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4 A cryptanalyst can then deduce that the key’s length is either nine or a value divisible | A cryptanalyst can then deduce that the key’s length is either nine or a value that Print 2
by nine (that is, three) divides nine (that is, three)

13 Decryption remains deterministic, however, because given E(K, R, P), you should Decryption remains deterministic, however, because given D(K, R, P), you should Print 2
always get P, regardless of the value of R. always get P, regardless of the value of R.

14 The proof works ad absurdum: if you can distinguish ciphertexts from random strings, | The proof works ad absurdum: if you can distinguish ciphertexts from random strings, | Print 2
which means that you can distinguish DRBG(K , R) ® P from random, then this which means that you can distinguish DRBG(K | | R) ® P from random, then this
means that you can distinguish DRBG(K , R) from random. Remember that the CPA | means that you can distinguish DRBG(X | | R) from random. Remember that the
model lets you get ciphertexts for chosen values of P, so you can XOR P to DRBG(K , | CPA model lets you get ciphertexts for chosen values of P, so you can XOR P to
R) ® Pand get DRBG(K , R). But now we have a contradiction, because we started by | DRBG(K | | R) ® P and get DRBG(K | | R). But now we have a contradiction,
assuming that DRBG(K , R) can’t be distinguished from random, producing random | because we started by assuming that DRBG(K | | R) can’t be distinguished from
strings. random, producing random strings.

16 Authenticated encryption with associated data (AEAD) is an extension of authenticated Authenticated encryption with associated data (AEAD) is an extension of authenticated Print 9
encryption that takes some cleartext and unencrypted data and uses it to generate the | encryption that takes some cleartext and unencrypted data and uses it to generate the
authentication tag AEAD(K, P, 4) = (C, T). authentication tag AEAD(K, P, A) = (C, 4, T).

28 Equation replacement Print 2

St = Nean @ A([S* M UXHUUUUUUU) v (.\'* b1 A U.\L?l'm‘ﬂ'l‘))

32 Listing 2-3: A script showing the evolution of /dev/urandom’s entropy estimate Listing 2-3: A script showing the evolution of /dev/random’s entropy estimate Print 2

46 We say that breaking some cipher is reducible to problem X if any method to solve | We say that solving problem X is reducible to breaking some cipher if any method | Print 9
problem X also yields a method to break the cipher. to break the cipher can be efficiently adapted to solve problem X.

49 Print 6

70 The last, incomplete ciphertext block is made up of the first blocks from the previous | The last, incomplete ciphertext block is made up of the first bits from the previous Print 2
ciphertext block . . . ciphertext block . . .

73 Why use triple DES and not just double DES, that is, E(Ky, E(K3, P))? Why use triple DES and not just double DES, that is, E(K;, E(K7, P))? Print 2

73 You also need to store 2°¢ elements of 15 bytes each, or about 128 petabytes. You also need to store 2% elements of 15 bytes each, or about 1 exabyte. Print 2
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74 Figure replacement Print 6
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Figure 4-13: Padding
oracle attacks recover
X by choosing C,; and
checking the validity of
padding.
74 ... decryption will only succeed if C; ® P = X ends with valid padding . .. .. decryption will only succeed if C; ® X = P, ends with valid padding . .. Print 6
84 Repeating the operation four times gives the following state values: Repeating the operation four times gives the following state values: Print 6
0111 0111
1100 1110
1000 1100
0001 1000
And as you can see, the state after five updates is the same as the initial one, And as you can see, the state after six updates is the same as the initial one,
demonstrating that we’re in a period-5 cycle and proving that the LFSR’s period isn’t | demonstrating that we’re in a period-6 cycle and proving that the LFESR’s period isn’t
the maximal value of 15. the maximal value of 15.
92 Wireless Equivalent Privacy Wired Equivalent Privacy Print 2
100 | The brute-forcing takes 2°¢ operations, a computation that dwarfs the unrealistic 2229 | The brute-forcing takes 23¢ operations, a computation that is dwarfed by the Print 2
x 231 = 221 trials needed to find the 220 bits to complete the first part of the attack. unrealistic 2229 x 231 = 22°1 trials needed to find the 220 bits to complete the first part
of the attack.
107 Print 2
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SHA-256("b")

