
We’ve explored many ways to analyze network 
data by measuring geometric properties. In 

this chapter, we’ll introduce network filtration 
for weighted networks, which tracks geometric 

properties and network metrics over threshold values 
imposed on the network. Then we’ll examine how net-
work data can be transformed into a higher-dimensional 
topological object called a simplicial complex, and we’ll 
explore higher-dimensional versions of the network met-
rics we’ve previously considered. From there, we’ll return 
to graph comparisons using a tool from topology related 
to filtrations.

4
B E Y O N D  N E T W O R K S
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2   Chapter 4

Graph Filtration
In the previous chapters, we reviewed different network metrics, includ-
ing different measures of centrality, entropy, spectral radius, diameter, and 
many others. There’s an interesting way to understand topological proper-
ties of weighted networks: graph filtration, a method of creating a series of 
weighted networks by iteratively removing edges below a certain threshold 
(for instance, all edges with weights lower than 0.2, 0.4, or 0.6). By creating a 
series of thresholded graphs, it’s possible to identify persistent network met-
rics, or local and global network metrics that persist across a wide range of 
filtration values. This gives us features that can be plotted or tracked across 
filtrations. This is one of the core ideas of topological data analysis (TDA).

To explore this further, let’s say we’re examining longitudinal educa-
tional or risk behavior outcomes of adolescents based on adolescent friend-
ship or informal social ties within a community. Imagine we have weighted 
social networks with high degree metrics for each vertex, where edges are 
weighted by hours spent with friends over a normal week. The first group 
of friends might spend a couple hours together playing soccer on the week-
end. The second group might study together once or twice a week and see 
each other in classes. The third group might play sports often, do home-
work together after dinner or in the mornings before school, and stay over 
at each other’s homes often. As we filter hours spent together, the degree 
metrics will drop for the first two groups of friends in a network. The last 
group will retain a high degree metric over the filtration, as they spend 
more time together. This persistence of degree will likely shed light on the 
strength of whatever social ties we’re examining in our study.

Let’s examine how we can implement graph filtrations by decomposing 
and exploring two small example social networks, Graph 1 and Graph 2. 
First, we’ll load the two networks into R and explore the structures of the 
full networks with the script in Listing 4-1.

#load both networks in R
mydata1<-as.matrix(read.csv("Graph1w.csv",header=F))
mydata2<-as.matrix(read.csv("Graph2w.csv",header=F))

#load igraph and convert to graph objects
library(igraph)
g1<-graph_from_adjacency_matrix(mydata1,mode="undirected",weighted=T)
g2<-graph_from_adjacency_matrix(mydata2,mode="undirected",weighted=T)

#plot the two graphs
plot(g1,edge.label=E(g1)$weight,main="Graph 1")
plot(g2,edge.label=E(g2)$weight,main="Graph 2")

Listing 4-1: A script that loads two different network structures for filtration

The script in Listing 4-1 should load two different networks, Graph 1 
and Graph 2, which have different connectivity patterns but the same num-
ber of vertices. It should also plot both networks with edge weights given in 
the plots. Let’s compare the networks, shown in Figure 4-1.
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Beyond Networks   3

Figure 4-1: Plots of the two example networks

Figure 4-1 suggests that Graph 1 is a sparsely connected network with 
mostly large edge weights (perhaps a sample of students in the same class 
showing up for a service activity over the course of a weekend), whereas Graph 
2 is a densely connected network with a mixture of different edge weights 
(perhaps a friendship network within a sports team). We’d expect higher hub 
scores and other centrality measures in Graph 2, but a filtration might change 
those metrics more quickly than we’d expect them to change in Graph 1.

Let’s create filtrations of the networks; this will allow us to explore a 
few centrality metrics on these networks. We can do this by adding the fol-
lowing code to the script in Listing 4-1:

#filter Graph 1
mydata1[mydata1<0.2]<-0
g12<-graph_from_adjacency_matrix(mydata1,mode="undirected",weighted=T)
mydata1[mydata1<0.4]<-0
g14<-graph_from_adjacency_matrix(mydata1,mode="undirected",weighted=T)
mydata1[mydata1<0.6]<-0
g16<-graph_from_adjacency_matrix(mydata1,mode="undirected",weighted=T)
mydata1[mydata1<0.8]<-0
g18<-graph_from_adjacency_matrix(mydata1,mode="undirected",weighted=T)

