STATISTICALPOWERAND
UNDERPOWERED STATISTICS

You’ve seen how it’s possible
to miss real effects by not collect-
ing enough data. You might miss a
viable medicine or fail to notice an
important side effect. So how do you know
how much data to collect?

The concept of statistical power provides the answer. The
power of a study is the probability that it will distinguish an
effect of a certain size from pure luck. A study might easily
detect a huge benefit from a medication, but detecting a
subtle difference is much less likely.

The Power Curve

Suppose I'm convinced that my archnemesis has an unfair
coin. Rather than getting heads half the time and tails half the
time, it’s biased to give one outcome 60% of the time, allowing
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him to cheat at incredibly boring coin-flipping betting games.
I suspect he’s cheating—but how to prove it?

I can’t just take the coin, flip it 100 times, and count the
heads. Even a perfectly fair coin won’t always get 50 heads, as
the solid line in Figure 2-1 shows.
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Figure 2-1: The probability of getting different numbers of heads if you flip
a fair coin (solid line) or biased coin (dashed line) 100 times. The biased
coin gives heads 60% of the time.

Even though 50 heads is the most likely outcome, it still
happens less than 10% of the time. I'm also reasonably likely to
get 51 or 52 heads. In fact, when flipping a fair coin 100 times,
I'll get between 40 and 60 heads 95% of the time. On the other
hand, results far outside this range are unlikely: with a fair coin,
there’s only a 1% chance of obtaining more than 63 or fewer
than 37 heads. Getting 90 or 100 heads is almost impossible.

Compare this to the dashed line in Figure 2-1, showing the
probability of outcomes for a coin biased to give heads 60% of
the time. The curves do overlap, but you can see that an unfair
coin is much more likely to produce 70 heads than a fair coin is.

Let’s work out the math. Say I run 100 trials and count
the number of heads. If the result isn’t exactly 50 heads, I'll
calculate the probability that a fair coin would have turned up
a deviation of that size or larger. That probability is my p value.
I’ll consider a p value of 0.05 or less to be statistically significant
and hence call the coin unfair if p is smaller than 0.05.

How likely am I to find out a coin is biased using this pro-
cedure? A power curve, as shown in Figure 2-2, can tell me.
Along the horizontal axis is the coin’s true probability of get-
ting heads—that is, how biased it is. On the vertical axis is the
probability that I will conclude the coin is rigged.
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The power for any hypothesis test is the probability that
it will yield a statistically significant outcome (defined in this
example as p < 0.05). A fair coin will show between 40 and
60 heads in 95% of trials, so for an unfair coin, the power is the
probability of a result outside this range of 40-60 heads. The
power is affected by three factors:

® The size of the bias you’re looking for. A huge bias is much
easier to detect than a tiny one.

¢  The sample size. By collecting more data (more coin flips),
you can more easily detect small biases.

*  Measurement error. It’s easy to count coin flips, but many
experiments deal with values that are harder to measure,
such as medical studies investigating symptoms of fatigue or
depression.

[ ] ] |
0.0 0.2 0.4 0.6 0.8 1.0

True Probability of Heads

Figure 2-2: The power curves for 100 and 1,000 coin flips, showing the
probability of detecting biases of different magnitudes. The vertical line
indicates a 60% probability of heads.

Let’s start with the size of the bias. The solid line in Fig-
ure 2-2 shows that if the coin is rigged to give heads 60% of the
time, I have a 50% chance of concluding that it’s rigged after
100 flips. (That is, when the true probability of heads is 0.6,
the power is 0.5.) The other half of the time, I'll get fewer than
60 heads and fail to detect the bias. With only 100 flips, there’s
just too little data to always separate bias from random varia-
tion. The coin would have to be incredibly biased—yielding
heads more than 80% of the time, for example—for me to
notice nearly 100% of the time.

Another problem is that even if the coin is perfectly fair, I
will falsely accuse it of bias 5% of the time. I've designed my test
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to interpret outcomes with p < 0.05 as a sign of bias, but those
outcomes do happen even with a fair coin.