SHA-256("c")
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108 | As proof, if the algorithm solve-preimage() returns a preimage of a given hash value, | As proof, if the algorithm find-preimage() returns a preimage of a given hash value, Print 6
you can use the algorithm in Listing 6-2 to find a second preimage of some message, | you can use the algorithm in Listing 6-2 to find a second preimage of some message,
M. M.
-second-preimage(M) { -second-preimage(M) {
H = Hash(M) H = Hash(M)
return -preimage(H) return -preimage(H)
117 Print 9
for 1 =0 to 79 { for 1 =0 to 79 {
new = (a <<< 5) + f(i, b, ¢, d) + e + K[1] + W[1] new = (a <<< 5) + f(i, b, ¢, d) + e + M[1] + W[1]
130 | Throughout the history of cryptography, MACs and PRFs have rarely been designed | Throughout the history of cryptography, MACs and PRFs have rarely been designed | Print 6
from scratch but rather have been built from existing algorithms, usually hash from scratch but rather have been built from existing algorithms, usually hash
functions of block ciphers. functions or block ciphers.
141 Print 2
147 | If the values are equal, the plaintext is computed as P = D(K], C); if they are not equal, | If the values are equal, the plaintext is computed as P = D(Kj, C); if they are not equal, | Print 2
the plaintext is discarded. the ciphertext is discarded.
152 | To authenticate the ciphertext, GCM uses a Wegman—Carter MAC (see Chapter 7) to | To authenticate the ciphertext, GCM uses a Wegman—Carter MAC (see Chapter 7) Print 2
anthentieate-the-etphertext; which XORs the value . . . which XORs the value . . .
153 | We can thus express the authentication tag’s value as = GHASH(H, C) We can thus express the authentication tag’s value as T= GHASH(H, 4, C) Print 8
165 | ... when we say that an algorithm takes time in the order of n* operations (which is ... when we say that an algorithm takes time in the order of n® operations (which is Print 2
quadratic complexity), . . . cubic complexity), . . .
172 | logyN = 1/(n/2) = 2n 1/log(N = 1/(n/2) = 2/n Print 9
175 | Typically, we’ll use groups Zp*, where p is thousands of bits long (that is, groups that Typically, we’ll use groups Zp*, where p is thousands of bits long (that is, groups that Print 3
contain on the order of 2 numbers). contain on the order of 2" numbers if p is m-bit long).
181 | (One year prior to RSA, Diffie and Hellman had introduced the concept of public-key | (One year prior to RSA, Diffie and Hellman had introduced the concept of public-key | Print 2
cryptography, but their scheme was unable to perform public-key encryption.) cryptography, but their scheme was unable to perform public-key signatures.)
182 | Deletion S Print 2

v iseky RS | ] bers oss 1 . i |
therefore-thathave no-ecommonprimefaetorwith-#-Such numbers, when multiplied

together, yield another number that satisfies these criteria. We say that these numbers
form a group, denoted Zy; , and call the multiplicative group of integers modulo 7.
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183 | Deletion MW%MW%M)&%WﬁMM&MA'M Print 2
[{3 M » :E ,3 2 .
183 | More precisely, we must have ed = 1 mod ¢(z) in order to get 2@ =x' =xand to More precisely, we must have ed mod ¢(#) = 1 in order to get ¥ =x! =xand to Print 8
decrypt the message correctly. decrypt the message correctly.
184 Print 6
sage: n = p*qg; n sage: n = p*qg; n
sage: phi = (p-1)*(g-1); phi sage: phi = (p-1)*(q-1); phi
sage: e = random_prime(phi); e sage: e = random_prime(phi); e
13771927877214701 13771927877214701
sage: d = ¢ @ sage: d =
184 | We then generate the associated private exponent d by using the xged() function from | We then generate the associated private exponent d by using the inverse_mod() Print 6
Sage ® function from Sage ®
184 | Insertion We then generate a random public exponent, e®, by picking a random prime less Print 6
than phti in order to ensure that e will have an inverse modulo phi. Note that e
should also be coprime with phi.
189 | Here’s how this works: because S can be written as (R ‘M)? = RM ¢, and because R* = | Here’s how this works: because S can be written as (R ‘M)* = R*M ¢, and because R = | Print 2
R is-equat-te-R“=R (by definition) . . . R (by definition) . ...
189 | Although similar to PSS, OAEP has only been proven secure for encryption, not for Although similar to PSS, OAEP has only been proven secure for encryption, not for Print 2
signature. signatures.
191 | The function EncryptOAEP() takes a hash value, a PRNG, a public key, a message, and a | The function Encrypt0OAEP() takes a hash function, a PRNG, a public key, a message, Print 6
label (an optional parameter of OAEP), and returns a signature and an error code. and a label (an optional parameter of OAEP), and returns a ciphertext and an error
code.
193 Print 6
expMod(x, e, n) { expMod(x, e, n) {
y =X y =X
for i=m-1to0 { for i=m-2to0 {
195 | The most common trick to speed up decryption and signature verification (that is, The most common trick to speed up decryption and signature generation (that is, the | Print 2
the computation of y? mod #) is the Chinese remainder theorem (CRT). computation of y* mod 7) is the Chinese remainder theorem (CRT).
196 | To apply this formula to our example and recover our x mod 1155, we take the To apply this formula to our example and recover our x mod 1155, we take the Print 3
arbitrary values 2, 1, 6, and 8; we compute P(3), P(5), P(7), and P(8); and then we add | arbitrary values 2, 1, 6, and 8; we compute P(3), P(5), P(7), and P(11); and then we add
them together to get the following expression: them together to get the following expression:
198 | ... we know that for any number # co-prime with », 20™ =1 mod n. Print 3