#filter Graph 2
mydata2[mydata2<0.2]<-0
g22<-graph_from_adjacency_matrix(mydata2,mode="undirected",weighted=T)
mydata2[mydata2<0.4]<-0
g24<-graph_from_adjacency_matrix(mydata2,mode="undirected",weighted=T)
mydata2[mydata2<0.6]<-0
g26<-graph_from_adjacency_matrix(mydata2,mode="undirected",weighted=T)
mydata2[mydata2<0.8]<-0
g28<-graph_from_adjacency_matrix(mydata2,mode="undirected",weighted=T)
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4   Chapter 4

The previous code filters Graph 1 and Graph 2 by edge weight, using 
increasing intervals of 0.2. This yields a series of five networks in each 
graph filtration, which can be further examined by applying network met-
rics to each sequence of filtered graphs.

Let’s examine the degree centrality of each vertex across the filtration 
of Graph 1 by adding the following to our script:

#calculate degree centrality for Graph 1's filtration sequence
d1<-degree(g1)
d12<-degree(g12)
d14<-degree(g14)
d16<-degree(g16)
d18<-degree(g18)

#create a dataset tracking degree centrality across the filtration
g1deg<-cbind(d1,d12,d14,d16,d18)

This code calculates degree centrality across filtrations of Graph 1, 
which should yield a dataset containing the information in Table 4-1.

Table 4-1: Degree Centrality Across Graph 1 Filtrations

Column1 d1 d12 d14 d16 d18

V1 3 2 2 1 0

V2 2 1 1 1 1

V3 3 3 3 2 1

V4 3 3 3 1 1

V5 2 2 2 2 1

V6 1 1 1 1 0

Table 4-1 shows that vertices 1, 3, and 4 have high degree centralities; 
however, vertices 3 and 4 retain these high degree centrality values across 
much more of the filtration than vertex 1, suggesting they are more impor-
tant to the network, despite having the same centrality metric on the unfil-
tered network (column 1).

Now, let’s add some code to calculate degree centrality across Graph 2’s 
filtration:

#calculate degree centrality for Graph 2's filtration sequence
d2<-degree(g2)
d22<-degree(g22)
d24<-degree(g24)
d26<-degree(g26)
d28<-degree(g28)

#create a dataset tracking degree centrality across the filtration
g2deg<-cbind(d2,d22,d24,d26,d28)

This code calculates degree centrality across the filtration of Graph 2,  
yielding a table similar to that obtained by Graph 1’s filtration and 
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Beyond Networks   5

centrality calculation. Table 4-2 summarizes the findings from the Graph 2 
filtration and centrality calculation.

Table 4-2: Degree Centrality Across Graph 2

Column1 d2 d22 d24 d26 d28

V1 4 3 3 3 3

V2 4 4 3 2 1

V3 4 4 3 2 1

V4 5 4 3 0 0

V5 3 3 1 1 0

V6 4 4 3 2 1

As Table 4-2 shows, there are relatively high degree centrality measures 
in the unfiltered Graph 2; however, the pattern changes by vertex after the 
filtration begins. Some vertices, like vertex 1, retain a high degree central-
ity throughout the filtration. Others, such as vertex 4, retain a high degree 
centrality and then drop to 0. Others still, like vertex 6, show a slow degra-
dation of degree centrality over the full filtration. This may be informative 
in a study of social ties within a subgroup of interest. A high degree of infor-
mal social ties, represented by a high centrality degree, has been linked to 
positive educational attainment, career achievement, and resilience to life 
adversity in young adults.

Degree centrality is only one example of metrics that we can calculate 
across a filtration; we can also calculate other local metrics such as between-
ness centrality or triadic closure. In addition, we can calculate global metrics, 
such as the spectral radius or the Euler characteristic, across a filtration. Let’s 
add the following to Listing 4-1 to calculate the diameter of each filtration of 
Graph 1:

#calculate graph diameter of Graph 1's filtration
di1<-diameter(g1)
di12<-diameter(g12)
di14<-diameter(g14)
di16<-diameter(g16)
di18<-diameter(g18)

The sequence of diameters calculated across the filtration of Graph 1 
by this code is 2.1, 2.9, 2.9, 1.6, and 0.9. Let’s calculate the diameters for 
Graph 2’s filtration:

#calculate graph diameter of Graph 2's filtration
di2<-diameter(g2)
di22<-diameter(g22)
di24<-diameter(g24)
di26<-diameter(g26)
di28<-diameter(g28)
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6   Chapter 4

The sequence of diameters calculated across the filtration of Graph 2 
by this code is 0.9, 1.2, 1.6, 2.4, and 1.7. This is different than Graph 1’s 
diameter sequence, suggesting that the diameter is generally smaller until 
later in the filtration sequence. This metric’s filtration might be useful in 
assessing a community’s overall level and depth of informal social ties, a 
measure of community resources available to residents in need. Figure 4-2 
shows the diameter plots across both filtrations to compare the two 
networks.