Fortunately, an increased sample size improves the sensitiv-
ity. The dashed line shows that with 1,000 flips, I can easily tell
whether the coin is rigged. This makes sense: it’s overwhelm-
ingly unlikely that I could flip a fair coin 1,000 times and get
more than 600 heads. I'll get between 469 and 531 95% of the
time. Unfortunately, I don’t really have the time to flip my
nemesis’s coin 1,000 times to test its fairness. Often, perform-
ing a sufficiently powerful test is out of the question for purely
practical reasons.

Now counting heads and tails is easy, but what if I were
instead administering IQ tests? An IQ score does not measure
an underlying “truth” but instead can vary from day to day
depending on the questions on the test and the mood of the
subject, introducing random noise to the measurements. If you
were to compare the IQs of two groups of people, you’d see not
only the normal variation in intelligence from one person to
the next but also the random variation in individual scores. A
test with high variability, such as an IQ test requiring subjective
grading, will have relatively less statistical power.

More data helps distinguish the signal from the noise. But
this is easier said than done: many scientists don’t have the
resources to conduct studies with adequate statistical power to
detect what they’re looking for. They are doomed to fail before
they even start.

The Perils of Being Underpowered

Chapter 2

Consider a trial testing two different medicines, Fixitol and
Solvix, for the same condition. You want to know which is safer,
but side effects are rare, so even if you test both medicines on
100 patients, only a few in each group will suffer serious side
effects. Just as it is difficult to tell the difference between two
coins that turn up 50% heads and 51% heads, the difference
between a 3% and 4% side effect rate is difficult to discern. If
four people taking Fixitol have serious side effects and only
three people taking Solvix have them, you can’t say for sure
whether the difference is due to Fixitol.

If a trial isn’t powerful enough to detect the effect it’s look-
ing for, we say it is underpowered.

You might think calculations of statistical power are essen-
tial for medical trials; a scientist might want to know how many
patients are needed to test a new medication, and a quick calcu-
lation of statistical power would provide the answer. Scientists
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are usually satisfied when the statistical power is 0.8 or higher,
corresponding to an 80% chance of detecting a real effect of
the expected size. (If the true effect is actually larger, the study
will have greater power.)

However, few scientists ever perform this calculation, and
few journal articles even mention statistical power. In the pres-
tigious journals Science and Nature, fewer than 3% of articles
calculate statistical power before starting their study.! Indeed,
many trials conclude that “there was no statistically significant
difference in adverse effects between groups,” without noting
that there was insufficient data to detect any but the largest
differences.? If one of these trials was comparing side effects
in two drugs, a doctor might erroneously think the medications
are equally safe, when one could very well be much more dan-
gerous than the other.

Maybe this is a problem only for rare side effects or only
when a medication has a weak effect? Nope. In one sample of
studies published in prestigious medical journals between 1975
and 1990, more than four-fifths of randomized controlled trials
that reported negative results didn’t collect enough data to
detect a 25 % difference in primary outcome between treatment
groups. That is, even if one medication reduced symptoms by
25% more than another, there was insufficient data to make
that conclusion. And nearly two-thirds of the negative trials
didn’t have the power to detect a 50% difference.’

A more recent study of trials in cancer research found
similar results: only about half of published studies with nega-
tive results had enough statistical power to detect even a large
difference in their primary outcome variable.* Less than 10%
of these studies explained why their sample sizes were so poor.
Similar problems have been consistently seen in other fields of
medicine.>®

In neuroscience, the problem is even worse. Each individ-
ual neuroscience study collects such little data that the median
study has only a 20% chance of being able to detect the effect
it’s looking for. You could compensate for this by aggregating
data collected across several papers all investigating the same
effect. But since many neuroscience studies use animal sub-
jects, this raises a significant ethical concern. If each study is
underpowered, the true effect will likely be discovered only
after many studies using many animals have been completed
and analyzed—using far more animal subjects than if the study
had been done properly in the first place.” An ethical review
board should not approve a trial if it knows the trial is unable
to detect the effect it is looking for.
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Wherefore Poor Power?

