
Serious Cryptography
A Practical Introduction to Modern Encryption

by Jean-Philippe Aumasson

errata updated to print 9

Page Error Correction
Print

corrected

4 A cryptanalyst can then deduce that the key’s length is either nine or a value divisible
by nine (that is, three)

A cryptanalyst can then deduce that the key’s length is either nine or a value that
divides nine (that is, three)

Print 2

13 Decryption remains deterministic, however, because given E(K, R, P), you should
always get P, regardless of the value of R.

Decryption remains deterministic, however, because given D(K, R, P), you should
always get P, regardless of the value of R.

Print 2

14 The proof works ad absurdum: if you can distinguish ciphertexts from random strings,
which means that you can distinguish DRBG(K , R) ⊕ P from random, then this
means that you can distinguish DRBG(K , R) from random. Remember that the CPA
model lets you get ciphertexts for chosen values of P, so you can XOR P to DRBG(K ,
R) ⊕ P and get DRBG(K , R). But now we have a contradiction, because we started by
assuming that DRBG(K , R) can’t be distinguished from random, producing random
strings.

The proof works ad absurdum: if you can distinguish ciphertexts from random strings,
which means that you can distinguish DRBG(K || R) ⊕ P from random, then this
means that you can distinguish DRBG(K || R) from random. Remember that the
CPA model lets you get ciphertexts for chosen values of P, so you can XOR P to
DRBG(K || R) ⊕ P and get DRBG(K || R). But now we have a contradiction,
because we started by assuming that DRBG(K || R) can’t be distinguished from
random, producing random strings.

Print 2

16 Authenticated encryption with associated data (AEAD) is an extension of authenticated
encryption that takes some cleartext and unencrypted data and uses it to generate the
authentication tag AEAD(K, P, A) = (C, T).

Authenticated encryption with associated data (AEAD) is an extension of authenticated
encryption that takes some cleartext and unencrypted data and uses it to generate the
authentication tag AEAD(K, P, A) = (C, A, T).

Print 9

28 Equation replacement Print 2

32 Listing 2-3: A script showing the evolution of /dev/urandom’s entropy estimate Listing 2-3: A script showing the evolution of /dev/random’s entropy estimate Print 2

46 We say that breaking some cipher is reducible to problem X if any method to solve
problem X also yields a method to break the cipher.

We say that solving problem X is reducible to breaking some cipher if any method
to break the cipher can be ef�ciently adapted to solve problem X.

Print 9

49

openssl rand 16 -hex openssl rand -hex 16

Print 6

70 The last, incomplete ciphertext block is made up of the �rst blocks from the previous
ciphertext block . . .

The last, incomplete ciphertext block is made up of the �rst bits from the previous
ciphertext block . . .

Print 2

73 Why use triple DES and not just double DES, that is, E(K1, E(K2, P))? Why use triple DES and not just double DES, that is, E(K2, E(K1, P))? Print 2

73 You also need to store 256 elements of 15 bytes each, or about 128 petabytes. You also need to store 256 elements of 15 bytes each, or about 1 exabyte. Print 2

Page Error Correction
Print

corrected

74 Figure replacement Print 6

74 . . . decryption will only succeed if C1 ⊕ P2 = X ends with valid padding decryption will only succeed if C1 ⊕ X = P2 ends with valid padding . . . Print 6

84 Repeating the operation four times gives the following state values:
0 1 1 1
1 1 0 0
1 0 0 0
0 0 0 1

And as you can see, the state after �ve updates is the same as the initial one,
demonstrating that we’re in a period-5 cycle and proving that the LFSR’s period isn’t
the maximal value of 15.

Repeating the operation four times gives the following state values:
0 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

And as you can see, the state after six updates is the same as the initial one,
demonstrating that we’re in a period-6 cycle and proving that the LFSR’s period isn’t
the maximal value of 15.

