
face (GUI), you usually start up your pro-

gram or application by clicking or double-
clicking on an icon, or selecting its name from

a menu. In a command line interface, you can’t do that.
Instead, you have to enter the name of the program
you want to run along with any arguments it may re-
quire, followed by the ENTER key. The command line
interface then takes the steps necessary to run your
program. The command line interface in Unix is called
a shell and one of the most popular shells on Linux sys-
tems is bash.

The purpose of this chapter is to give you enough of an introduction to
working in a shell, bash in particular, so that you’re able to understand the
rest of the book. It’s intended to help those readers who have little experi-
ence working in bash; however, even if you’re already comfortable working in
bash or some other shell, you still might benefit from reading this because it
may shed some light on things you thought you understood well.

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The chapter is intentionally incomplete, covering only what I think you
need to know to get started. I begin with a brief history of Unix shells and
then describe the essential features of bash and how to take advantage of
many of them, including I/O redirection, background processing, shell pa-
rameters and variables, file globs, control flow, command substitution, en-
vironment variables, scripting, and the history mechanism. I don’t cover all
of its features. For example, I’ve omitted discussion of the various modes in
which you can run bash as well as details about its use as a programming lan-
guage. Instead I concentrate on the most essential and useful features of the
shell.

After this exploration of the shell, I present the most common and use-
ful commands that you’ll need. This includes a discussion of the types of
commands and how to view and change file permissions. We’ll primarily
explore the basic commands for file and directory manipulation. Lastly, I
include a brief introduction to filters and regular expressions.

My hope is that, after you’ve read what I’ve described here, you’ll be in-
terested enough to learn more on your own.

Commands Are (Usually) Not Part of the Shell
Let’s clarify the difference between the shell and the commands that you en-
ter when you work in it. The shell is essentially an interpreter program that
displays a prompt and then waits for you to enter a line of text, meaning text
followed by a newline character, which you input by pressing ENTER. You’re
supposed to enter a command at the prompt, not some arbitrary text. A
command is typically the name of a program. For example, in bash, an in-
teraction might look like this:

$ hostname

harpo

$

The $ character is the shell’s prompt and hostname is the command that I en-
tered. I pressed ENTER immediately after hostname. The output of this com-
mand is the string harpo, which is the name I gave to the computer on which
I was working. After the output appears on my terminal, bash redisplays the
prompt so that I can enter another command. The hostname program is actu-
ally a file in the filesystem; it isn’t part of bash. I can run this program from
any other shell and it will produce the same output.

Most commands are just programs that live in the filesystem—they can
be run in any shell. Learning to work in a command line environment con-
sists of two separate tasks:

• Learning how to use the shell to improve your efficiency and save
you lots of time

• Learning what the various commands are, what they do, and how to
use them

2 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The rest of this chapter is designed to help you accomplish both of these
tasks. I’ll start with a tutorial on bash.

Historical Remarks About Shells
You’ll have a better understanding of bash and other shells if you understand
their origins and how features were incorporated into them over the years.

Ken Thompson wrote the shell for the first version of Unix in 1969. He
borrowed ideas from the shell used in the MULTICS project, on which he
had worked. The term shell had been used in that project as another name
for a command line interpreter. The original Thompson shell lacked many
features of modern day shells.

The C shell was written by Bill Joy at UC Berkeley and made its appear-
ance in Sixth Edition Unix (1975), the first widely distributed release from
UC Berkeley. It was an enhancement of the original Thompson shell with
C-like syntax. Among its notable additions are the history mechanism and
command line editing, and it’s part of all BSD distributions.

The Bourne shell, written by Stephen Bourne, was introduced into Unix
in System 7 (1979), which was the last release of Unix by AT&T Bell Labs
prior to the commercialization of UNIX by AT&T. Its syntax derives in part
from the Algol 68 programming language and is a part of all Unix releases.

David Korn developed the Korn shell at Bell Labs and introduced it into
the SVR4 commercial release of Unix by AT&T. Its syntax is based on the
Bourne shell, but it had many more features.

The TENEX C shell, or TC shell, extended the C shell with command
line editing and completion, as well as other features which were found in the
TENEX operating system. It was written by Ken Greer and others in 1983.

The Bourne Again SHell (bash) is an extension of the Bourne shell with
many of the sophisticated features of the Korn shell and the TC shell. It’s
the default user shell in Linux and appears at the top of most lists of the best
or most popular Unix shells.

Many Linux distributions have incorporated a new shell known as dash.
The dash shell is a POSIX-conformant implementation of the Bourne shell
that is designed to be fast and efficient. It’s a direct descendant of the
Almquist SHell (ash), ported to Linux in 1997, and it was renamed dash

in 2002.

Working with the Shell
Your view and appreciation of Unix is pretty much determined by the inter-
face that the shell creates for you. The shell hides the inner workings of the
kernel, presenting a set of high-level functions that can make the system easy
to use. It’s like the walnut pictured in Figure 1; the shell hides the kernel in
the same way.

Working in the Command Interface 3

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

Figure 1: The shell hides the kernel of Unix.

If you’ve used a Unix system with a graphical user interface, be aware
that this GUI is a separate and distinct application with respect to the Unix
operating system. The GUI provides an alternative to a shell for interacting
with Unix, but experienced users typically do most of their work in a shell,
perhaps because it’s much faster to type on a keyboard than it is to point and
click with a mouse or its equivalent. In a terminal window running a shell,
we have easy access to hundreds of commands.

Unlike most operating systems, Unix allows you to replace the default
login shell with one of your own choosing. The particular shell that will run
when you log in is specified in an entry for your user account in a file called
the password file. On all systems, the system administrator can change this en-
try, and on some, you can change it yourself with the chsh command. When
you enter chsh at the shell prompt, you’ll either see the message Command not

found or be prompted for your password. As an alternative on some versions
of Unix, you can enter passwd -s to change your login shell. In short, you
might need someone with administrative privileges to change your login
shell on some systems.

Shell Features
In all shells, a simple command is of the following form:

command-name command-options arg1 arg2 ... argn

The shell waits for you to enter a newline character (by pressing ENTER) be-
fore it attempts to interpret (or parse) a command. A newline signals the end
of the command.

Once the shell receives the entered line, it checks to see whether command

-name is a builtin command. A builtin command is a command whose imple-
mentation is hardcoded into the shell itself. For example, help is a builtin
command in bash; when you enter help, bash displays helpful information.
If the command is a shell builtin, the shell itself executes the command. (I
explain more about builtin commands in “Types of Commands” on page 30.)
If it isn’t, the shell searches for a file whose pathname, either relative or ab-
solute, is command-name. I’ll explain how that search takes place in “Parameters
and Variables” on page 15.

If the shell doesn’t find the file, it displays a message such as command-name:
command not found and redisplays the prompt. If it finds the file, it creates a

4 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

new process to execute the command, passing it the arguments from the
command line. The new process executes the command and, when the
command terminates, the created process terminates also. In the meantime,
the shell does nothing other than wait for this process to finish executing.
Only then does the shell display its prompt so that you can enter another
command.

In addition to command interpretation, all shells provide the following:

Redirection of the input and output of commands Changing the
source of input or the target of output, respectively

Pipes A method of channeling the output of one command to the in-
put of another

Scripting Storing a sequence of shell instructions and commands in a
file that can be executed

Filename substitution using metacharacters A method of naming one
or more files using a pattern-matching language that has wildcards and
other operators

Control flow constructs Loops and conditional execution

Shells written after the Bourne shell also provide the following:

History mechanism A method of saving and reissuing commands in
whole or in part using a succinct notation

Backgrounding and job control A method of controlling the sequenc-
ing and timing of commands

User-defined aliases Typically for frequently used commands

The bash shell has a number of features in addition to these, including:

• Interactive file and command name completion

• General interactive command line editing

• Coprocesses: named processes that run concurrently with the shell

• More general redirection of input and output of commands

• Array variables within the shell

• Autoloading of function definitions from files

• Restricted shells: shells that limit what a user can do, for security
reasons

In the following sections, we’ll explore some of these features in more depth.

Standard I/O and Redirection
Unix uses a clever method of handling I/O. Every program is automat-
ically given three open input/output streams when it begins execution:
standard input, standard output, and standard error. They’re called streams be-
cause they’re linear sequences of characters. By default, standard input
comes from the keyboard, and standard output and error are written to the

Working in the Command Interface 5

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

terminal window. The shell can reference these streams using the numbers 0,
1, and 2 for standard input, standard output, and standard error, respectively,
as illustrated in Figure 2.

Standard output (1)

Standard error (2)

ShellStandard input (0)

Figure 2: The three streams assigned to every process

Commands usually read from standard input, write to standard output,
and send their error messages to the standard error stream, which appears
in the terminal window. The shell, however, can trick a command into read-
ing from a different source or writing to a different source. This is called I/O
redirection. For example, the command

$ ls mydir

lists the files in the directory named mydir on the terminal. In contrast, the
command

$ ls mydir > mylisting

creates a file called mylisting in the current working directory and redirects
the output of the ls command to mylisting, provided that mylisting doesn’t
already exist. If it does exist, bash usually displays a message such as the fol-
lowing:

bash: mylisting: cannot overwrite existing file

The greater-than character (>) in the preceding example is the shell output
redirection operator. It replaces the standard output of the program to which
it is applied with the file whose name immediately follows the operator. This
means > outfile writes the standard output of the command to which you
apply it to a file named outfile instead of to the terminal, provided that either
the file doesn’t exist or that bash is allowed to overwrite the file.

Controlling Overwriting of Files
System administrators usually configure users’ shells so that their default be-
havior is to prevent files from being overwritten. They do this by including
either of the following two lines in the shell’s startup file to enable a shell
option named noclobber:

set -o noclobber

set -C # Short form of set -o noclobber

6 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

In bash, the startup file is .bashrc, located in the home directory. Other
shells have startup files with different names. If noclobber is set, overwriting
the file is prevented; otherwise, the redirected output replaces the file’s
contents.

Enter echo $SHELLOPTS in your shell to check whether noclobber is set. If
noclobber appears in the output, it’s set; otherwise, it isn’t. The following out-
put shows that noclobber is set:

$ echo $SHELLOPTS

braceexpand:hashall:history:ignoreeof:interactive-comments:monitor:noclobber

If it isn’t set in your shell, in bash you can set it yourself by editing your
.bashrc to include either of the two lines shown in the previous listing.