Graphic Diameter Metric Across Filtrations of Graph 1 and Graph 2
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Figure 4-2: A plot of graph diameter metrics across filtrations of Graph 1 and Graph 2

As we can see in Figure 4-2, Graph 1 has a larger graph diameter than 
Graph 2 early in the filtration, but this relationship switches after a filtra-
tion value of 0.4. This suggests that there is greater eccentricity in Graph 1 
early in the filtrations but greater eccentricity in Graph 2 later in the filtra-
tion. Remember that eccentricity is the maximum distance from one point 
to another in the network.

Graph filtration tracking as we’ve plotted in Figure 4-2 can be help-
ful in distinguishing similar graphs with different connectivity patterns or 
weights. Dynamic networks, in which weights can change over time, could 
be a use case of graph filtrations. In addition, they are quite useful in com-
parison among networks with the same vertices but potentially different 
weights (such as patient groups in brain imaging studies); in fact, brain 
imaging studies are one of the applications for which graph filtration was 
developed. Higher eccentricity values suggest longer pathways to relay neu-
ral signals; stronger edge weights represent stronger connections between 
two areas of the brain. Strong edges with low eccentricity suggest a func-
tional module activated in a particular task given to the patient groups on 
which imaging was performed.

Although graph filtration is a relatively new concept, it has mainly been 
confined to biological network data, including networks based on brain 
imaging studies. However, the graph filtration method is widely applicable 
to weighted network data, and its tool set lends itself to further develop-
ment in other fields. If you want to explore this topic in more depth, look 
through the references at the end of this book and play around with graph 
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Beyond Networks   7

filtrations on their own data. For now, let’s turn our attention to a topologi-
cal view of graphs, which allows us to extend the relationships captured in 
graphs to other types of interactions between people or things.

Simplicial Complexes
Graphs can be considered topological objects that have defined global 
properties we can leverage in our analyses, and it’s possible to turn a graph 
into a higher-dimensional version of a graph, called a simplicial complex, 
by considering three-way, four-way, and n-way interactions by individuals 
and vertices in the graph. Let’s consider three colleagues who often col-
laborate on academic papers but have never published with all three names 
on a paper. We’ll create a simple graph for the three colleagues, shown in 
Figure 4-3.

Pedro Amara

Sadako

Figure 4-3: A simplicial complex showing  
two-way interactions among three colleagues

Now let’s imagine a paper where all three colleagues participate and 
have their names on the paper. This is a three-way interaction, rather than 
three two-way interactions, and we’d end up with a filled-in triangle rather 
than three sets of two-way arrows, as shown in Figure 4-4.

Pedro Amara

Sadako

Figure 4-4: A simplicial complex showing  
three-way interactions among three colleagues

503083c04.indd   7503083c04.indd   7 1/12/23   1:20 PM1/12/23   1:20 PM

The Shape of Data (Sample Chapter) © 1/12/2023 by Colleen M. Farrelly and Yaé Ulrich Gaba



8   Chapter 4

Figure 4-4 uses a triangle to represent a three-way connection among 
colleagues, similar to how the arrows between two colleagues represented 
two-way connections. This can be generalized to tetrahedra for four-way 
interactions and more exotic shapes to represent higher n-way interactions. 
There’s no limit as to how high of a number n can be, but computational 
issues will come into play at some point as we work our way up to n-way 
interactions in a simplicial complex. Analyses involving email chains, 
co-authors on papers, or conference calls are common applications that 
extend social network analysis and graphs into the analysis of simplicial 
complexes. Depending on the size of the network and the size of the n-way 
interactions, simplicial complex representations of individuals and mutual 
interactions can become very complicated across values of n. Analyzing 
these structures can involve a lot of computing power and tools that extend 
network metrics. However, because graphs are topological objects, many 
theorems and tools of topology can be successfully applied to them without 
transformations or other hassles. This, in turn, allows for other areas of 
math, including partial differential equations and probability theory, to be 
applied and developed on graphs.