Curiously, the problem of underpowered studies has been
known for decades, yet it is as prevalent now as it was when
first pointed out. In 1960 Jacob Cohen investigated the statis-
tical power of studies published in the Journal of Abnormal and
Social Psychology® and discovered that the average study had
only a power of 0.48 for detecting medium-sized effects.” His
research was cited hundreds of times, and many similar reviews
followed, all exhorting the need for power calculations and
larger sample sizes. Then, in 1989, a review showed that in the
decades since Cohen’s research, the average study’s power had
actually decreased.” This decrease was because of researchers
becoming aware of another problem, the issue of multiple com-
parisons, and compensating for it in a way that reduced their
studies’ power. (I will discuss multiple comparisons in Chap-
ter 4, where you will see that there is an unfortunate trade-off
between a study’s power and multiple comparison correction.)

So why are power calculations often forgotten? One reason
is the discrepancy between our intuitive feeling about sample
sizes and the results of power calculations. It’s easy to think,
“Surely these are enough test subjects,” even when the study
has abysmal power. For example, suppose you're testing a
new heart attack treatment protocol and hope to cut the risk
of death in half, from 20% to 10%. You might be inclined to
think, “If I don’t see a difference when I try this procedure on
50 patients, clearly the benefit is too small to be useful.” But
to have 80% power to detect the effect, you’d actually need
400 patients—200 in each control and treatment group.!”
Perhaps clinicians just don’t realize that their adequate-
seeming sample sizes are in fact far too small.

Math is another possible explanation for why power calcu-
lations are so uncommon: analytically calculating power can
be difficult or downright impossible. Techniques for calculat-
ing power are not frequently taught in intro statistics courses.
And some commercially available statistical software does not
come with power calculation functions. It is possible to avoid
hairy mathematics by simply simulating thousands of artifi-
cial datasets with the effect size you expect and running your
statistical tests on the simulated data. The power is simply the
fraction of datasets for which you obtain a statistically significant
result. But this approach requires programming experience,
and simulating realistic data can be tricky.

*Cohen defined “medium-sized” as a 0.5-standard-deviation difference between
groups.
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Even so, you’d think scientists would notice their power
problems and try to correct them; after five or six studies with
insignificant results, a scientist might start wondering what she’s
doing wrong. But the average study performs not one hypoth-
esis test but many and so has a good shot at finding something
significant.!! As long as this significant result is interesting
enough to feature in a paper, the scientist will not feel that
her studies are underpowered.

The perils of insufficient power do not mean that scientists
are lying when they state they detected no significant difference
between groups. But it’s misleading to assume these results
mean there is no real difference. There may be a difference,
even an important one, but the study was so small it’d be lucky
to notice it. Let’s consider an example we see every day.

Wrong Turns on Red

In the 1970s, many parts of the United States began allowing
drivers to turn right at a red light. For many years prior, road
designers and civil engineers argued that allowing right turns
on a red light would be a safety hazard, causing many additional
crashes and pedestrian deaths. But the 1973 oil crisis and its
fallout spurred traffic agencies to consider allowing right turns
on red to save fuel wasted by commuters waiting at red lights,
and eventually Congress required states to allow right turns
on red, treating it as an energy conservation measure just like
building insulation standards and more efficient lighting.
Several studies were conducted to consider the safety
impact of the change. In one, a consultant for the Virginia
Department of Highways and Transportation conducted a
before-and-after study of 20 intersections that had begun to
allow right turns on red. Before the change, there were 308
accidents at the intersections; after, there were 337 in a similar
length of time. But this difference was not statistically signifi-
cant, which the consultant indicated in his report. When the
report was forwarded to the governor, the commissioner of the
Department of Highways and Transportation wrote that “we can
discern no significant hazard to motorists or pedestrians from
implementation” of right turns on red.'? In other words, he
turned statistical insignificance into practical insignificance.
Several subsequent studies had similar findings: small
increases in the number of crashes but not enough data to
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conclude these increases were significant. As one report
concluded,

There is no reason to suspect that pedestrian acci-
dents involving RT operations (right turns) have
increased after the adoption of [right turn on red].