If you’re willing to overwrite a file even though noclobber is set, use the >|

operator, as in the following:

$ ls mydir >| mylisting

This command redirects standard output to a file, overwriting it if it already
exists, ignoring noclobber. Lastly, you can unset noclobber by entering set +o

noclobber, which unsets it in the terminal in which this shell is running.

Redirecting Standard Input
The notation < infile means “read the input from the file infile instead of
from the standard input stream, which is by default the keyboard.” The < op-
erator is called the input redirection operator. If a program named cmd expects
input from the keyboard, the command cmd < infile replaces the keyboard
with the contents of infile.

To demonstrate, suppose we’ve written a program named sum that ex-
pects the user to enter numbers on the keyboard, one per line, ending by
pressing CTRL-D, and then prints their sum:

$ sum

1

2

3

4

CTRL-D entered here

10

If numbers is a file containing these same four numbers, one per line, we can
enter the following:

$ sum < numbers

10

The input to sum came from numbers instead of the keyboard.

Working in the Command Interface 7

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

Redirecting Both Standard Input and Output
We can redirect both the input and output of a command:

$ command < infile > outfile

This causes command to read its input from infile and send its output to outfile.
The order of the the input and output redirection operators doesn’t

matter. For example, we can enter

$ sum < numbers > total

$

or

$ sum > total < numbers

$

and the sum of the numbers will be written to the file named total instead of
to the screen.

In bash, we can write any of the following semantically equivalent lines:

$ command > outfile < infile

$ > outfile command < infile

$ < infile > outfile command

Only the first of these is POSIX-compliant syntax, and it’s best to avoid
putting any redirection before the command name.

Appending Redirected Output
The append operator (>>) is like the output redirection operator, but instead
of overwriting the target file, it appends the output to the end of it. One ex-
ample of its use is in maintaining logfiles. If you have a file named mylog in
your current working directory that already has log data in it and you run
the command

$ echo 'Today I learned about redirection' >> mylog

then that line will be appended to mylog, and if mylog didn’t exist, it will be
created with that text as its first line.

Redirecting with Pipes
We can carry the concept of redirection one step further to allow the out-
put of one command to be the input of another. This is known as a pipe or
pipeline, and the operator that does it is a vertical bar (|). For example:

$ ls mydir | sort | lpr

This pipeline makes the output of ls mydir become the input to the sort

command, which then sorts it, and sends the sorted list to the lpr command,
which is a command to send files to the default printer attached to the system.

8 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

We could accomplish the same result using temporary files rather than
pipes, provided that temp1 and temp2 don’t already exist, as follows:

$ ls mydir > temp1

$ sort < temp1 > temp2

$ lpr < temp2

$ rm temp1 temp2

It’s not exactly the same, because when a pipeline is established, the com-
mands run simultaneously. In the example using the pipe, the ls, sort, and
lpr commands start up together. As ls is busy working and producing some
output, sort is receiving that output. The shell uses a kernel mechanism
called a pipe to implement this communication. (We explore kernel pipes
in Chapter 13 of the book.) The bash shell provides a few more redirection
operators such as << and <<<, but I don’t explain them here. The bash man
page describes them well.

Using Redirection for Error Handling
Neither the output redirection operator nor the append operator sends the
standard error stream to the given file. This means that you’ll see any error
messages sent to the standard error stream on your terminal even if you redi-
rect output.

Some commands can produce many error messages, and sometimes you
don’t care about the errors. For example, if you try to list every file in the
entire filesystem using ls -R /, you’ll see many Permission denied errors.

The find command can also generate many error messages. You can use
find to search through a part of the directory hierarchy for files that satisfy
various criteria, and you can run commands on those files when it finds
them. Sometimes you’ll get lots of errors because you don’t have permission
to see the content of certain directories. For example:

$ find /var -name "*.log"

find: '/var/spool/rsyslog': Permission denied

find: '/var/spool/cups': Permission denied

find: '/var/spool/cron/atjobs': Permission denied

find: '/var/spool/cron/crontabs': Permission denied

find: '/var/spool/cron/atspool': Permission denied

--snip--

Here, find begins a search of the directory hierarchy rooted in the top-level
directory /var for files whose names end in .log, and it prints their path-
names if it finds any. To specify this set of files, we use the bash wildcard op-
erator (*), which matches any sequence of zero or more characters that does
not start with a period. Because * matches any string of characters, the ex-
pression *.log matches filenames that begin with any non-period character
and end in .log. (See “File Globs” on page 17 for a description of this type of
pattern matching.)

Working in the Command Interface 9

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

We can prevent all error messages from appearing on the screen by redi-
recting them with the bash construct 2>/dev/null. The 2> part of this con-
struct tells bash to send the standard error stream, whose number is 2, into
the file /dev/null, but /dev/null is not a real file; it’s like a black hole in that
anything you write to it disappears. (The kernel discards it.) What follows is
part of what we see when we redirect the error stream to /dev/null with the
previous command:

$ find /var -name "*.log" 2>/dev/null

/var/lib/texmf/web2c/metafont/mf.log

/var/lib/texmf/web2c/tex/tex.log

/var/lib/texmf/web2c/updmap.log

/var/lib/texmf/web2c/luatex/lualatex.log

/var/lib/texmf/web2c/luatex/lualatex-dev.log

--snip--

If we want to redirect both the standard output and the standard error
streams to the same file, we’d use the &> operator, as in

$ find /var -name "*.log" &> myfile

which sends both streams to the file myfile. Similarly, to append standard
output and standard error of the preceding command to myfile, we’d write:

$ find /var -name "*.log" &>> myfile

To learn more about I/O redirection, including several operators not de-
scribed here, read the bash man page.

Control Operators and Multitasking
You can enter multiple commands on a single line by using certain control
operators that are usually called command separators. Command separators
are characters used to terminate commands that appear on the same line.

Sequencing
The semicolon (;) acts like a newline character to the shell; it terminates the
preceding command:

$ echo 'hello world' ; hostname ; whoami

hello world

harpo

stewart

This example runs each of the three commands, one after the other. It also
introduces the whoami command, which displays the username of the user
running it. The ; is used to sequentially execute the commands.

10 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

Grouping Commands
You can use parentheses to group a sequence of commands so that they are
treated like a single command. We often need to do this to bypass the opera-
tor precedence rules of the shell. To demonstrate:

$ echo 'hello world' ; hostname; whoami > outfile

hello world

harpo

$

The output of echo 'hello world' ; hostname appears on the screen and only
the output of whoami is written to the file named outfile. This is because the
semicolon has higher precedence than the redirection operator, which ap-
plies only to the whoami command. Now try this:

$ echo 'hello world' ; (hostname; whoami) > outfile

hello world

$

In this case, the output of hostname ; whoami is written to the file. Grouping
parentheses comes in handy in many situations.

Backgrounding and Job Control
The ampersand (&) is another useful control operator. When a command is
terminated with &, the shell doesn’t wait for the command to finish before
it redisplays the prompt, which is useful when we run commands that take
a long time but we want to continue working. In this case, we say that the
command, or job, is running in the background.

We can’t see the effect of using the & unless we’ve got a long-running
command, but we can simulate a long-running command with the sleep

command, which simply puts the calling shell to sleep for the number of
seconds that we provide as an argument. In other words, sleep doesn’t termi-
nate until the amount of time elapses:

$ sleep 10

10 seconds pass here

$

This commandmakes the shell wait for 10 seconds before the prompt returns.
The following command prints done sleeping after 10 seconds:

$ sleep 10 ; echo done sleeping

10 seconds pass here

done sleeping

$

Working in the Command Interface 11

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

If we terminate this entire command with the &, the prompt returns
immediately after printing the job number and the process ID (PID) of the
job it started in the background:

$ (sleep 10 ; echo done sleeping) &

[1] 15340

$ done sleeping

Here it prints [1] 15340 to indicate that the backgrounded job is job number 1
and has PID 15340.

To use the job number to refer to the job, precede the number with a
percent sign (%). For example, %1 refers to job number 1.

When a command is backgrounded, by default its output still goes to the
terminal, which is why the done sleeping message appears after the prompt.
We can avoid this behavior by redirecting the output into a file:

$ echo 'hello world' > outfile &

$

This example causes the echo command to work in the background, writing
hello world into the file outfile.

Backgrounding is a form of multitasking. It allows you to run more than
one process under the same shell at the same time. The & doesn’t need to be
at the end of the line; we can also use it to run separate commands simulta-
neously by putting it between them:

$ echo hello world > outfile1 & whoami > outfile2 &

This tells the shell to run the echo and whoami commands concurrently and
in the background, putting their outputs into the outfile1 and outfile2 files,
respectively.

The > operator has higher precedence than the & operator, which means
that the previous commands are equivalent to the following:

$ (echo hello world > outfile1) & (whoami > outfile2) &

Suppose that you put a job in the background and some time later you
want to run it in the foreground. The fg command (for foreground) will bring
a job to the foreground. Its general form is fg job-spec, where a job-spec is (%)
followed by a number, a string, or a question mark (?) followed by a string:

fg %n Foregrounds job n

fg %string Foregrounds the job whose command begins with string

fg %?string Foregrounds the job whose command contains string

If there’s only a single job running in the background, you can omit the
job-spec entirely and just enter fg to bring that job to the foreground. In all
cases, the command that you entered and put in the background is written
to the terminal when it is brought to the foreground.

12 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

Let’s go over some examples. Assume the backgrounded command is
the following:

(sleep 30 ; echo done sleeping) &

If this is the only job running in the background, just enter fg:

$ (sleep 30 ; echo done sleeping) &

[1] 15412

$ fg

(sleep 30; echo done sleeping)

time elapses

$

You can also enter the fg command explicitly:

$ (sleep 30 ; echo done sleeping) &

[1] 15373

$ fg %1

(sleep 30; echo done sleeping)

time elapses

$

You can use any prefix of the command name after the % to refer to the job,
but if it contains special characters such as (, you need to enclose it in single
quotes:

$ (sleep 30 ; echo done sleeping) &

[1] 15430

$ fg %'(sle'

(sleep 30; echo done sleeping)

time elapses

$

If multiple jobs start with that prefix, you’ll get an error message.
In the third method, you can choose any substring contained in the

command instead of a prefix of it with the %? operator:

$ (sleep 30 ; echo done sleeping) &

[1] 15430

$ fg %?echo

(sleep 30; echo done sleeping)

time elapses

$

The same rules apply about enclosing it in single quotes.
Finally, you can omit the fg entirely and just enter a job-spec to bring the

job to the foreground. In the preceding example, we could have just entered:

$ (sleep 30 ; echo done sleeping) &

[1] 15430

Working in the Command Interface 13

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

$ %?echo

(sleep 30; echo done sleeping)

time elapses

$

If you ran a command in the foreground and decide you want to put it
into the background so you can work on something else while it’s running,
you can follow this two-step process:

1. Enter the suspend character by pressing CTRL-Z to stop but not termi-
nate the running command. This is called suspending the process.