Just as we could filter a weighted graph, we also can filter simplicial 
complexes. The filtration process for simplicial complexes varies depend-
ing on how the simplicial complex is built. In most topological data analysis 
algorithms, we start with a point cloud of data within a space where a dis-
tance metric can be defined. Points are included in a simplicial complex 
if they share either mutual n -way overlapping sets with each other (Čech 
complex) or pairwise overlapping sets (Vietoris–Rips complex). By sequentially 
increasing or decreasing the value of the distance metric, we obtain a filtra-
tion of simplicial complexes. In practice, the Vietoris–Rips complex is easier 
to compute and underlies many common topological data analysis pack-
ages. This leads us to a very new and emerging part of network analytics: 
extensions of network tools to simplicial complexes.

Many of the tools introduced in the previous chapters have simplicial 
complex analogs, including eccentricity, shortest path algorithms, central-
ity metrics (Katz centrality, eigenvector centrality, closeness centrality, and 
so on), triadic closure, and many more. Typically, simplicial complexes of 
network data are built by computing maximal cliques within the network 
(though it’s possible to define a distance metric and apply the process 
defined in the prior paragraph to build simplicial complexes from network 
data as well). Maximal cliques of a network include the highest n-way mutual 
edges among groups of vertices. These maximal cliques correspond to an 
(n-1)-simplicial complex. The flag complex of the graph involves building 
the graph’s simplicial complex by computing the graph’s maximal cliques. 
From this complex, it’s possible to define quantities at each simplicial com-
plex level, which can be combined into a total metric across levels. This 
means we can glean more information about the overall structure of the 
network and its components at various levels of a simplicial complex.

Let’s return to Farrelly’s social network introduced in prior chapters  
and look at an extension of degree centrality, dubbed topological dimension.  
We can define topological dimension as a weighted degree centrality, 
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Beyond Networks   9

weighting each vertex by the dimension of the cliques in which it resides, 
which involves summing across a vertex’s cliques of different dimensions. 
For instance, a vertex in a maximal two-clique and a maximal three-clique 
within the network would have a topological dimension of 5. A vertex in 
a maximal five-clique and no other cliques would also have a topological 
dimension of 5. However, the former vertex might have a degree of 3, con-
necting to one other vertex in the two-clique and two other vertices in the 
three-clique; the latter would have a degree of 4, connecting to the four 
other vertices in the five-clique.

In Listing 4-2, we have a script that calculates the maximal cliques and 
the topological dimension of vertices within Farrelly’s social network.

#load the author's network
g_social<-read.csv("SocialNetwork.csv")

#create the graph
library(igraph)
g1<-graph_from_adjacency_matrix(g_social,mode="undirected",weighted=F)

#compute the maximal cliques in the author's network data
cl<-maximal.cliques(g1)

#create array
cl<-as.array(cl)

#get clique size from maximal clique array
d<-dim(cl)
l<-rep(NA,d)
for (i in 1:d){
l[i]<-length(as.vector(cl[[i]]))}

#create matrix of vertices in maximal cliques
av<-matrix(rep(NA,d*20),20)
for (i in 1:20){
for (j in 1:d){
av[i,j]<-i%in%cl[[j]]
}}

#convert to binary indicators
avind<-ifelse(av==TRUE,1,0)

#multiply out to calculate each vertex's topological dimension
topmat<-t(avind)*l
topdim<-colSums(topmat)

Listing 4-2: A script that calculates topological dimension across vertices in Farrelly’s 
social network

This script results in a topological dimension calculation based on the 
flag complex of the graph. It first calculates the flag complex from the 
maximal cliques; it then stores the information of each clique, such that 
we can cycle through each clique to see which vertices belong to each 
clique. Converting this information to a binary indicator matrix allows us 
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10   Chapter 4

to multiply the dimension of the clique and the indicator matrix, resulting 
in a vector containing the topological dimension of each vertex. Table 4-3 
shows the topological dimension and degree of each vertex in the author’s 
network dataset.

Table 4-3: Topological Dimension and Degree  
Summary for Vertices in Farrelly’s Social Network

Vertex Degree Topological dimension

1 2 3

2 1 2

3 5 11

4 2 3

5 4 7

6 3 6

7 8 18

8 3 4

9 3 4

10 3 6

11 3 5

12 1 2

13 4 8

14 4 7

15 4 8

16 2 4

17 2 4

18 3 6

19 2 4

20 1 2

Table 4-3 shows a distinct difference between degree, which includes 
only the vertices and edges of the author’s network in its calculation, and 
the topological dimension, which includes higher-order interactions. For 
instance, vertices 9 and 10 both have a degree of 3; however, their topologi-
cal dimensions differ, with vertex 9 having a score of 4 and vertex 10 having 
a score of 6. The importance of vertex 10 to the overall network structure 
is larger than the importance of vertex 9 to the overall network structure. 
Without considering higher-order interactions within the network, we 
would not be able to distinguish between the two vertices with respect to 
this metric.