Of course, these studies were underpowered. But more
cities and states began to allow right turns on red, and the prac-
tice became widespread across the entire United States. Appar-
ently, no one attempted to aggregate these many small studies
to produce a more useful dataset. Meanwhile, more pedestrians
were being run over, and more cars were involved in collisions.
Nobody collected enough data to show this conclusively until
several years later, when studies finally showed that among inci-
dents involving right turns, collisions were occurring roughly
20% more frequently, 60% more pedestrians were being run
over, and twice as many bicyclists were being struck.!314:*

Alas, the world of traffic safety has learned little from this
example. A 2002 study, for example, considered the impact
of paved shoulders on the accident rates of traffic on rural
roads. Unsurprisingly, a paved shoulder reduced the risk of
accident—but there was insufficient data to declare this reduc-
tion statistically significant, so the authors stated that the cost
of paved shoulders was not justified. They performed no cost-
benefit analysis because they treated the insignificant differ-
ence as meaning there was no difference at all, despite the fact
that they had collected data suggesting that paved shoulders
improved safety! The evidence was not strong enough to meet
their desired p value threshold.'? A better analysis would have
admitted that while it is plausible that shoulders have no benefit
at all, the data is also consistent with them having substantial
benefits. That means looking at confidence intervals.

Confidence Intervals and Empowerment

Chapter 2

More useful than a statement that an experiment’s results were
statistically insignificant is a confidence interval giving plausible
sizes for the effect. Even if the confidence interval includes
zero, its width tells you a lot: a narrow interval covering zero
tells you that the effect is most likely small (which may be all
you need to know, if a small effect is not practically useful),

It is important to note that accidents involving right turns are rare: these
changes amount to fewer than 100 deaths per year in the United States.!?

A 60% increase in a small number is still small—but nonetheless, a statistical
error kills dozens of people each year!
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Truth

while a wide interval clearly shows that the measurement was
not precise enough to draw conclusions.

Physicists commonly use confidence intervals to place
bounds on quantities that are not significantly different
from zero. In the search for a new fundamental particle, for
example, it’s not helpful to say, “The signal was not statis-
tically significant.” Instead, physicists can use a confidence
interval to place an upper bound on the rate at which the
particle is produced in the particle collisions under study
and then compare this result to the competing theories that
predict its behavior (and force future experimenters to build
yet bigger instruments to find it).

Thinking about results in terms of confidence intervals
provides a new way to approach experimental design. Instead
of focusing on the power of significance tests, ask, “How much
data must I collect to measure the effect to my desired preci-
sion?” Even a powerful experiment can nonetheless produce
significant results with extremely wide confidence intervals,
making its results difficult to interpret.

Of course, the sizes of our confidence intervals vary from
one experiment to the next because our data varies from
experiment to experiment. Instead of choosing a sample size
to achieve a certain level of power, we choose a sample size
so the confidence interval will be suitably narrow 99% of the
time (or 95%; there’s not yet a standard convention for this
number, called the assurance, which determines how often the
confidence interval must beat our target width).!%

Sample size selection methods based on assurance have
been developed for many common statistical tests, though not
for all; it is a new field, and statisticians have yet to fully explore
it.'” (These methods go by the name accuracy in parameter esti-
mation, or AIPE.) Statistical power is used far more often than
assurance, which has not yet been widely adopted by scientists
in any field. Nonetheless, these methods are enormously useful.
Statistical significance is often a crutch, a catchier-sounding but
less informative substitute for a good confidence interval.

Inflation

Suppose Fixitol reduces symptoms by 20% over a placebo, but
the trial you’re using to test it is too small to have adequate
statistical power to detect this difference reliably. We know that
small trials tend to have varying results; it’s easy to get 10 lucky
patients who have shorter colds than usual but much harder to
get 10,000 who all do.

Statistics Done V@‘%'ﬁt'gcc\ Power and Underpowered Statistics 23
© 2015 Alex Reinhart



24

Chapter 2

Now imagine running many copies of this trial. Sometimes
you get unlucky patients, so you don’t notice any statistically sig-
nificant improvement from your drug. Sometimes your patients
are exactly average and the treatment group has their symptoms
reduced by 20%—but you don’t have enough data to call this a
statistically significant increase, so you ignore it. Sometimes the
patients are lucky and have their symptoms reduced by much
more than 20%, so you stop the trial and say, “Look! It works!”
You can plot these outcomes in Figure 2-3, which shows the
probability that each trial will yield a certain effect size estimate.
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Figure 2-3: If you run your trial thousands of times, you will see a broad
distribution of effect sizes in terms of percent reduction in symptoms.