2. Enter the background command, bg, to put it into the background.

These operators are usually sufficient for most tasks, but if you’re curi-
ous, see the JOB CONTROL section of the bash man page to learn more.

The Shell as a Command
You can run a shell the same way that you run commands. Enter the name
of a shell—for example, bash, sh, csh, and so on— at the command prompt
within any shell to start another shell:

$ bash

$

In this example, we start the bash shell. If you do this, you’ll have two in-
stances of the bash shell running, but the first will be dormant, waiting for
the second to exit, and the second will become your active shell. When one
shell is created as a result of a command given in another shell, the created
shell is called the subshell of the original shell, which is called the parent shell.

If you forget which shell your currently active shell is (which can happen
when the prompt doesn’t change), two simple commands can tell you. The
first one is as follows:

$ ps -p $$

PID TTY TIME CMD

9855 pts/1 00:00:00 bash

The ps command prints information about some, but not all, processes that
you own. The -p option is followed by the process IDs of processes whose in-
formation you want to see. Most shells store their process IDs in a variable
named $. By preceding the PID with a $, you’re telling the shell to evaluate
the variable and replace it with that value before passing the argument to
the command. In this example, ps -p has the argument $$, so the shell evalu-
ates it and passes the process ID 9855 to ps.

The following shows a second method to see which shell is active:

$ echo $0

bash

14 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

In the Introduction to the book, I used the echo command to demonstrate
some notation. That command might have seemed rather useless, but it’s
very convenient. The echo command displays its arguments. If an argument
is a variable whose name is preceded by a $, the current shell evaluates the
variable and replaces it with its value. Therefore, if you give echo one or
more variable names preceded by $s, you’ll see the values of those variables.
The shell variable 0 stores the name of the currently active shell, so echo $0

displays its name.
As another example of the use of echo, you can display the value of any

environment variable with it; for example, to display the value of the SHELL

environment variable, you can enter:

$ echo $SHELL

/bin/bash

Note that SHELL is the name of your login shell, which is the one started up
when you logged in, so in this example, you see your login shell’s name,
which may not be the same as that of your currently active shell.

Shell Parameters and Variables
Because bash is a full-fledged programming language, it has many features
similar to higher-level compiled languages, including parameters. As the
bash man page states, a parameter is an entity that stores a value. It’s a gen-
eralization of the idea of a variable. Parameters are denoted by one of the
following:

Name A string beginning with a letter or underscore and containing
only letters, digits, and underscores, such as user_name

Number Any sequence of decimal digits, such as 12, excluding 0

Special character One of the following characters: @, *, ?, -, #, $, !, or 0

When a parameter is identified by a name, it’s called a variable. Whereas
users can assign a value to a variable, only bash can give a value to a param-
eter that isn’t a variable. We’ll discuss the use of some bash parameters in
“Shell Scripts” on page 23.

Some variables are built into bash; these are called shell variables. In gen-
eral, you shouldn’t alter the values of most shell variables, since bash uses
them in specific ways. For example, PWD is the pathname of the current work-
ing directory and you shouldn’t change it. Some shell variables, though, are
customizable, such as PATH, which is the search path for finding commands.
It’s a colon-separated list of absolute pathnames of directories in which bash

looks for commands, such as:

/bin:/usr/local/bin:/usr/bin

When you enter a command whose name doesn’t contain a slash character,
such as echo, bash searches this list of directory paths in left-to-right order to
try to find the matching command. Specifically, for each directory pathname

Working in the Command Interface 15

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

in the list, it appends the command name to the end of that pathname,
preceded by a slash, and checks whether it’s an executable file that you have
permission to execute. It does this until it finds one or has searched the entire
list of pathnames in PATH.

For example, with the PATH shown previously, if you enter the echo com-
mand, it checks whether /bin/echo exists and is executable by you, then
whether /usr/local/bin/echo exists and is executable by you, and finally it
checks /usr/bin/echo, which is the echo command that is executed for you.
You can modify the PATH variable to customize your search path. You can
rearrange the order of its directories and add and remove directories from it.

You can also create your own variables with an assignment operator:

$ mygreeting=hello

This creates and initializes a variable named mygreeting. Very often, program
developers create environment variables that allow the user to control the
behavior of the program. In Chapter 3 of the book, you’ll see examples of
commands that use environment variables to customize their output.

When a variable is given a value, we say that it’s set, even if it’s a null
string. The only way to remove a variable is to unset it with the unset builtin
bash command:

$ unset mygreeting

Parameters and variables are evaluated when their names are preceded
by a $. This is called parameter expansion. Here’s another example showing
how echo can be used to display the value of your own variable:

$ mygreeting='Hello, what would you like to do now?'

$ echo $mygreeting

Hello, what would you like to do now?

$

The shell parses the preceding command and replaces $mygreeting with its
value before running a process to execute echo.

You can enclose the parameter or variable name in braces:

$ mygreeting='Hello, what would you like to do now?'

$ echo ${mygreeting}

Hello, what would you like to do now?

$

The preceding command doesn’t need the braces; they have no effect on
its behavior. However, braces are required if the parameter is more than a
single digit or if the name is followed by characters that are not supposed to
be part of the name. The following examples demonstrate this:

$ var=123

$ echo $var

123

16 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

$ echo $varabc

$

This produces no output because there is no variable named varabc. In
contrast

$ echo ${var}abc

123abc

$ newvar=${var}_new

$ echo ${newvar}

abc_new

produces output because the actual variable name is enclosed in braces so
that bash can find it. You’ll see that being able to append characters to the
expansion of a variable or parameter is very useful. (See “Control Flow in
the Shell” on page 19 for an example.)

File Globs
All shells have the ability to parse patterns that represent sets of filenames.
These patterns are called file globs, globs, or wildcard expressions. The shell will
expand a file glob into the list of filenames of existing files that match that
glob. A string is called a glob if it contains one of the shell special charac-
ters ?, *, or [. Each of these has a specific purpose. A question mark (?) not
enclosed in square brackets ([]) matches any single character except the for-
ward slash (/). The asterisk (*) matches any string not containing a /, includ-
ing an empty string. Neither of these two wildcard characters match a lead-
ing dot (.). For example, if the current directory contains the files file_io.c,
utils.c, finding.c, .config, and users.o, then

$ ls f*.c

lists the files file_io.c and finding.c because those names match that glob.
The command

$ rm *.o

removes any file ending in .o, which is users.o, and the command

$ gcc -c f*.c

runs gcc -c on every file in the current working directory whose name starts
with f and ends in .c.

This command

$ ls *

doesn’t display .config because it starts with a dot.

Working in the Command Interface 17

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

Square brackets enclosing a list of characters represent any single char-
acter in that list, unless the first character is an exclamation mark (!), in
which case they match any character not in the list:

[abc] Matches any of a, b, and c

[!abc] Matches any character other than a, b, and c

[[] Matches [

[]] Matches]

[abc!] Matches a, b, c, and !

You can use a hyphen to represent ranges of characters inside square brack-
ets as well:

[a-z] Matches any lowercase letter

[!a-z] Matches any character other than a lowercase letter

[A-Za-z0-9] Matches all letters and digits

[-a] Matches - and a

Be very careful when using file globs, especially with dangerous com-
mands such as rm that are not reversible, because they may represent files
that you didn’t think they did. One disastrous example would be

$ rm -r .*

which a naive user might think removes the “hidden” files in the given di-
rectory and their descendants. But the pattern .* matches .. because the
second period is matched by *, implying that the command will recursively
remove everything in .., the parent directory.

I’ve only scratched the surface of how to use file globs. To learn more
about them, enter

$ man 7 glob

to display their man page.

Command Substitution
Most shells have a feature called command substitution, which allows the out-
put of a command to replace the actual command. There are two forms.
The original syntax is

`command`

and the newer syntax is:

$(command)

These two methods have some subtle differences, and it’s best to use the
$(command) method (you will probably see the first method used in legacy bash

18 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

scripts). To illustrate how they work, suppose that filelist contains the names
of three files, one per line: file1, file2, and file3. Consider the command:

$ wc $(cat filelist)

To execute this command, bash runs cat filelist, which outputs the contents
of the file named filelist, converting the output into a space-separated list of
its lines on the command line. Since filelist contains the lines

file1

file2

file3

bash replaces the text $(cat filelist) with the text file1 file2 file3 on the
command line, so that the actual command that it runs is:

$ wc file1 file2 file3

The result is that it runs wc on each of these files successively.
A second example is:

$ head -1 $(find repo -name "*.c" 2>/dev/null)

The find command is complex, but this use of it isn’t. It searches the entire
directory hierarchy rooted at repo for every file whose name matches the file
glob *.c, which would match all .c files.

Because find can generate many error messages, the error output is
thrown away by redirecting it to /dev/null. The remaining lines that find out-
puts replace the command itself, separated by spaces instead of newlines.
These lines will be the pathnames of all .c files that it finds. The head -1 com-
mand then prints the first line of every such .c file.

Control Flow in the Shell
All shells are designed as programming languages with the usual palette of
control flow keywords and operators. The syntax varies from one shell to
another. Here I’ll discuss bash specifically.

The most useful and important control flow constructs to learn are
simple branching using if...then...else instructions, and looping using
for loops. bash also has while loops, until loops, case statements, and select

statements, but to keep this short, I don’t describe them here. You can read
about them in the Compound Commands section of the bash man page.

There are two types of for loops: an iterative one like the one commonly
found in high-level languages, and a list-based one, called a foreach loop,
which isn’t present in some modern languages, most importantly, C and C++
before C++11. Their syntax is slightly different and semicolons play a critical
role. The following shows the typical form of the list-based for loop:

for name in list ; do list-of-commands ; done

Working in the Command Interface 19

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The semicolons must be present if the command is on a single line. You
can also replace any of them with a newline, as follows:

for name in list

do

list-of-commands

done

This example just prints the numbers 1, 2, and 3, one per line

$ for i in 1 2 3 ; echo $i ; done

1

2

3

while this second example creates a file named nums1-200 that contains the
numbers 1 to 200, one per line:

$ for i in $(seq 1 200) ; do echo $i ; done > nums1-200

It should convince you that the list-based for loop, combined with command
substitution, can be powerful.