For weighted networks, it’s possible to combine these simplicial-complex-
based metrics with graph filtration, yielding a sequence of metrics over the 
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Beyond Networks   11

filtration based on the simplicial complex of the network. You’ll see this 
when we discuss a tool called persistent homology in the next section of this 
chapter. You could do the same with the Euler characteristic or the topo-
logical dimension or a yet-to-be-developed simplicial complex extension of 
network metrics.

Simplicial complex extensions of network metrics are a very new area 
of study within network science, and few packages or open source functions 
exist to calculate the simplicial analogs of network metrics. However, it is 
hoped that this example and some of the papers on this topic will spark the 
addition of simplex-based metric within network science packages. Perhaps 
you will take up the challenge and contribute functions to the igraph pack-
age or other open source network science tools.

The next tools we look at will involve a bit more topology than we’ve 
encountered so far, so first let’s explore another topological concept that’s 
useful in graph analytics and in understanding simplicial complexes.

Introduction to Homology
The basic topological premise of our next set of tools involves counting 
different dimensions of holes in an object or dataset. Consider a piece of 
paper with a hole in the middle of it or a basketball with a sphere of air 
inside it. These are holes of different dimensions, and each hole separates 
connected pieces of an object from other pieces of itself. When these holes 
exist in manifolds or functions, we can systematically study them and clas-
sify objects or spaces based on the number and dimension of these holes.

Homology is the counting of varying-dimensional holes (connected 
components, circles, spheres, voids, and so on) within a given object or 
space, usually to classify that object or space. For low-dimensional spaces, 
this is fairly straightforward; you can actually build a physical model of the 
space and count the holes. However, there are also variants of homology 
that allow topologists to distinguish between different types of objects and 
spaces that may be higher dimensional or strangely shaped without requir-
ing a physical model.

Numbers corresponding to holes in each dimension create a handy col-
lection of values, called Betti numbers, that organize the number and type 
of hole within a given object or space such that each object can be classi-
fied and studied alongside other objects whose numbers match. If you’re 
familiar with algebraic topology, this is a standard procedure for the clas-
sification of abstract mathematical structures. Commonly, these numbers 
are stored in a vector. It’s a bit abstract, but we’ll go through some simple 
examples.

Examples of Betti Numbers
Many sports involve using a ball, but not all balls are the same, topo-
logically speaking. Basketballs and baseballs are both round balls in 
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12   Chapter 4

three-dimensional space. Basketballs are usually bigger than baseballs, but 
if there were a child’s toy basketball of the same size as a baseball, one might 
look at them and think they are quite similar.

Figure 4-5: An example baseball and basketball,  
which look similar but are topologically distinct

Topologically, though, they are quite distinct. These two balls differ in 
second Betti numbers, which count three-dimensional voids in an object. A 
vector of Betti numbers is an infinite sequence of numbers representing the 
number of holes in each dimension, starting with connected components on 
the zeroth number position and moving to circles (first number position), 
voids (second number position), and higher-dimensional voids (starting 
from the third position and going to infinite position). In practice, most 
datasets don’t have many holes past the first Betti number, so we can fill the 
rest of the vector with zeros. The hollow basketball has a hole past the first 
Betti number because it contains a void, giving a vector of Betti numbers (1, 
0, 1, 0, . . .), while the solid baseball has no holes of any dimension, corre-
sponding to a Betti number vector of (1, 0, 0, 0, . . .).

Some objects have more than one hole in a given dimension. For instance, 
imagine gluing a second basketball to the outer surface of the basketball in 
Figure 4-5. This object would obviously have another void, yielding a Betti 
number vector of (1, 0, 2, 0, . . .). A donut, or torus, has a vector of (1, 2, 1,  
0, . . .), as it has two open circles defining the ends of the tube, which form a 
void when connected at the ends. Figure 4-6 shows the classical construction 
of a torus from a sheet of paper.