The vertical dotted line indicates the effect size which is large enough

to be statistically significant. The true improvement is 20%, but you see
effects from 10% losses to 50% gains. Only the lucky trials are statistically
significant, exaggerating the effect size.

You've correctly concluded Fixitol is effective, but you've
inflated the size of its effect because your study was under-
powered.

This effect, known as truth inflation, type M error (M for
magnitude), or the winner’s curse, occurs in fields where many
researchers conduct similar experiments and compete to pub-
lish the most “exciting” results: pharmacological trials, epi-
demiological studies, gene association studies (“gene A causes
condition B”), and psychological studies often show symptoms,
along with some of the most-cited papers in the medical litera-
ture.1819 In fast-moving fields such as genetics, the earliest pub-
lished results are often the most extreme because journals are
most interested in publishing new and exciting results. Follow-
up studies tend to show much smaller effects.?’
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Consider also that top-ranked journals, such as Nature
and Science, prefer to publish studies with groundbreaking
results—meaning large effect sizes in novel fields with little
prior research. This is a perfect combination for chronic truth
inflation. Some evidence suggests a correlation between a
journal’s impact factor (a rough measure of its prominence
and importance) and the factor by which its studies overesti-
mate effect sizes. Studies that produce less “exciting” results
are closer to the truth but less interesting to a major journal
editor.?1-22

When a study claims to have detected a large effect with
a relatively small sample, your first reaction should not be
“Wow, they’ve found something big!” but “Wow, this study
is underpowered!”?® Here’s an example. Starting in 2005,
Satoshi Kanazawa published a series of papers on the theme
of gender ratios, culminating with “Beautiful Parents Have
More Daughters.” He followed up with a book discussing
this and other “politically incorrect truths” he’d discovered.
The studies were popular in the press at the time, particu-
larly because of the large effect size they reported: Kanazawa
claimed the most beautiful parents have daughters 52% of the
time, but the least attractive parents have daughters only 44%
of the time.

To biologists, a small effect—perhaps one or two percent-
age points—would be plausible. The Trivers—Willard Hypothesis
suggests that if parents have a trait that benefits girls more than
boys, then they will have more girls than boys (or vice versa).

If you assume girls benefit more from beauty than boys, then
the hypothesis would predict beautiful parents would have, on
average, slightly more daughters.

But the effect size claimed by Kanazawa was extraordinary.
And as it turned out, he committed several errors in his statis-
tical analysis. A corrected regression analysis found that his
data showed attractive parents were indeed 4.7% more likely
to have girls—but the confidence interval stretched from 13.3%
more likely to 3.9% less likely.?? Though Kanazawa’s study used
data from nearly 3,000 parents, the results were not statistically
significant.

Enormous amounts of data would be needed to reliably
detect a small difference. Imagine a more realistic effect size—
say, 0.3%. Even with 3,000 parents, an observed difference of
0.3% is far too small to distinguish from luck. You’d be lucky to
obtain a statistically significant result just 5% of the time. These
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results will be those that exaggerate the true effect by at least a
factor of 20, and 40% of them will produce a wild overestimate
in favor of boys instead of girls.?

So even if Kanazawa had performed a perfect statistical
analysis, he still would have occasionally gotten lucky with a
paper like “Engineers Have More Sons, Nurses Have More
Daughters” and given a wild overestimate of a true, tiny effect.
Studies of the size he conducted are simply incapable of detect-
ing effects of the size you’d expect in advance. A prior power
analysis would have told him this.

Little Extremes

Truth inflation arises because small, underpowered studies
have widely varying results. Occasionally you’re bound to
get lucky and have a statistically significant but wildly over-
estimated result. But this wide variation can cause trouble
even when you’re not performing significance tests. Sup-
pose you’re in charge of public school reform. As part of
your research into the best teaching methods, you look

at the effect of school size on standardized test scores. Do
smaller schools perform better than larger schools? Should
you try to build many small schools or a few large schools?

To answer this question, you compile a list of the highest-
performing schools you have. The average school has about
1,000 students, but the top-scoring 10 schools are almost all
smaller than that. It seems that small schools do the best, per-
haps because teachers can get to know students and help them
individually.

Then you take a look at the worst-performing schools,
expecting them to be large urban schools with thousands of
students and overworked teachers. Surprise! They’re all small
schools too.