This third example copies each file in the current directory whose name
ends in .o to one whose name is appended with a _bkup extension:

$ for file in *.o ; do cp $file ${file}_bkup ; done

It shows how using file globs can save you lots of time, and it also introduces
the cp command (see “Creating, Removing, and Copying Files and Links”
on page 38 for more details). Notice too that braces are used to enclose the
variable named file in the third example, because file is a variable name
but file_bkup is not. The braces are needed so that bash can expand $file

rather than trying to expand $file_bkup.
The second form of the for loop is like the standard C iterative for loop

except that double parentheses are needed:

$ for ((i = 0; i <= 10; i++)) ; do echo $i ; done

1

2

--snip--

10

This prints the numbers 1 through 10, one per line, whereas in

$ for ((i = 0; i <= 10; i++)) ; do echo -n -e "$i\t" ; done ; echo

1 2 3 4 5 6 7 8 9 10

the numbers 1 through 10 are printed on one tab-separated line. The -n op-
tion tells echo to suppress the newline, and the -e option turns on interpreta-
tion of backslashed characters such as \t (the tab character). The echo after
the keyword done adds a newline so that the prompt appears on a new line.

20 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The branching construct in Bourne-like shells such as bash works as
follows:

if list-of-commands

then

true-branch-list-of-commands

[else

false-branch-list-of-commands

]

fi

The square brackets indicate that the else part is optional; they aren’t part
of the command. The then part is executed if the last command in the list

-of-commands is successful—in other words, if its exit status is zero. If there is
an else part, it’s executed if the last command’s exit status is nonzero. For
example, the following command

$ if ls /opt/info &> /dev/null

then

echo /opt/info exists

else

echo ls failed

fi

prints /opt/info exists if /opt/info exists and ls failed if it doesn’t.
The if construct was originally designed to require a list of commands

as the condition to be evaluated. To create a branch based on a conditional
expression instead, you had to write the test command after the if keyword.
The test command was a separate program created specifically for this pur-
pose. But bash also has a builtin command of the same name now. Its op-
tions are slightly different from the test program. To determine which one
you get when you enter test, enter this command:

$ which test

The output will be the pathname to the executable file for the test pro-
gram or will indicate that it’s a shell builtin. To override the default, you can
enter the full pathname, such as /usr/bin/test to use the test program, or
builtin test to use the shell builtin version of test. In either case, the test

command is followed by a conditional expression. When you run it, its re-
turn value is the truth value of the expression: either true or false. As an
example, consider the following bash code:

$ if test -x myfile

then

echo myfile is executable

else

echo cannot run myfile

fi

Working in the Command Interface 21

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The first line is an example of the test command with the -x operator, which
checks whether a file exists and you’re able to execute it. If the test is true, it
prints a message that the file is executable; otherwise, it prints that the file
can’t be run.

Because there are slight differences between the two versions of this
command and you may not know which one you’re running, I’ll show you
an alternative syntax for the bash builtin test command. Instead of writing

test expression

you can write

[expression]

in which the square brackets are part of what you enter. The preceding ex-
ample is therefore equivalent to this:

$ if [-x myfile]

then

echo myfile is executable

else

echo cannot run myfile

fi

To confound things further, bash also has a [[]] operator that has a more
extensive set of expressions. Consult the man pages for further information
about it.

The kinds of conditional expressions that you can form are extensive.
They include:

• File tests

• Numerical comparisons

• String comparisons

• Tests of the state of variables

• Negation, conjunction (AND-ing), and disjunction (OR-ing) of any
of them

File tests include tests of whether a file is readable, is writeable, is ex-
ecutable, is a directory, is a regular file, and so on. There are more than
20 such tests. Here are a few examples:

test -x myfile True if myfile exists and is executable by you

test -L myfile True if myfile exists and is a symbolic link

test -s myfile True if myfile exists and is not empty

test file1 -nt file2 True if file1 is newer than file2

String tests use the operators = and !=. If you use the [[]] syntax, you
can also use < and > for string comparisons. The comparisons are based on

22 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

the value of your LC_COLLATE environment variable, which determines the lexi-
cographical ordering of characters.

LEXICOGRAPHICAL ORDER

Lexicographical order is a generalization of alphabetical order. Most languages
have a set of rules that define which characters precede others in their alpha-
bets, which we call their alphabetical order. Lexicographical order adds rules
for the ordering of punctuation and other nonalphabetic symbols so that an en-
tire character set can be ordered.

To illustrate the importance of lexicographical ordering, consider the
conditional expression "Elephant" < "ant". The expression is true if the or-
dering sorts uppercase before lowercase and it is false otherwise. LC_COLLATE
is one of several environment variables that are collectively known as your
locale. Locales are introduced briefly in Chapter 1 of the book, and in more
depth in Chapter 3.

The best way to learn about the various conditional expressions is to en-
ter the command help test and study the full list. Here are the expressions
you’ll probably find most useful:

-a myfile True if myfile exists

-d myfile True if myfile is a directory

-e myfile True if myfile exists

-r myfile True if myfile is readable by you

-s myfile True if myfile exists and is not empty

-w myfile True if myfile is writable by you

-x myfile True if myfile is executable by you

-N myfile True if myfile has been modified since it was last read

-z string True if string is empty

string1 = string2 True if the two strings are equal

string1 != string2 True if the two strings are not equal

! expr True if expr is false

expr1 -a expr2 True if both expr1 AND expr2 are true

expr1 -o expr2 True if either expr1 OR expr2 is true

arg1 op arg2 Where arg1 and arg2 are numeric and op is one of -eq, -ne,
-lt, -le, -gt, or -ge

Shell Scripts
If you find yourself repeating a particular sequence of commands frequently,
you can make your time more productive by putting that sequence of com-
mands into a file for later execution. We call a file containing a sequence of

Working in the Command Interface 23

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

commands written in a shell language a shell script. If the commands are writ-
ten in bash, it’s called a bash script; if it’s written in the C shell language, it’s
called a csh script; and so on.

Once you’ve created a shell script—and assuming that you’ve taken a few
steps to make it an executable file, which I’ll explain shortly—to run it, you
just enter its name on the command line. For example, if you’ve written a
shell script named myfirstscript in the current working directory, you would
enter

$./myfirstscript

to run its commands.
Although most of the shells have very similar syntax rules, there are vari-

ations among them, and what’s true about the bash shell is not necessarily
true about the Korn or C shell. Therefore, to be clear, everything in this
section is specifically about bash, although much of it may be true of other
shells.

Here’s a simple example that illustrates two key ideas:

script1.sh #!/bin/bash

This script does nothing but print "Hello world; code responsibly!"

Its purpose is to show what the first line looks like and

to introduce comments.

#

Written by Stewart Weiss, Jan. 1, 2000

echo "Hello world; code responsibly!"

The first line tells the shell to run the interpreter /bin/bash, using the rest of
the file as its input. In effect it says, “I am a bash script.” Although that line
isn’t strictly necessary, if you want to be able to run scripts just by entering
their names, you need it. Its form is:

#! pathname-of-interpreter

In this case, the interpreter program is /bin/bash. If you want to write a Perl
script, the first line would be:

#!/usr/bin/perl

That two-character sequence, #!, is known as the shebang symbol in the Unix
world.

The next thing to note is the # comment delimiter; bash ignores any-
thing after it on the same line (except when the second character after it is
!). Most shells use this comment delimiter. Your scripts should always con-
tain comments; scripts are programs, and they should be documented for all
the same reasons that programs should.

In order to be able to run a script by entering its name, you also need
to make that file executable, which means adding execute permission to the

24 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

file’s permission mode. Use the chmod command to alter the permissions on
any file that you own. For example:

$ chmod +x filename

This makes filename executable by everyone.
You can pass arguments to scripts on the command line, to be used in-

side the script, which usually makes the script more versatile. This is where
certain bash parameters come into play. Parameters denoted by numbers
other than 0 are called positional parameters. Thus, 1, 2, 3, and so on are po-
sitional parameters. When you enter a command, bash stores the successive
words from the command line in successive positional parameters (1, 2, 3)
up to the number of distinct words it finds on the command line. (If you en-
close a string in single quotes, it will treat that entire quoted string as a single
word even if there are spaces in it.)

The very first word on the command line, which is the program to run,
is stored in parameter 0. Thus, in a script you can access the command line
arguments with the notation $1, $2, $3, and so on, and the program name
with $0. If you enter more than nine arguments, you need braces to enclose
the parameters whose numbers are more than one digit, such as ${12}.

Two particular parameters, $# and $*, are very useful in scripts. The
number of arguments on the command line is stored in $#, and the entire set
of words after the command is stored as a list of words in $*. The following
script, which I’ll store in an executable file named script2.sh, demonstrates
how these two parameters can be used:

script2.sh #!/bin/bash

#!/bin/bash

This script shows the use of $#, $0, and $*.

Given one or more names on the command line, it creates files with

those names with suffix .csv, and puts two lines into each file.

The first line is the title given to the file and the second is a

heading.

#

Written by Stewart Weiss, June 13, 2025

if [$# -lt 2] # If it has no arguments

then

echo "Usage: $0 list-of-filenames" # Print usage message.

exit # Exit the script.

fi

for i in $* # For each argument

do

echo -e "Title: $i" >| $i.csv # Create file and put title in.

echo -e "Name\tValue" >> $i.csv # Append a heading.

done

It checks that $# is at least 2. If it’s not, there are no words on the line except
the script name. In this case, it uses echo to print a message about how to
use the script (this is another useful application of echo). Otherwise, using a

Working in the Command Interface 25

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

list-based for loop, for each argument i, it writes two lines into a file named
i.csv. Note that i is a variable and it’s value is displayed using $i. This is not
a positional parameter! bash expands $* into a list of words, and the for loop
assigns each word to i for each iteration of its body.

If we run the script in an empty directory, providing it some arguments,
and then enter the ls command, we see that it created a CSV file for each
argument:

$./script2.sh f1 f2 f3

$ ls

f1.csv f2.csv f3.csv

$

If you open the files and look at their contents, you’ll see that they have the
two lines that the script wrote to them. Soon we’ll see ways to open files.

We now run script2.sh without any arguments:

$./script2.sh

Usage: ./script2.sh list-of-filenames

$

The script detects that there are no arguments and lets me know this. It also
lets me how to use it correctly. All programs and all scripts should do this.

For more information about scripting, read the man page of the shell
you are using.