Print 6

92 Wireless Equivalent Privacy Wired Equivalent Privacy Print 2

100 The brute-forcing takes 236 operations, a computation that dwarfs the unrealistic 2220

× 231 = 2251 trials needed to �nd the 220 bits to complete the �rst part of the attack.

The brute-forcing takes 236 operations, a computation that is dwarfed by the

unrealistic 2220 × 231 = 2251 trials needed to �nd the 220 bits to complete the �rst part
of the attack.

Print 2

107

SHA-256("a") =

87428fc522803d31065e7bce3cf03fe475096631e5e07bbd7a0fde60c4cf25c7

SHA-256("b") =

a63d8014dba891345b30174df2b2a57efbb65b4f9f09b98f245d1b3192277ece

SHA-256("c") =

edeaaff3f1774ad2888673770c6d64097e391bc362d7d6fb34982ddf0efd18cb

SHA-256("a") =

ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807785afee48bb

SHA-256("b") =

3e23e8160039594a33894f6564e1b1348bbd7a0088d42c4acb73eeaed59c009d

SHA-256("c") =

2e7d2c03a9507ae265ecf5b5356885a53393a2029d241394997265a1a25aefc6

Print 2

Page Error Correction
Print

corrected

108 As proof, if the algorithm solve-preimage() returns a preimage of a given hash value,
you can use the algorithm in Listing 6-2 to �nd a second preimage of some message,
M.

solve-second-preimage(M) {

 H = Hash(M)

 return solve-preimage(H)

}

As proof, if the algorithm find-preimage() returns a preimage of a given hash value,
you can use the algorithm in Listing 6-2 to �nd a second preimage of some message,
M.

find-second-preimage(M) {

 H = Hash(M)

 return find-preimage(H)

}

Print 6

117

for i = 0 to 79 {

 new = (a <<< 5) + f(i, b, c, d) + e + K[i] + W[i]

for i = 0 to 79 {

 new = (a <<< 5) + f(i, b, c, d) + e + M[i] + W[i]

Print 9

130 Throughout the history of cryptography, MACs and PRFs have rarely been designed
from scratch but rather have been built from existing algorithms, usually hash
functions of block ciphers.

Throughout the history of cryptography, MACs and PRFs have rarely been designed
from scratch but rather have been built from existing algorithms, usually hash
functions or block ciphers.

Print 6

141

each call to verify_mac() will look at all eight bytes # each call to verify_mac() will look at all sixteen bytes

Print 2

147 If the values are equal, the plaintext is computed as P = D(K1, C); if they are not equal,

the plaintext is discarded.

If the values are equal, the plaintext is computed as P = D(K1, C); if they are not equal,

the ciphertext is discarded.

Print 2

152 To authenticate the ciphertext, GCM uses a Wegman–Carter MAC (see Chapter 7) to
authenticate the ciphertext, which XORs the value . . .

To authenticate the ciphertext, GCM uses a Wegman–Carter MAC (see Chapter 7)
which XORs the value . . .

Print 2

153 We can thus express the authentication tag’s value as T = GHASH(H, C) We can thus express the authentication tag’s value as T = GHASH(H, A, C) Print 8

165 . . . when we say that an algorithm takes time in the order of n3 operations (which is
quadratic complexity), . . .

. . . when we say that an algorithm takes time in the order of n3 operations (which is
cubic complexity), . . .

Print 2

172 1/log√N = 1/(n/2) = 2n 1/log√N = 1/(n/2) = 2/n Print 9

175 Typically, we’ll use groups Zp
*, where p is thousands of bits long (that is, groups that

contain on the order of 2p numbers).

Typically, we’ll use groups Zp
*, where p is thousands of bits long (that is, groups that

contain on the order of 2m numbers if p is m-bit long).

Print 3

181 (One year prior to RSA, Dif�e and Hellman had introduced the concept of public-key
cryptography, but their scheme was unable to perform public-key encryption.)