Figure 4-6: The construction of a torus from a sheet of paper connected  
at the edges

It’s fairly easy to classify objects and spaces that can be easily visualized 
in three dimensions. However, many datasets used in the industry involve 
more than three dimensions, and comparisons and classifications of these 
objects require algorithms that can discern the Betti numbers associated 
with those objects; among these are genomics datasets (which can involve 
million-dimensional spaces), video sequences, and multivariate time series.
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The Euler Characteristic
One of the topology-based metrics shows up both in the analysis of net-
works and in their higher-dimensional simplicial complex cousins, and it 
ties back to the notion of curvature introduced in prior chapters. The Euler 
characteristic, often given the notation of χ, provides a single number to sum-
marize a topological space and is a topological invariant, meaning that the 
topological quantity being calculated does not change as the space is con-
tinuously deformed (stretched, twisted, or otherwise manipulated without 
tearing the space). The Euler characteristic can be defined using Betti num-
bers; technically, computing the Euler characteristic this way involves an 
alternating sum of Betti numbers (zeroth Betti number – first Betti number 
+ second Betti number – third Betti number + fourth Betti number . . . up 
until the highest Betti number that exists).

The Euler characteristic can also be defined through the dimensions of 
the simplicial complex (number of vertices – number of edges + number  
of triangles – number of mutual 4-way interactions + . . .). However, vertices  
included in an edge aren’t counted in the number of vertices. A triangle 
that makes up part of a mutual four-way interaction won’t be counted 
either.

However, there is an easy way to obtain the largest pieces of a network 
or its higher-dimensional simplicial complex using an igraph function 
related to maximal cliques (as mentioned earlier). Maximal k – cliques 
denote and count the k – 1 simplices of the full simplicial complex derived 
from the network. They’re a convenient way to build the full simplicial com-
plex and keep track of the pieces involved at each n-way interaction. Let’s 
add to the script in Listing 4-2 to count the maximal cliques in the author’s 
network:

#create a table counting the number of k+1 simplices in the simplicial complex
summ<-as.numeric(summary(cl)[,1])
jjj<-table(summ)

This code creates a table summarizing the maximal cliques in the net-
work that we previously computed. The result should yield 11 two-cliques 
(one-simplices, or edges), 6 three-cliques (two-simplices, or triangles), and 1 
four-clique (four-simplices, or a mutual four-way interaction). We can plug 
these values into the Euler characteristic formula:

χ = 0 vertices – 11 edges + 6 triangles – 1 tetrahedron

This gives a χ of –6. Recent studies have shown that most real-world 
networks have negative Euler characteristics. There’s a very interesting 
reason that network data tends toward negative Euler characteristics 
related to the curvature of the network. Negative curvature in graphs is 
associated with the robustness of the network; biological networks with 
highly negative curvature can often withstand loss of function within 
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parts of the network without adverse effects on the organism. The Gauss–
Bonnet theorem relates the Euler characteristic, defined through homology, 
and the curvature of the object, including the manifold’s curvature and 
the curvature of the manifold’s boundary. There have been some recent 
attempts to link network analytics tools such as homology and Forman–
Ricci curvature for a deeper study into network properties. This is a deep 
result in a branch of mathematics called differential geometry that connects 
an object’s local geometry to its global topology, and it’s a newer area of 
study in network science. Now that we know network topology and geome-
try are related to each other, let’s look at a topological tool called persistent 
homology.

Persistent Homology
One of the most common topology-based algorithms used in data analy-
sis today is persistent homology, which has been applied in genomics, 
healthcare, economics, energy, psychometrics, and many other fields. In 
essence, the idea of the persistent homology algorithm is to build a point 
cloud from the data, filter it into a series of simplicial complexes based 
on different thresholds of the data (akin to an MRI), and track topologi-
cal features, such as holes or voids, appearing and disappearing in each 
slice. For instance, consider the three slices of cheese in Figure 4-7, each 
containing holes in the shape of circles; these circles affect the first Betti 
numbers of the datasets.

Figure 4-7: Three slices of a cheese  
block containing holes in different  
places

In Figure 4-7 one hole appears in all three slices, another appears in 
only the middle slice, and one appears in two slices. Holes and voids can be 
of different sizes in real data, and as we move across slices, holes might grow 
or shrink in diameter. Persistent homology algorithms have thresholds for 
both the lifetime of a feature and the minimum size considered for measur-
ing a hole. In our example, we have features that are likely noise (either too 
small of radius or only appearing in one slice of our cheese) and features 
that are likely real features in the dataset (such as the void appearing in all 
three slices). Let’s unpack this intuition.

Say we want to compare two datasets to see whether they are collected 
from the same distribution or shape. This is common when matching image 
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Beyond Networks   15

data. While image data rarely comes with cheese holes, circles come up in 
image data quite frequently in the form of eyes.