Shell Behavior, Shell Variables, and the Environment
Shell variables were introduced and described earlier in this chapter in
“Parameters and Variables” on page 15. Many of these variables affect the
behavior of the shell, such as IFS, which stores a list of characters that bash
treats as whitespace, and PS1, which defines the prompt that bash displays
for you.

Some of bash’s variables are part of the environment when bash starts
running. They’re made available to bash when it starts. For example, the
environment variable named HOME, which has the absolute pathname of the
user’s home directory, is also a bash variable. Another environment vari-
able named PATH is a colon-separated list of pathnames of directories that
the shell searches to find command names that we enter. This PATH variable
is also accessible in bash.

An easy way to understand the difference between environment vari-
ables and shell variables is by analogy to the difference between global vari-
ables and local variables in a program. Global variables are defined outside
of the program, in file scope. They are like environment variables, which ex-
ist outside of the shell. In contrast, locals are defined inside the scope of the
program; they’re analogous to shell variables. Just as both global and local
variables are accessible to the program, environment and shell variables are
accessible to bash. Like globals and locals, they’re stored in different places
and receive initial values in different ways.

26 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

You can see the full list of bash’s shell variables by entering the set com-
mand. You can see the value of any bash variable, whether it’s from the envi-
ronment or not, with the echo command, as in:

$ echo My current working directory is $PWD

My current working directory is /home/stewart/demos

$ echo $HOSTNAME is running $OSTYPE on machine type $MACHTYPE

harpo is running linux-gnu on machine type x86_64-pc-linux-gnu

$

The POSIX.1-2024 standard (available from https://pubs.opengroup.org/
onlinepubs/9799919799/) lists 16 different environment variables that can
influence the shell’s behavior.

When you first log in, the kernel initializes your environment and starts
up a new process for your login shell, passing it a reference to that environ-
ment. It gets the initial values of your environment variables from a few
different sources, including various system files such as /etc/environment,
/etc/profile, and /etc/bash.bashrc, as well as user-specific files in your home
directory, such as .bash_profile and .bashrc.

Shell variables that do not come from the environment, such as OSTYPE,
MACHTYPE, and HOSTNAME, get their initial values from other sources, such as con-
figuration files.

Once you’ve logged in and you’re working within a shell, when you run
a non-builtin command or a program, a new process is created and it in-
herits the environment of the shell from which you ran it. More generally,
whenever a new process is created, it inherits a copy of its parent’s environ-
ment, even if the parent is not a shell. This is how programs know what their
current working directories are, for example, or which users are their own-
ers, or in which time zone they’re running. The environment is a key ele-
ment in making things work. It’s like a set of global variables available to all
processes.

You’re free to customize the environment of a shell by defining new vari-
ables or redefining the values of existing variables. The syntax is shell de-
pendent. In the Bourne shell and bash, variables that you define, which we’ll
call user variables, are not automatically placed into the environment. To
place them into the environment, you have to export them using the export

command. Exporting a variable essentially makes that variable available to
all processes that you run afterward, including any subshells. For example,
if you frequently visit a directory that has a long pathname and you want to
access it easily from anywhere in the directory hierarchy, you could create a
variable that stores the pathname, such as the following:

$ export LECTURES=/home/stewart/teaching/unixclass/lecturenotes/

This command puts LECTURES into the environment with the value /home/

stewart/teaching/unixclass/lecturenotes/ so that it can be inherited by future
commands and processes. This pair of commands does the same:

$ LECTURES=/home/stewart/teaching/unixclass/lecturenotes/ ; export LECTURES

Working in the Command Interface 27

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

https://pubs.opengroup.org/onlinepubs/9799919799/
https://pubs.opengroup.org/onlinepubs/9799919799/

The semicolon ends the first command and a newline ends the second. Now
you can navigate to that directory by entering cd $LECTURES.

Theconvention is to use uppercase names for environment variables
and lowercase names for variables that you define and do not export. The
following session demonstrates what happens both when you don’t export
and when you do:

$ WORKDIR=/home/stewart/scratch

$ echo $WORKDIR

/home/stewart/scratch

$ bash # Start a new shell.

$ echo The value of WORKDIR is $WORKDIR

The value of WORKDIR is

$ exit # Exit new shell to previous one.

$ export WORKDIR

$ bash # Start a new shell again.

$ echo The value of WORKDIR is $WORKDIR

The value of WORKDIR is /home/stewart/scratch

We start by assigning a value to WORKDIR without exporting it. It’s a bash user
variable but not in the environment. When we start a subshell by entering
bash, it doesn’t get a copy of this variable, so the echo command outputs an
empty string for $WORKDIR. We exit the subshell and, this time, export the vari-
able WORKDIR. We start a subshell again and run echo, passing $WORKDIR. Now it
sees it and can output its value.

The History Mechanism
After a while of working in the command line, you’ll find that you wish you
had an easy way to enter the same command that you ran some time ear-
lier, either exactly as you did before, or perhaps with a different set of argu-
ments. In short, you’ll wish your shell had a means of remembering what
commands you typed.

Some shells, including bash, provide this facility. They can save a list of
the commands you’ve previously entered into the shell, for later recall. This
feature is commonly known as the history mechanism. The history mechanism
is an optional feature that’s usually enabled by default. One way to see if it’s
enabled is:

$ set -o | grep history

history on

Most systems have it enabled by default. If your output says that it’s off, you’ll
need to edit your .bashrc file to enable it by including the line set -o history.

Roughly speaking, bash saves the commands that you enter in an inter-
nal list that you can think of as an array of strings. This internal list is its
history list. When you exit the shell, it writes this list into a file, unless you
disabled saving the list. The default pathname of this file is /.bash_history.
Whenever you start a new shell, it initializes its history list from the contents

28 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

of the history file. I won’t discuss the complex issues such as how many lines
the file has, how saving works when the file isn’t empty, and so on; the bash

man page explains the details.
Let’s see how you can recall previous commands. For starters, if you

want to see the entire history, which by default is usually about 500 com-
mands long, enter history. Each line of output will have a number followed
by a command that you executed, such as:

50 cd demodir

51 make demo2

52 ls .

53 date

54 echo "testing echo"

...

The number is called the command number. You can re-execute any com-
mand in this list by entering an exclamation mark (!) at the prompt, fol-
lowed by its number:

$!54

echo "testing echo"

testing echo

First bash displays the command, and then it executes it.
Commands in the list are called events, and the notation !n, where n is a

specific command number, is called an event designator since it designates a
specific event. Following is a list of some useful event designators:

!! Previous command

!n nth command line in the history list

!-n nth most recent command in the list

!str Most recent command that started with the string str

!?str? Most recent command that contained the string str

Given the preceding sample history output, if I want to re-execute the
make command, I could enter either of the following:

$!51

make demo2

$!make

make demo2

Even easier, if you press the up arrow key on the keyboard in bash, it dis-
plays the preceding command. Press it again and you get the one before
that, and so on. If the last command I executed had command number 56,
then pressing the up arrow five times displays the make demo2 command, and
I can just press ENTER to re-execute that command.

There’s much more to learn about the history mechanism, but I don’t
include it here. Not only can we re-execute commands, but we can also pick

Working in the Command Interface 29

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

out arguments from them to reuse in the current command or repeat a pre-
vious command, substituting any number of characters in it for others. To
give you a sense of it, assuming once again that the history is the one listed
earlier in this section, to run make to build demo3 instead of demo2 (assuming
demo3.c exists in my directory), I can enter

$!make:s/2/3/

make demo3

which replaces the first occurrence of 2 in the matching command with 3.
I encourage you to read more about this in the bash man page.

Types of Commands
Commands are not always executable programs stored in files. In general, a
command might be any of the following types:

• A binary executable file, such as ls, which is the file /bin/ls

• A shell builtin (defined in Chapter 1 of the book, in the section
“Shells” on page 12) such as alias, cd, and exit

• An alias (alternate name) for another command, defined either by
you or by an administrator of the computer using the alias builtin
command, as in alias rm='rm -i', which replaces the dangerous
rm command with a version of it that always asks before deleting
anything

• A script, such as a shell script or a script in another scripting lan-
guage such as Ruby, JavaScript, and Perl

Sometimes the same command name can denote more than one of
these. For example, commands like pwd and echo are both shell builtins and
executable files. You can determine the type of the command using the type

bash builtin, which takes one or more command names:

$ type who ls cd backup

who is /usr/bin/who

ls is aliased to `ls -F --color=tty'

cd is a shell builtin

backup is /home/stewart/bin/backup

This tells you whether it’s a file, an alias, or a builtin.
If type reports that a command is a file, you can use the file command

to determine whether it’s a binary file or something else:

$ file /home/stewart/bin/backup

/home/stewart/bin/backup: Bourne-Again shell script, ASCII text executable

The file command attempts to detect exactly the type of file. In this case, it
reads the first line and finds that it started with the #!/bin/bash command.

30 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

File Permissions
Before we explore the various commands for working with files, you need to
understand how file permissions work. In this context, the word file refers to
all file types, including directories.

Unix has a very simple but powerful method of protecting files. To pro-
vide a way for users to control access to their files, the inventors of Unix de-
vised a rather elegant and simple access control system. Every file has three
modes of access: read, write, and execute.

Read access The ability to view file contents. For directories, this is
the ability to view the contents of the directory using the ls command.

Write access The ability to change file contents or certain file attributes.
For directories, this implies the ability to create new links in the directory,
to rename files in the directory, or to remove links in the directory. This
might sound counterintuitive. The ability to delete a file from a directory
does not depend on whether one has write privileges for the file, but on
whether one has write privileges for the directory.

Execute access The ability to execute the file. For a directory, execute
access is the ability to cd into the directory and, as a result, the ability to
run programs contained in the directory and run programs that need to
access the attributes or contents of files within that directory. In short,
without execute access on a directory, there is little you can do with the
files contained in it.

For each file, three different classes of users are defined, and each class
can have a different set of allowed modes of access:

• A file has an owner, called its user. The user class contains the owner
and no one else. User access is the set of access rights given to this
class.

• A file is also associated with a group of users, called its group. The
owner of a file can assign any of the groups to which the owner
belongs to that file (with the chgrp command). Users in that group
other than the owner belong to the group class and have group access
rights to the file.

• Everyone who is neither the user nor a member of the file’s group
is in the class known as the others class and has others access rights to
the file.

In short, with respect to a single file, every user in the system belongs to
exactly one class—either the user class, the group class, or the others class.
Their permissions for this file are determined by the class they’re in, namely
one of user access, group access, or others access. I remember this with the
acronym UGO.