(One year prior to RSA, Dif�e and Hellman had introduced the concept of public-key
cryptography, but their scheme was unable to perform public-key signatures.)

Print 2

182 Deletion More precisely, RSA works on the numbers less than n that are co-prime with n and
therefore that have no common prime factor with n. Such numbers, when multiplied
together, yield another number that satis�es these criteria. We say that these numbers

form a group, denoted ZN
*, and call the multiplicative group of integers modulo n.

Print 2

Page Error Correction
Print

corrected

183 Deletion In other words, all but (p + q) numbers between 1 and n – 1 belong to ZN
* and are

“valid numbers” in RSA operations.

Print 2

183 More precisely, we must have ed = 1 mod φ(n) in order to get xed = x1 = x and to
decrypt the message correctly.

More precisely, we must have ed mod φ(n) = 1 in order to get xed = x1 = x and to
decrypt the message correctly.

Print 8

184

sage: n = p*q; n

c

sage: phi = (p-1)*(q-1); phi

36567230045260644

sage: e = random_prime(phi); e

13771927877214701

sage: d = xgcd(e, phi)[1]; d

15417970063428857

sage: n = p*q; n

19715247602230861

sage: phi = (p-1)*(q-1); phi

19715246481137724

sage: e = random_prime(phi); e

13771927877214701

sage: d = e.inverse_mod(phi); d

11417851791646385

Print 6

184 We then generate the associated private exponent d by using the xgcd() function from
Sage ➏

We then generate the associated private exponent d by using the inverse_mod()
function from Sage ➏

Print 6

184 Insertion We then generate a random public exponent, e5, by picking a random prime less
than phi in order to ensure that e will have an inverse modulo phi. Note that e
should also be coprime with phi.

Print 6

189 Here’s how this works: because S can be written as (R eM)d = RedM d, and because Red =

R is equal to Red = R (by de�nition) . . .

Here’s how this works: because S can be written as (R eM)d = RedM d, and because Red =
R (by de�nition) . . .

Print 2

189 Although similar to PSS, OAEP has only been proven secure for encryption, not for
signature.

Although similar to PSS, OAEP has only been proven secure for encryption, not for
signatures.

Print 2

191 The function EncryptOAEP() takes a hash value, a PRNG, a public key, a message, and a
label (an optional parameter of OAEP), and returns a signature and an error code.

The function EncryptOAEP() takes a hash function, a PRNG, a public key, a message,
and a label (an optional parameter of OAEP), and returns a ciphertext and an error
code.

Print 6

193

expMod(x, e, n) {

 y = x

 for i = m – 1 to 0 {

expMod(x, e, n) {

 y = x

 for i = m – 2 to 0 {

Print 6

195 The most common trick to speed up decryption and signature veri�cation (that is,

the computation of yd mod n) is the Chinese remainder theorem (CRT).

The most common trick to speed up decryption and signature generation (that is, the

computation of yd mod n) is the Chinese remainder theorem (CRT).

Print 2

196 To apply this formula to our example and recover our x mod 1155, we take the
arbitrary values 2, 1, 6, and 8; we compute P(3), P(5), P(7), and P(8); and then we add
them together to get the following expression:

To apply this formula to our example and recover our x mod 1155, we take the
arbitrary values 2, 1, 6, and 8; we compute P(3), P(5), P(7), and P(11); and then we add
them together to get the following expression:

Print 3

198 . . . we know that for any number a co-prime with n, aφ(n) = 1 mod n. . . . we know that for any number a co-prime with n, aφ(n) = 1 mod n. Print 3

Page Error Correction
Print

corrected

198 That is, we’ll be able to write akφ(n) = 1 mod n . . . That is, we’ll be able to write akφ(n) = 1 mod n . . . Print 3

198

 ➎ if x ! = 1 and x ! = (n - 1) and pow(x, 2, n) == 1: ➎ if x != 1 and x != (n - 1) and pow(x, 2, n) == 1:

Print 3

213 Figure replacement Print 8

215 . . . g1 = 2, g2 = 4, g3 = 8, g4 = 13, and so on. . . . g1 = 2, g2 = 4, g3 = 8, g4 = 3, and so on. Print 2

215 The TLS protocol is the security behind HTTPS secure websites as well as the
secure mail transfer protocol (SMTP).

The TLS protocol is the security behind HTTPS secure websites as well as the
Simple Mail Transfer Protocol (SMTP).