Technically speaking, by varying the distances used to build the sim-
plicial complex from the point cloud data (or filtering), you can track vari-
ous Betti numbers through the filtration and assign each hole in the data 
an importance score, with important features lasting over longer filtration 
distances (longer persistence, in the parlance of persistent homology). In 
Figure 4-7, the hole that appears in all three slices would be considered the 
most important feature, and the hole that appears in only the second slice 
might be a result of noise in the data. These features can then be plotted 
on a barcode or persistence diagram that tracks these features’ lifetimes (dis-
tance scale over which they exist in the filtration). We’ll explore barcodes 
and persistence diagrams in the following example analysis.

In practice, datasets are usually examined only for low-dimensional 
holes and features due to computational issues, and the zeroth (connected 
components) and first (circles) Betti numbers are used most commonly 
unless you are explicitly computing high-dimensional shape data. The 
example in Figure 4-7 is connected in all three slices, so it has a zeroth 
Betti number of 1 across all slices. However, circles appear and disappear 
through the filtration, giving a barcode that looks like Figure 4-8.

1 2 3

Figure 4-8: A diagram plotting  
the persistence of features (holes)  
captured in the box of Figure 4-6

The barcode shows the time at which features appear and disappear. 
For instance, in Figure 4-8, we can see a feature that appears at time 2 and 
disappears at time 3 (our bottom cheese hole in Figure 4-7). The sequence 
of connected components across the data slices has a curious relationship 
with another machine learning method, single-linkage hierarchical clus-
tering, in which clusters at each height level correspond to the connected 
components at that particular slice. When both techniques use the same 
distance metric, the results are actually identical; however, the persistent 
homology approach will give more information than single-linkage hier-
archical clustering’s dendrogram regarding the structure of the data. This 
means that machine learning practitioners can choose the technique that 
fits the problem best, as these two options come with their own plots and 
statistical tests. For instance, with a nontechnical audience, single-linkage 
hierarchical clustering might be preferable, as dendrograms and heatmaps 
are more familiar to biologists or social scientists.
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16   Chapter 4

Comparison of Networks with Persistent Homology
Within the realm of network analytics, persistent homology can be a use-
ful way to compare network structures to see if different networks have the 
same underlying geometry. Let’s explore this further with an application 
to simulated networks. In neuroscience, it’s common to translate fMRI or 
PET data into a network structure, where different regions of the brain are 
translated to vertices and connected to other regions of the brain based 
on activity patterns (sequential activation of an area, for instance, or co-
activation of multiple regions during one task). Often, outcomes of inter-
est involve comparing groups of patients, either healthy patients against a 
group of patients with a particular neurological or psychological disorder 
or two disease groups, to understand differences in the brain activation 
patterns across disorders.

We’ll explore the use of persistent homology in the comparison of two 
such networks. Because fMRI data isn’t readily available as open source, 
we’ll simulate networks in igraph that are approximately the size of brain 
imaging networks; this will demonstrate how this methodology would be 
applied to imaging data that has been transformed to network data.

The igraph package allows you to simulate many types of network  
data, including Erdös–Renyi graphs, scale-free graphs, and Watts–Strogatz 
graphs. We’ll create each of these types of graphs using the script in 
Listing 4-3.

#simulate three graphs using the igraph package for further comparison
library(igraph)

#create an Erdos-Renyi graph
g1<-erdos.renyi.game(30,0.3)

#create a scale-free graph
g2<-sample_pa(30,power=2.5,directed=F)

#create Watts-Strogatz graph
g3<-sample_smallworld(2,5,3,0.3)

#plot the three graphs created
plot(g1,main="Erdos-Renyi Graph")
plot(g2,main="Scale-Free Graph")
plot(g3,main="Watts-Strogatz Graph")

Listing 4-3: A script that simulates three different types of network structures for statistical 
comparison

Listing 4-3 creates three different types of networks that can later 
be compared via persistent homology; it also visualizes the networks, 
which should yield something similar (but probably not identical) to 
Figure 4-9.
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Beyond Networks   17

Figure 4-9: Plots of the three simulated network types

Figure 4-9 shows very different types of graphs. The scale-free graph 
in the middle includes a hub with many vertices connected to the hub but 
not to other vertices. The Erdös–Renyi graph on the left and the Watts–
Strogatz graph on the right have many more interconnections, but the 
Watts–Strogatz model seems to have more structure connecting vertices 
into cliques, rather than randomly connecting vertices.