For each of the three classes of users, 3 protection bits define the read,
write, and execute privileges afforded to members of the class. For each

Working in the Command Interface 31

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

class, if a specific protection bit is set, then for anyone in that class, the par-
ticular type of access is permitted. Thus, there are 3 bits called the read,
write, and execute bits for the user (u), for the group (g), and for others (o),
for a total of 9 bits. These bits, which are called mode or permission bits, are
usually expressed in one of two forms: as an octal number, or as a string of
nine characters.

The nine-character permission string is best understood as three groups
of three characters, where the characters representing the high-order bits
are to the left:

r w x r w x r w x

user bits group bits others bits

In a permission string, we usually represent an enabled bit with the let-
ter associated with it, and a disabled bit with a hyphen. Many commands use
this convention as well. Some examples are shown here:

rwxrw-r-- The user (the owner) has read, write, and execute permis-
sion, the group has read and write but not execute, and others have only
read permission.

r-xr-xr-x Everyone has read and execute permission but not write
permission.

rwxr-xr-- The user has read, write, and execute permission, the group
has read and execute permission, and others have only read access.

rw-r----- The user has read and write access, the group has read access
only, and no one else can do anything with the file.

The mode string can also be represented as a three-digit octal number
by treating each group of 3 bits as a single octal digit. We can use the C
ternary operator, ?:, to express the conversion of permission letters to an
octal value:

octal_value = r?4:0 + w?2:0 + x?1:0

In other words, the read bit is 4, the write bit is 2, and the execute bit is 1.
We add the values of the enabled bits to get a single number in the range 0

to 7, which results in the following table of values for each group of 3 bits:

rwx rw- r-x r-- -wx -w- --x ---

7 6 5 4 3 2 1 0

For example, to compute the octal number for the mode rwxrw-r--, break
it into the three substrings rwx, rw-, and r--, and then use the above conver-
sions on each substring: The user sum (rwx) is 7, the group sum (rw-) is 6,
and the others sum (r--) is 4, resulting in octal number 764.

32 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

In addition to the mode bits, a file’s permission string is often displayed
along with a single character code that represents the file’s type. This char-
acter is usually written to the left of the mode string and can be one of the
following:

- A regular file

d A directory

b A buffered special file

c A character special file

l A symbolic link

p A pipe

s A socket

The ones you’re most likely to see are directories, regular files, and symbolic
links.

Viewing and Modifying File Attributes
Sooner or later, we all try to run a command that fails because we don’t have
the permission to access some file in the way we tried. Knowing how to view
and change file permissions can help us avoid this problem.

To see several attributes of a file, including its mode, we can use the -l

option (for long listing) of the ls command. When ls is given this option,
for each file, it prints the mode string, the number of links to the file, the
username of the owner, the group name of the file’s group, the number
of bytes in the file, the last modification time, and the file’s name in the
given directory. For example, we can look at the attributes of the file named
meeting_notes in the current working directory by entering the following:

$ ls -l meeting_notes

-rw-r--r-- 1 stewart faculty 3304 Sep 22 13:05 meeting_notes

The output tells us that this is a regular file because its type is -, and it can
be read and written by its owner (rw-). Anyone in the faculty group (r--) can
only read it, and anyone else (r--) can only read it. The ls command has sev-
eral other options for controlling the information that it displays. Read its
man page for more details.

We can use the stat command to display even more attribute informa-
tion. We give stat one or more files, as shown here:

$ stat lib bin

File: lib

Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: 813h/2067d Inode: 6684786 Links: 14

Access: (0750/drwxr-x---) Uid: (500/ stewart) Gid: (500/ stewart)

Access: 2025-06-13 16:12:01.096641180 -0400

Modify: 2018-07-25 14:16:29.290584068 -0400

Working in the Command Interface 33

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

Change: 2018-07-25 14:16:29.290584068 -0400

Birth: 2018-07-25 14:16:28.814596709 -0400

File: bin

Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: 813h/2067d Inode: 3670282 Links: 2

Access: (0750/drwxr-x---) Uid: (500/ stewart) Gid: (500/ stewart)

Access: 2025-06-13 16:12:00.772649653 -0400

Modify: 2025-04-08 09:53:24.724151675 -0400

Change: 2025-04-08 09:53:24.724151675 -0400

Birth: 2018-07-25 12:06:50.619102451 -0400

This command outputs some information about files that I haven’t yet de-
scribed. In Chapter 6 of the book, we’ll learn what all of its output means,
and we’ll develop an implementation of it.

For ordinary text files, we can get the counts of the bytes, words, and
lines in one or more files with the wc command. We can give it one or more
filenames as arguments, as shown here:

$ wc README.md README.txt

72 401 2559 README.md

65 382 2417 README.txt

137 783 4976 total

It outputs counts of the lines, words, and bytes, in that order, followed by
the filename. The output shows that there are 72 lines, 401 words, and
2,559 bytes in the file named README.md. Other options provide different
information.

The most important commands that change the attributes of a file are:

chmod mode [,mode] ... files Changes the permissions on files

chown owner files Changes the ownership of files

chgrp group files Changes the group ownership of files

touch files Updates timestamps of files or create empty ones if they
don’t exist

Of these, chmod is the one you’ll probably use most frequently. The com-
mand’s name is a mnemonic: change mode. Most people pronounce it as
“C H mod.” The chmod command has a complex set of options and accepts
permissions written as letters or as octal numbers.

In the simplest case, a mode is of the form

user-designation operator type-of-permission

where user-designation is one or more of the letters u, g, o, and a, operator is
one of +, -, and =, and type-of-permission is any nonempty subset of r, w, and
x. No spaces are allowed between these three parts! The letter a is short for
all users and means all of ugo. The + operator adds the given permissions to

34 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

the designated users, and the - operator removes the given permissions. The
= operator sets the permissions to exactly the ones specified, removing any
others that might have existed. Examples follow, using the single file named
myfile to illustrate:

chmod u+rw myfile Adds read and write permission for the owner of
myfile

chmod g+rx myfile Adds read and execute permission for the group of
myfile

chmod go-w myfile Removes write permission for everyone in the group
and others for myfile, so that only the owner can modify myfile

chmod u=rwx myfile Sets the mode to rwx------ for myfile

chmod u=rw,og=r myfile Sets read and write permission for the owner,
read-only for everyone else

chmod a-x myfile Removes execute permission on myfile for all users

chmod +x myfile Absent any user designation, applies to all, so this adds
execute permission to myfile for everyone

chmod 755 myfile Gives myfile permission rwxr-xr-x

chmod 640 myfile Gives myfile permission r-xr--r--

I haven’t described all the ways we can use the chmod command. Read its man
page to learn more about it.

The touch command is pretty convenient for creating empty files and for
updating the time of last modification of one or more files, which is conve-
nient when you’re using the make command. By touching one or more files,
you can force make to recompile a program that depends on them. The make

command is a powerful command for automatically updating a program or
some other file that depends upon other files. I don’t cover make here, but
I wrote a hands-on tutorial for make that you can download from the book’s
GitHub repository at https://github.com/stewartweiss/Make-Tutorial.

Here is how you can create a bunch of empty files using touch:

$ ls # List the directory to see files don't exist yet.

$ touch f1 f2 f3 f4 f5 # Create the files.

$ ls -l

-rw-r--r-- 1 stewart faculty 0 Jan 9 12:40 f1

-rw-r--r-- 1 stewart faculty 0 Jan 9 12:40 f2

-rw-r--r-- 1 stewart faculty 0 Jan 9 12:40 f3

-rw-r--r-- 1 stewart faculty 0 Jan 9 12:40 f4

-rw-r--r-- 1 stewart faculty 0 Jan 9 12:40 f5

This shows that touch created five empty files within the same minute.

Working in the Command Interface 35

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

https://github.com/stewartweiss/Make-Tutorial

Working with Directories
You don’t need to know many commands in order to do most directory-
related tasks in Unix. The most common tasks fall into these categories:

Navigation Changing or identifying the current working directory

Display Showing the contents of directories

Creation Creating new directories

Restructuring Renaming, moving, and removing directories

Content modification Changing the content of directories

Following is a list of the essential commands with explanations of their
simplest use cases. I don’t describe the various options or details of each
command’s usage; for that you should read their respective man pages.

pwd Prints the absolute pathname of the working directory. The p in
pwd stands for print, but it does not print on a printer. In Unix, printing
means displaying on the screen. (That’s why the C instruction printf()

sends output to the display device, not the printer.)

cd [dir] Changes the working directory to dir, if dir is given, and to
the home directory if no argument is given. The cd command (think
change directory) changes your current directory. You give it the name of
a directory, either as an absolute pathname or as a relative pathname.

ls [dir1] [dir2] ... Displays the contents of dir1, dir2, and so on if
they’re supplied; otherwise, display the contents of the current working
directory.

mkdir dir1 [dir2] ... Creates new directories named dir1 (and dir2,
and so on). If dir1 (and dir2) are pathnames without slashes in them,
they are created in the current working directory; otherwise, they’re
considered to be pathnames, and they’re created in the directories spec-
ified by their paths. The mkdir command is the only one that creates a
directory. If the name you choose already exists, mkdir will fail.

rmdir dir1 [dir2] ... Removes the empty directory dir1 (and dir2, and
so on). You cannot use rmdir to remove a nonempty directory (see the
next command).

rm -r dir1 [dir2] ... Removes all entries in all directories (dir1, dir2,
and so on) and removes the directories themselves. This command
deletes one or more directories and their contents, but it’s not reversible,
so be careful. There is no “trash can” associated with rm from which
you can restore deleted files. The rm command, without the -r option,
is described in the next section, “Working with Files.” Commands that
delete files, such as rm, and commands that create or rename files, actually
modify directories, not files! They’re also covered in the next section.

ln file1 file2 Makes a new directory entry named file2 for the file
named file1. It isn’t a copy of file1; it’s another name for it. In “Creating,
Removing, and Copying Files and Links” on page 38, I’ll explain more
about it.

36 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

mv files Renames files and/or directories. It’s short for “move” be-
cause it can move a file (or directory) into another directory as well as re-
name a file within the same directory. It has several different synopses,
which I’ll also explain more about in “Creating, Removing, and Copying
Files and Links.”

Changing directories and being in a directory are imprecise phrases.
When you cd to a directory named dir, you may think of yourself as being
in dir, but that’s not accurate. What is true is that the dir directory is now
your current working directory, and every process you run from the shell in
which you changed the directory, including the shell process, will use dir by
default when it’s trying to resolve relative pathnames.