... we know that for any number # co-prime with z, 4% = 1 mod .
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198 | That s, we’ll be able to write #¢™ = 1 mod # . .. That is, we’ll be able to write 2™ = 1 mod # . ... Print 3
198 Print 3
(n - 1) and pow(x, 2, n) == 1: (n - 1) and pow(x, 2, n) == 1:
213 | Figure replacement Print 8
Alice [x, Y = ¢ Messages visible Bob [y, X = g
Pick a random e s Pick a random
exponent a. exponent b.
| Compute (B x Y?J° *4, Compute (A x XA)2+78, |
Figure 11-6: The MQV protocol
215 | gt=2,%=4,4=8,¢" =13, and s0 on. c.gl=2,82=4,8=8,g"=3,and so on. Print 2
215 | The TLS protocol is the security behind HT'TPS secure websites as well as the The TLS protocol is the security behind HTTPS secure websites as well as the Print 4
secure mail transfer protocol (SMTP). Simple Mail Transfer Protocol (SMTP).
220 | Such a set of numbers, where addition and multiplication are possible and where each | Such a set of numbers, where addition and multiplication are possible and where each | Print 3
element x admits an inverse with respect to addition (denoted —x) as well as an inverse | element x admits an inverse with respect to addition (denoted —x) as well as an inverse
with respect to multiplication (denoted 1 / x), is called a field. (except for the element zero) with respect to multiplication (denoted 1 / x), is called
a field.
221 | ...and Qs the reflection of this point with respect to the x-axis. ...and R is the reflection of this point with respect to the x-axis. Print 2
222 ...andif P=-P,... ...andif Q=-P,... Print 3
225 | Equation replacement Print 2
dok — d k = ¢, — ¢,
,If(al2 - dl) =c -0
k=(c-¢)/(d—-d)
227 |wr=rk(h+rd)=v wr=rk/(h+rd)=v Print 2
227 | u+vd=hk(h+rd)+drk(b+rd)=bk+drk)(h+vrdy=k (b+dr)(h+rd) =k u+vd=hk/(bh+rd)+drk/ (h+rdy=bk+drk)/ h+rdy=kbh+dr)/ (h+rd)=k Print 2
228 | RSA verification process is often faster than ECC’s signature generation because it RSAs verification process is often faster than ECC’s signature verification because it | Print 3

uses a small public key e.

uses a small public key e.
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229 | Decryption is straightforward: the recipient computes S by multiplying R with their Decryption is straightforward: the recipient computes S by multiplying Q with their | Print 3
private exponent to obtain S, and then derives the key K and decrypts C and verifies 7. | private exponent to obtain S, and then derives the key K and decrypts C and verifies 7.
239 | The organization that issued certificate 2 (GeoTrust) granted permission to Google The organization that issued certificate 1 (GeoTrust) granted permission to Google Print 2
Internet Authority to issue a certificate (certificate 1) for the domain name Internet Authority to issue a certificate (certificate 0) for the domain name
www.google.com, thereby transferring trust to Google Internet Authority. www.google.com, thereby transferring trust to Google Internet Authority.
242 | Deletion Print 6
243 | Deletion Print 2
254 | Equation replacement Print 3
¥ = (1/42)]0)+(1/42)[1) = (j0)+ (1)) /42
254 | Equation replacement Print 3
® = (i /2)|0)~ (1/2)[1) = (i]0) - 1)) / V2. or |®) = (i / V2, —1/2)
257 | Equation replacement Print 3
H|w) /32 172 (1742 (1/2+1/2] {1) 0)
1/42 —1/42)\1/42) \1/2-1/2) 0
260 Print 2

The challenge in the discrete logarithm problem is to find y, given y = ¢g* mod p, for
some known numbers g and p. Solving this problem takes an exponential amount of
time on a classical computer, but Shor’s algorithm lets you find y easily thanks to its
efficient period-finding technique.

The challenge in the discrete logarithm problem is to find x, given y = g¢* mod p, for
some known numbers g and p. Solving this problem takes an exponential amount of
time on a classical computer, but Shor’s algorithm lets you find x easily thanks to its
efficient period-finding technique.
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264 | Figure replacement Print 2
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Figure 14-5: Points of a two-dimensional lattice, where v
and w are basis vectors of the lattice, and s is the closest
vector to the starshaped point