Let’s apply persistent homology to these networks and compare the dis-
tance between persistence diagrams among these networks by adding the 
following to Listing 4-3; again, your results may vary given the simulation of 
each network type:

#load TDA package
library(TDAstats)

#get adjacency matrices
m1<-as.matrix(get.adjacency(g1))
m2<-as.matrix(get.adjacency(g2))
m3<-as.matrix(get.adjacency(g3))

#compute persistent homology
d1<-calculate_homology(m1, dim = 2, format = "cloud")
d2<-calculate_homology(m2, dim = 2, format = "cloud")
d3<-calculate_homology(m3, dim = 2, format = "cloud")

#plot persistence diagrams
plot_persist(d1)
plot_persist(d2)
plot_persist(d3)

#compute distances among graphs
w1<-phom.dist(d1,d2,limit.num=0)
w2<-phom.dist(d1,d3,limit.num=0)
w3<-phom.dist(d2,d3,limit.num=0)
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18   Chapter 4

This addition derives an adjacency matrix from each of the simulated 
graphs and computes a persistence diagram from this adjacency matrix, 
which is then compared through the distances between the zeroth homol-
ogy groups. This script should produce three persistence diagrams that 
look like Figure 4-10 (note they won’t be identical, as each run will produce 
something slightly different).

Figure 4-10: Persistence diagram plot for the three simulated network types (from left to right: Erdös–Renyi, 
scale-free, and Watts–Strogatz)

Figure 4-10 shows varying topological features found in each of the 
network types. The Watts–Strogatz network and Erdös–Renyi graphs both 
produce many large zeroth homology features (the dots), while the scale-free 
graph has a variety of zeroth homology feature sizes. The scale-free graph 
does not have higher-order homology features, while the other two graphs 
have first homology features (the triangles), albeit very near the diagonal line 
(suggesting that they may be noise). A point directly on the diagonal line is a 
feature that is in only one slice of the data; the further from the diagonal 
line a point lies, the longer it has existed in the data. With respect to our 
three simulated networks, it’s hard to tell if the scale-free and Watts–Strogatz 
graphs differ significantly from the Erdös–Renyi graph just by looking at the 
persistence diagrams.

We can add to our script to derive a null distribution for the Erdös–
Renyi persistence diagram and use a special distance metric, Wasserstein 
distance, to statistically test the structural differences between the Erdös–
Renyi persistence diagram and the scale-free and Watts–Strogatz persis-
tence diagrams:

#get Wasserstein distance between random graphs with the same structure
ww<-rep(NA,100)

for (i in 1:100){
g1<-erdos.renyi.game(30,0.3)
g2<-erdos.renyi.game(30,0.3)
m1<-as.matrix(get.adjacency(g1))
m2<-as.matrix(get.adjacency(g2))
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d1<-calculate_homology(m1, dim = 2, format = "cloud")
d2<-calculate_homology(m2, dim = 2, format = "cloud")
ww[i]<- phom.dist(d1,d2,limit.num=0)}

#compute 95% confidence intervals from the simulated null distribution
quantile(ww,c(0.025,0.975))

This script creates a null distribution of Erdös–Renyi persistence dia-
grams from the same distribution that the original persistence diagram was 
constructed from; your results may vary, given the random component to 
the simulation piece. Quantiles of our null distribution give a confidence 
interval of (0.91, 8.36), which includes quite a bit smaller distances than the 
distances computed between the persistence diagrams of the Erdös–Renyi 
graph and the Watts–Strogatz graph (23.59) and between the persistence 
diagrams of the Erdös–Renyi graph and the scale-free graph (39.78). Thus, 
we can conclude that the structures of the Watts–Strogatz graph and the 
scale-free graph are not random. There is a significant structural compo-
nent to each of these graphs.

This type of simulation can be very useful in testing differences between 
persistence diagrams of brain networks derived from fMRI and PET imag-
ing studies, and it’s easy to implement in R. This methodology can also be 
applied to other networks with a hypothesized underlying structure, such as 
social networks or power grids. Many other types of network analysis tools 
can also be used to compare graph structures, such as local and global met-
rics (including graph radius and diameter, degree distributions, clustering 
graph coefficients, and so on), and many of these comparisons haven’t been 
explored much yet.

Summary
In this chapter, we filtered weighted networks to understand how network 
metrics change as edges are removed based on their weights. Then, we built 
simplicial complexes from network data to leverage several topological 
tools, including an extension of the degree metric, the Euler characteris-
tic, and a filtration-based algorithm called persistent homology that can 
be used to compare networks. In the next chapter, we’ll transition from 
network science to distance geometry as we explore how different measure-
ment choices impact supervised and unsupervised learning algorithms.
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