Working with Files
I classify commands for working with files as those that

• Display file contents but do not modify them

• View and possibly modify file attributes

• View and modify file contents in one way or another

• Create, remove, rename, or copy files

We saw commands for viewing and modifying file attributes in “View-
ing and Modifying File Attributes” on page 33. Commands that can modify
files are called editors. Editors are a separate topic, which I don’t cover in this
book. I’ll first describe commands for viewing files, after which I’ll describe
those that create, remove, rename, and copy them.

Displaying Files
Here I list and summarize the basic commands for viewing the contents of
files, not editing or modifying them. For all of the commands I list here,
if you don’t supply any file arguments, the command reads from standard
input. For those commands that accept more than one file argument, the
command processes its arguments in the order they appear on the com-
mand line.

cat [file [file] ...] Displays all file contents

more [file [file] ...] Displays all file contents a screen at a time

less [file [file] ...] Displays all file contents a screen at a time with
more options

head [-n] [file [file] ...] Displays the first n lines of each file; the
default is n = 10

tail [-n] [file [file] ...] Displays the last n lines of each file; the
default is n = 10

diff file1 file2 Compares two files, line by line

cmp file1 file2 Compares two files, byte by byte

Working in the Command Interface 37

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The names of the more and less commands have an interesting story.
The more command, which existed long before there was a less command,
was created to allow you to read a file, or standard input, one screenful at
a time, and also to jump ahead in the file by searching for patterns called
regular expressions, using the same search operator as is used in the vi editor.
However, it wasn’t easy to go backward in the file with more. Navigation
eventually improved in modern versions of more.

The less command was written and released by Mark Nudelman in 1985
to do more than more, but someone he knew suggested the name less (see
http://www.greenwoodsoftware.com/less/faq.html#history). I like to think of this
as a play on the adage “Less is more,” often attributed to the German-born
Modernist architect Ludwig Mies Van der Rohe, intended to convey that
simplicity is better. More likely than not, it was so named because it lets
you see less of a file as well as more of it. No matter why they named the
enhanced version of more “less,” less does more than more. The less command
is the most versatile means of viewing files, and you should learn how to
use it.

The head and tail commands are very useful. I often want to see just the
first line of a file, or the first few lines, which is what head does. By combin-
ing head and tail, you can output any arbitrary contiguous sequence of lines
of a file. (The sed filter does this more easily.)

The diff command comes in handy when you want to know whether two
files are exactly the same, and if not, how they differ. By default, if they’re
identical, diff returns with no output. If they differ, it displays the differ-
ences. If you use the -s option to diff, it displays a message when the two
files are the same, which is sometimes preferred. A similar command is meld,
which presents the two files side-by-side in a separate pop-up window. If it
isn’t on your system, you can install its package. The cmp command is useful
for comparing binary files.

Creating, Removing, and Copying Files and Links
When you create, remove, or rename a file, you’re modifying the directory
in which that file’s name appears. Therefore, you need to have write per-
mission on any directory in which you want to perform any of these oper-
ations, regardless of which command does it. In fact, technically all of the
commands in the following list should be categorized as directory modifica-
tion commands, but because they also have effects on files, I put them here.
Almost all of these commands have more than one form, but I show only a
few of the different forms.

ln f1 f2 Creates a new link for nondirectory file f1 named f2.

ln f1 [f2 ...] dir Creates a new link for each nondirectory file, with
its same name, in the directory dir. The last argument must be a di-
rectory. The ln command can be used to create new names only for
files, not directories. If the new name already exists, it displays an er-
ror message. You can read about this command’s many options on its
man page. A simple version of ln is named link.

38 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

http://www.greenwoodsoftware.com/less/faq.html#history

rm files Deletes the directory entries for all given files. If a file has no
more names in any directories, it is permanently removed. The rm com-
mand is irreversible; once a file is removed, it cannot be recovered. This
command does not remove directories unless the -r option is given to it,
in which case it deletes an entire hierarchy rooted at the given directory.

mv f1 f2 Renames f1 with the new name f2. Note that if f2 is an exist-
ing name of a nondirectory file, it will be replaced, provided that f1 is
not a directory. If f2 is an existing directory, this is the form of mv that
follows next. Because mv will silently overwrite existing files, you should
use mv -i, which prompts you before overwriting them.

mv files dir Moves all files into the destination directory dir. In this
form, the last argument must be an existing directory name, and all pre-
ceding arguments are moved into that directory. The preceding argu-
ments can be existing directories, as long as moving them does not cre-
ate a cycle in the directory hierarchy, such as trying to move the current
directory into one of its subdirectories.

cp f1 f2 Makes a copy of f1 named f2. The two namesmust be different.

cp f1 [f2 ...] dir Copies all files into the destination directory dir.
The cp command works almost the same way as the mv command, except
that it replicates files instead of moving them. The main difference is
that cp does not accept directories as arguments, except as the last ar-
gument, unless you give it the -r option. If you give it the -r option, as
in cp -r, it recursively copies the directories. Note that cp makes copies
of files, not just their links, so if you change the copy, you are not also
changing the original.

We’ll go through some examples to demonstrate how these com-
mands work.

$ cd branch # Change working dir to branch.

$ ls # Display current contents of branch.

project.c

$ mv project.c finalversion.c # Rename project.c.

$ ls # Display branch again to see the changes

finalversion.c.

This shows that the mv command changes the link project.c to finalversion.c.
We need to use ls to see that it does this because all we really did was change
the parent directory, branch, by replacing the link named project.c with a link
named finalversion.c.

In contrast, consider this example:

$ cd master

$ ls

io.c io.h main.c ui.c ui.h utils.c utils.h

$ mkdir headers ; mv *.h headers

$ ls

headers io.c main.c ui.c utils.c

Working in the Command Interface 39

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

In this case, we create a new directory named headers in the directory master
and use mv not to rename files, but to move their links into the newly created
headers directory.

In the following example

$ rm hwk1.o project.o main.o

the rm command removes three file links from the current working direc-
tory. If these files have no other links in other directories, the attributes and
contents are also deleted from the filesystem; otherwise, just the names are
removed.

In this example

$ ls . # Display . files.

project.c main.c utils.c

$ mkdir /sources/myrepos/project2 # Create new directory.

$ ln project.c main.c utils.c /sources/myrepos/project2/ # Make links there.

$ ls /sources/myrepos/project2 # Display new directory.

project.c main.c utils.c

we use ln to create a new link for each of project.c, main.c, and utils.c in the
/sources/myrepos/project2/ directory with their same names.

Consider this example:

$ cp -r main.c utils.c utils.h images ../version2

It copies the three files main.c, utils.c, and utils.h, and the directory images,
into the directory ../version2.

Filters in Brief
A filter is a program that gets its input from its standard input stream (stdin),
transforms it, and sends the transformed input to its standard output (stdout).
The data passes through the filter, which typically has command line options
that control its behavior. A filter may also perform a null transformation,
meaning that it makes no change at all to its input. The cat command is a
null filter. Filters process text only, either from input files or from the out-
put end of another command (in other words, through a pipe). All filters can
be given optional filename arguments, in which case they take their input
from the named files rather than from standard input. For example, in the
command

$ cat first second third > combinedfile

cat reads files first, second, and third in that order and concatenates their
contents, sending them to the standard output, which has been redirected to
a file named combinedfile.

Following is a list of most of the filters:

40 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

awk Pattern-matching, field-oriented filter and full-fledged Turing com-
putable programming language

cat Essentially a null filter

cut Removes sections from each line of its input stream

fold Wraps each input line to fit in a specified width

grep Filters based on regular expressions

head, tail Removes all but the top or bottom set of lines from its input
stream

join Joins lines of two files on a common field

od Dumps files in octal and other formats

paste Merges lines of files

sed Line-oriented text editing filter

shuf Generates random permutations

sort Sorts using a wide range of methods

split Splits a file into pieces

tac Concatenates and print in reverse order

tr Translates or deletes characters

uniq Reports or omits repeated lines

If your time is limited and you have time to learn only one of these, the
most important would be grep because the return on your investment will
be greatest. Coming in second would be sed, and then awk. The remaining
filters are easy to learn and use and are described briefly first.

In the next few sections, I’ll describe some of the filters that I find most
useful.

The sort Filter
The sort command is easy to use:

$ sort file

This sorts the text file named file and prints it on standard output. By de-
fault, it uses your current collating order from the environment variable
LC_COLLATE. In many systems, the default is that all uppercase letters precede
all lowercase letters. There are versions of sort that ignore case by default,
but if yours doesn’t, you can turn off case sensitivity with the -i option.

If you want to sort numerically, use the -n option, as in

$ sort -n numeric-data-file

which will sort numbers correctly. If you omit the -n, 9 will precede 10 be-
cause 1 precedes 9 in the collating sequence. The sort man page has all of
the details.

Working in the Command Interface 41

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The cut Filter
The cut filter is one that you may not use much, but it’s easy to learn and it
simplifies various tasks. It removes the same section of each line of its input,
like removing columns from a CSV file. This removes everything from each
line of myfile except the first ten characters:

$ cut -c1-10 myfile

This removes everything from each line of myfile.csv except fields 2 and 4:

$ cut -f2,4 myfile.csv

By default, fields are delimited by the tab character unless you change the
delimiter. If myfile.csv is a tab separated–values file, then this deletes columns
2 and 4 from it. You can change the delimiter with the -d option. For exam-
ple, if myfile.csv used commas to separate fields, then

$ cut -d, -f3-5 myfile.csv

will remove all columns except columns 3 through 5 of myfile.csv.
Fields are 1-based: The first field on a line is field 1, not field 0. Also,

the delimiter must be a single character. Since the /etc/passwd file uses colons
(:) to separate fields, we pass the colon as the delimiter:

$ cut -f1,3 -d: /etc/passwd

This outputs only fields 1 and 3 of the /etc/passwd file, which are the user-
name and user ID fields of each entry.

Regular Expressions and grep
The single most important filter to learn is grep. It’s powerful and immensely
useful. To use it, we need to understand regular expressions. The regular
expressions used by grep are the same as those used by sed, by the visual text
editor, vi, and by awk. Therefore, taking the time to learn them is well worth it.