What’s going on? Well, take a look at the plot of test
scores versus school size in Figure 2-4. Smaller schools have
wider variation in test scores because they have fewer students.
With fewer students, there are fewer data points to establish
the “true” performance of the teachers; a few anomalous scores
can sway the school’s average significantly. As schools get larger,
test scores vary less and in fact increase on average.

*A real paper, which he published in 2005 in the jJournal of Theoretical Biology.
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Figure 2-4: Schools with more students have less random variation in
their test scores. This data is simulated but based on real observations of
Pennsylvania public schools.

Another example: in the United States, counties with the
lowest rates of kidney cancer tend to be Midwestern, Southern,
and Western rural counties. Why might this be? Maybe rural
people get more exercise or inhale less-polluted air. Or perhaps
they just lead less stressful lives.

On the other hand, counties with the highest rates of kidney
cancer tend to be Midwestern, Southern, and Western rural
counties.

The problem, of course, is that rural counties have the
smallest populations. A single kidney cancer patient in a county
with 10 residents gives that county the highest kidney cancer
rate in the nation. Small counties hence have much more vari-
ation in kidney cancer rates simply because they have so few
residents.?’ The confidence intervals for their cancer rates are
correspondingly larger.

A popular strategy to fight this problem is called shrink-
age. For counties with few residents, you can “shrink” the
cancer rate estimates toward the national average by taking a
weighted average of the county cancer rate with the national
average rate. When the county has few residents, you weight
the national average strongly; when the county is large, you
weight the county strongly. Shrinkage is now common practice
in constructing cancer rate maps, among other applications.”
Unfortunately, it biases results in the opposite direction: small

“However, shrinkage is usually implemented using more sophisticated methods
than a simple weighted average.
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counties with truly abnormal cancer rates are estimated to have
rates much closer to the national average than they are.

There’s no single fix to this problem. The best alternative is
to sidestep it altogether: rather than estimating rates by county,
you could use congressional districts, which in the United States
are designed to have roughly equal populations. Congressional
districts are much larger than counties, though, and frequently
they have strange shapes because of gerrymandering. Maps
based on districts may not be statistically misleading but are
still difficult to interpret.

Of course, enforcing equal sample sizes isn’t always an
option. Online shopping sites, for instance, need to sort prod-
ucts based on customer ratings, but they can’t force equal num-
bers of customers to rate every product. Another example is a
discussion website like reddit, which can sort comments by user
ratings; comments can receive vastly different numbers of votes
depending on when or where or by whom they were posted.
Shrinkage is helpful in dealing with these situations. An online
store can use a weighted average of a product’s ratings and
some global average. Products with few ratings will be treated
as generically average, while products with thousands of votes
are sorted by their true individual ratings.

For sites like reddit that have simple up-and-down votes
rather than star ratings, one alternative is to generate a confi-
dence interval for the fraction of positive votes. The interval
starts wide when a comment has only a few votes and narrows
to a definite value (“70% of voters like this comment”) as com-
ments accumulate; sort the comments by the bottom bound
of their confidence intervals. New comments start near the
bottom, but the best among them accumulate votes and creep
up the page as the confidence interval narrows. And because
comments are sorted by the proportion of positive votes rather
than the total number, new comments can compete with those
that have already accumulated thousands of votes.?6:27

® (Calculate the statistical power when designing your study
to determine the appropriate sample size. Don’t skimp.
Consult a book like Cohen’s classic Statistical Power Analysis
Jfor the Behavioral Sciences or talk to a statistical consultant. If
the sample size is impractical, be aware of the limitations of
your study.

*  When you need to measure an effect with precision, rather
than simply testing for significance, use assurance instead
of power: design your experiment to measure the hypothe-
sized effect to your desired level of precision.
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Remember that “statistically insignificant” does not mean
“zero.” Even if your result is insignificant, it represents the
best available estimate given the data you have collected.
“Not significant” does not mean “nonexistent.”

Look skeptically on the results of clearly underpowered
studies. They may be exaggerated due to truth inflation.

Use confidence intervals to determine the range of
answers consistent with your data, regardless of statistical
significance.

When comparing groups of different sizes, compute confi-
dence intervals. These will reflect the additional certainty
you have in larger groups.
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