Print 4

220 Such a set of numbers, where addition and multiplication are possible and where each
element x admits an inverse with respect to addition (denoted –x) as well as an inverse
with respect to multiplication (denoted 1 / x), is called a �eld.

Such a set of numbers, where addition and multiplication are possible and where each
element x admits an inverse with respect to addition (denoted –x) as well as an inverse
(except for the element zero) with respect to multiplication (denoted 1 / x), is called
a �eld.

Print 3

221 . . . and Q is the re�ection of this point with respect to the x-axis. . . . and R is the re�ection of this point with respect to the x-axis. Print 2

222 . . . and if P = –P, and if Q = –P, . . . Print 3

225 Equation replacement Print 2

227 wr = rk (h + rd) = v wr = rk / (h + rd) = v Print 2

227 u + vd = hk (h + rd) + drk (h + rd) = (hk + drk) (h + rd) = k (h + dr) (h + rd) = k u + vd = hk / (h + rd) + drk / (h + rd) = (hk + drk) / (h + rd) = k (h + dr) / (h + rd) = k Print 2

228 RSA’s veri�cation process is often faster than ECC’s signature generation because it
uses a small public key e.

RSA’s veri�cation process is often faster than ECC’s signature veri�cation because it
uses a small public key e.

Print 3

Page Error Correction
Print

corrected

229 Decryption is straightforward: the recipient computes S by multiplying R with their
private exponent to obtain S, and then derives the key K and decrypts C and veri�es T.

Decryption is straightforward: the recipient computes S by multiplying Q with their
private exponent to obtain S, and then derives the key K and decrypts C and veri�es T.

Print 3

239 The organization that issued certi�cate 2 (GeoTrust) granted permission to Google
Internet Authority to issue a certi�cate (certi�cate 1) for the domain name
www.google.com, thereby transferring trust to Google Internet Authority.

The organization that issued certi�cate 1 (GeoTrust) granted permission to Google
Internet Authority to issue a certi�cate (certi�cate 0) for the domain name
www.google.com, thereby transferring trust to Google Internet Authority.

Print 2

242 Deletion But note that the speci�cations also describe in what format data should be sent, in
order to ensure interoperability between implementations by guaranteeing that any
server implementing TLS 1.3 will be able to read TLS 1.3 data sent by any client
implementing TLS 1.3, possibly using a different library or programming language.

Print 6

243 Deletion Note, however, that TLS 1.3 supports many options and extensions, so it may behave
differently than what has been described here (and shown in Figure 13-1). You can, for
example, con�gure the TLS 1.3 handshake to require a client certi�cate so that the
server veri�es the identity of the client. TLS 1.3 also supports a handshake with pre-
shared keys.

Print 2

254 Equation replacement Print 3

254 Equation replacement Print 3

257 Equation replacement Print 3

260 The challenge in the discrete logarithm problem is to �nd y, given y = gx mod p, for
some known numbers g and p. Solving this problem takes an exponential amount of
time on a classical computer, but Shor’s algorithm lets you �nd y easily thanks to its
ef�cient period-�nding technique.

The challenge in the discrete logarithm problem is to �nd x, given y = gx mod p, for
some known numbers g and p. Solving this problem takes an exponential amount of
time on a classical computer, but Shor’s algorithm lets you �nd x easily thanks to its
ef�cient period-�nding technique.

Print 2

Page Error Correction
Print

corrected

264 Figure replacement Print 2