The simplest form of the grep command is

$ grep regular-expression files

where regular-expression is an expression that represents a set of zero or
more strings to be matched. The syntax and interpretation of regular ex-
pressions is explained in the regex(7) man page as well as in the man page
for grep itself. Entering either

$ man 7 regex

or

$ man grep

42 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

will show you all you need to know to use them. The simplest patterns are
strings that do not contain regular expression operators of any kind; those
match themselves. For example

$ grep print file1 file2 file3

prints each line in files file1, file2, and file3 that contains the word print. It
will print these lines in the order in which the files are listed on the line. If
you want just a count of the matching lines, use the -c option; this omits the
actual lines and prints just the count. If you want the nonmatching lines,
use the -v option. This is like an inverse operation, printing all nonmatching
lines. If you want to see the line numbers in addition to the actual lines, use
the -n option. The grep man page describes many more options.

If you want to match a string that contains characters that have special
meaning to the shell, such as whitespace, asterisks, slashes, dollar signs, and
so on, it should be enclosed in single quotes:

$ grep 'atomic energy' file1 file2 file3

This will match all lines in the given files that have the exact string atomic

energy somewhere in the line.

NO T E The lines that grep finds matches for do not have to be exactly the pattern; they only
have to contain the pattern.

If you want a pattern to match an entire line, you have to bracket it with
operators called anchors. The start-of-line anchor is the caret (^) and the end-
of-line anchor is the dollar sign ($):

$ grep '^begin$' file1 file2 file3

This matches only those lines in the given files that consist of the string begin

with no leading space and no following space.
Regular expressions can be formed with various operators. One is the

asterisk (*), which multiplies the expression to its left zero or more times.
For example, a* matches a, aa, and aaa, as well as any string containing no a’s.

To match multiple occurrences of a string such as ab, you have to enclose
it with a grouping operator, \(\), before the asterisk, as in

\(ab\)*

which matches zero or more sequences of ab. If you instead use

(ab)*

it will match strings such as (ab)(ab)(ab) but not ababab because in regular
expressions, the parentheses by themselves do not perform grouping. The *

operator is an example of a repetition operator. Regular expressions include
other repetition operators, such as \+, \? and \{ \}.

Working in the Command Interface 43

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The period (.) matches any character. Regular expressions also include
character classes, which are formed by enclosing a list (or a range) in square
brackets ([]). A character class represents a single character from that class.

Because the special characters in regular expressions typically have spe-
cial meaning in the shell as well, it’s a good idea to always enclose the pat-
tern in single quotes. In particular, if you give it a regular expression using
an asterisk, you should enclose the string in single quotes. Single quotes
are better than double quotes. Single quotes prevent the shell from doing
any interpretation of the enclosed characters, whereas when the shell sees a
double-quoted string, it does a certain amount of interpretation. Until you
understand what the shell will attempt to interpret inside double-quoted
strings, use single quotes for enclosing grep patterns.

Examples
In the following examples, the file argument is omitted for simplicity. In this
case, grep would apply the pattern against the standard input, which means if
you actually enter these examples, it will wait for you to enter lines of text in
the terminal and, after each line, it will either display the line if it matches,
or display nothing. Terminate input with CTRL-D.

The following matches any line containing the word while followed by
zero or more space characters, followed by a parenthesized expression of
any kind:

$ grep 'while *(.*)'

This example matches lines that begin with a word that starts with ei-
ther a lowercase or uppercase letter or underscore, followed by zero or more
letters, digits, or underscores:

$ grep '^[a-zA-Z_][a-zA-Z0-9_]*'

These are precisely the set of valid C identifiers.
This pattern selects strings that have one or more digits followed by a

single period, followed by exactly two digits:

$ grep '[0-9][0-9]*\.[0-9][0-9]\>'

The period must be preceded by a backslash so that grep does not treat
the period as the special character that matches any character. The \> at
the end tells grep to anchor the pattern to the end of a word. A word is a
sequence of letters, underscores, and/or digits. This pattern forces grep to
select only those words that end in two digits. If I omitted the \>, grep would
have matched strings such as 1.234 or 1.23ab. There’s a symmetric matching
operator, \< that anchors a pattern to the beginning of the word.

Now take a look at this example:

$ grep '\/*.**\/'

44 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

Since / is a special character, if I want to match it I have to escape it with
a \, as in \/. Similarly, since * is a special character in regular expressions,
* is how I have to match a single literal asterisk, *. So, to match the two-
character sequence /*, which is the start of a C comment, I have to write
\/*, and to match /* followed by any number of characters and then fol-
lowed by */, I have to write

\/*.**\/

in which .* matches zero or more characters of any kind (including the pe-
riod itself). This finds lines with C-style comments in them.

Regular expressions also provide a means of remembering matched ex-
pressions for reuse in the expression. This is very handy in vi and sed, which
have substitution operators. The same operator used for grouping is also
used for remembering matching strings. In other words, \(pattern\) squir-
rels away parts of the input line that match pattern.

The matching string is saved in a special variable that you can use later in
an enclosing pattern or in a substitution operation. Regular expressions use
variables named \1, \2, \3, and so on to store matching strings from the text.

Let’s look at some examples. In this simple one

$ grep '\([a-z]\)\1\1\1\1'

the pattern matches any line that contains a sequence of five copies of the
same lowercase letter, such as xxxxx or bbbbb.

Here’s another example:

$ grep '\([1-9][0-9]\).*\1'

This pattern begins with a subpattern that matches any numeral consisting
two digits. The next part, .*, matches any sequence of characters, including
an empty sequence. The last part is \1, which stores whatever string matched
the two-digit numeral. Therefore, this pattern is matched by any line that
has a two-digit number that is repeated later in the line.

The command

$ grep '\([a-z]\)\([a-z]\)\([a-z]\)\3\2\1'

finds lines with palindromes of length 6. It begins by remembering three
lowercase letters in succession. It then uses the saved matches in reverse or-
der in the \3, then \2, then \1. Each variable has a copy of the single lower-
case letter that was saved, so this pattern matches palindromes of length 6
such as xyzzyx.

I encourage you to read the grep man page. It has a lot more about regu-
lar expressions than I covered here. The best way to learn them is to experi-
ment. You can open a terminal window and enter grep followed by a pattern.
It will then wait for you to enter lines on the keyboard. Lines that match will
be repeated. Lines that don’t will not. Try it!

Working in the Command Interface 45

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

The Rest of the grep Family
Two other commands, egrep and fgrep, perform slightly different functions
than grep. Although they still exist, their use is deprecated. Instead, their
exact behavior is achieved by passing either -E or -F to grep. In other words,
grep -E is the same as egrep, and grep -F is the same as fgrep. I’ll refer to them
here as egrep and fgrep for simplicity.

Think of egrep as short for extended grep. It has a simpler set of regu-
lar expressions and meta-symbols than grep, including |, ?, +, {}, and ordi-
nary parentheses. These take the place of \|, \?, \+, \{ \}, \(, and \) in grep,
respectively.

For example, you can write

$ egrep 'March|April|May'

which matches any line containing any of the month names March, April, or
May, which you’d have to write with grep as

$ grep 'March\|April\|May'

Another example is

$ egrep 'M(iss)+ippi'

which matches Mississippi as well as Mississississippi.
Another extension in egrep is the + operator. This matches one or more

occurrences of the preceding expression. It simplifies those situations where
you need to exclude the null string from matching, as is the case with *. For
example

$ egrep '{[}a-z{]}+'

matches one or more lowercase letters and not the null string.

fgrep
The fgrep variant of grep doesn’t support regular expressions but does sup-
port multiple strings. It’s used to search quickly for many different fixed
strings. For example, you can put a list of frequently misspelled words into
a file and then call fgrep to search for them:

$ fgrep -f errors document

This will print all lines in document that contain one of the strings in the file
named errors.

46 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

Summary
A shell is a programmable and substitutable command line interpreter with
many useful and powerful features. The shell is not part of the kernel but
instead runs in user space: the layer above it.

Modern shells provide I/O redirection, interactive command line edit-
ing, a history mechanism, filename substitution, control flow mechanisms
(such as loops, branching, and selection statements, and backgrounding and
job control), aliasing, and scripting. Some commands are built into the shell
so that files do not need to be loaded to execute them.

All files have three different types of access: read, write, and execute.
The permissions for each type of access can be granted independently to the
owner of the file, to a group of users associated with the file, and to every-
one else. You need to learn a relatively small set of commands in order to
perform routine tasks such as navigating through the directory hierarchy,
creating and maintaining files and directories, and viewing and changing
their permissions.

To learn more about using bash, you should read the Bash Reference
Manual. You can download the latest version as a PDF from the GNU website
(https://www.gnu.org/home.en.html). You can also read the bash man page or
the InfoTex page for bash.

Exercises
1. Look at the man page for the shuf command, and then write a com-

mand that generates a random permutation of the integers from 1 to
100 in a file named permutation100 in your current working directory.

2. Write a script named check_procs that runs the ps command every
10 seconds for a total of five times.

3. Modify the preceding script so that it accepts as a command line
argument the number of seconds between runs of the ps command.

4. Write a sequence of two commands that creates an empty file named
shopping_list that you can read and write but that cannot be read or
written by anyone else.

5. Using nothing but the cat command and redirection, show how to
add the lines

milk

bread

eggs

flour

sugar

to the shopping_list file. (Hint: Pressing CTRL-D terminates input.)

Working in the Command Interface 47

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

https://www.gnu.org/home.en.html

6. Read the man page for chmod and write octal expressions that repre-
sent the following permissions.

(a) Owner can read and write; group can write but not read;
others can read.

(b) Everyone can execute, and the owner can read and write.
(c) The owner can read; the group can read; others can’t do

anything.

7. Write a shell script that makes a copy of every file in the current
working directory with the same name and an extension .copy. For
example, the file named myfile would have a copy named myfile.copy.

48 Working in the Command Interface

Online Chapter (System Programming in Linux) © 2025 by Stewart N. Weiss

	WORKING IN THE COMMAND INTERFACE
	Commands Are (Usually) Not Part of the Shell
	Historical Remarks About Shells
	Working with the Shell
	Shell Features
	Standard I/O and Redirection
	Control Operators and Multitasking
	The Shell as a Command
	Parameters and Variables
	File Globs
	Command Substitution
	Control Flow in the Shell
	Shell Scripts
	Shell Environment
	The History Mechanism

	Types of Commands
	File Permissions
	Viewing and Modifying File Attributes
	Working with Directories
	Working with Files
	Displaying Files
	Creating, Removing, and Copying Files and Links

	Filters in Brief
	The sort Filter
	The cut Filter
	Regular Expressions and grep
	The Rest of the grep Family

	Summary
	Exercises

