
4
B L O C K C I P H E R S

During the Cold War, the US and Soviets

developed their own ciphers. The US

government created the Data Encryption

Standard (DES), which was adopted as a

federal standard from 1979 to 2005, while the KGB

developed GOST 28147-89, an algorithm kept secret

until 1990 and still used today. In 2000, the US-based
National Institute of Standards and Technology (NIST) selected the succes-
sor to DES, called the Advanced Encryption Standard (AES), an algorithm
developed in Belgium and now found in most electronic devices. AES, DES,
and GOST 28147-89 have something in common: they’re all block ciphers, a
type of cipher that combines a core algorithm working on blocks of data
with a mode of operation, or a technique to process sequences of data
blocks.

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

2 Chapter 4

This chapter reviews the core algorithms that underlie block ciphers,
discusses their modes of operation, and explains how they all work
together. It also discusses how AES works and concludes with coverage of
a classic attack tool from the 1970s, the meet-in-the-middle attack, and a
favorite attack technique of the 2000s—padding oracles.

What Is a Block Cipher?

A block cipher consists of an encryption algorithm and a decryption
algorithm:

The encryption algorithm (E) takes a key, K, and a plaintext block, P, and
produces a ciphertext block, C. We write an encryption operation as
C = E(K, P).

The decryption algorithm (D) is the inverse of the encryption algorithm
and decrypts a message to the original plaintext, P. This operation is
written as P = D(K, C).

Since they’re the inverse of each other, the encryption and decryption
algorithms are usually similar.

Security Goals

If you’ve followed earlier discussions about encryption, randomness, and
indistinguishability, the definition of a secure block cipher will come as no
surprise. Again, we’ll define security as random-lookingness, so to speak.

In order for a block cipher to be secure, it should be a pseudorandom
permutation (PRP), meaning that as long as the key is secret, an attacker
shouldn’t be able to compute an output of the block cipher from any input.
That is, as long as K is secret and random from an attacker’s perspective,
they should have no clue about what E(K, P) looks like, for any given P.

More generally, attackers should be unable to discover any pattern in
the input/output values of a block cipher. In other words, it should be
impossible to tell a block cipher from a truly random permutation, given
black-box access to the encryption and decryption functions for some fixed
and unknown key. By the same token, they should be unable to recover a
secure block cipher’s secret key; otherwise, they would be able to use that
key to tell the block cipher from a random permutation. Of course that also
implies that attackers can’t predict the plaintext that corresponds to a given
ciphertext produced by the block cipher.

Block Size

Two values characterize a block cipher: the block size and the key size.
Security depends on both values. Most block ciphers have either 64-bit
or 128-bit blocks—DES’s blocks have 64 (26) bits, and AES’s blocks have
128 (27) bits. In computing, lengths that are powers of two simplify data
processing, storage, and addressing. But why 26 and 27 and not 24 or 216 bits?

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 3

For one thing, it’s important that blocks not be too large in order to
minimize both the length of ciphertext and the memory footprint. With
regard to the length of the ciphertext, block ciphers process blocks, not
bits. This means that in order to encrypt a 16-bit message when blocks are
128 bits, you’ll first need to convert the message into a 128-bit block, and
only then will the block cipher process it and return a 128-bit ciphertext.
The wider the blocks, the longer this overhead. As for the memory footprint,
in order to process a 128-bit block, you need at least 128 bits of memory.
This is small enough to fit in the registers of most CPUs or to be imple-
mented using dedicated hardware circuits. Blocks of 64, 128, or even 512
bits are short enough to allow for efficient implementations in most cases.
But larger blocks (for example, several kilobytes long) can have a noticeable
impact on the cost and performance of implementations.

When ciphertexts’ length or memory footprint is critical, you may have
to use 64-bit blocks, because these will produce shorter ciphertexts and
consume less memory. Otherwise, 128-bit or larger blocks are better, mainly
because 128-bit blocks can be processed more efficiently than 64-bit ones
on modern CPUs and are also more secure. In particular, CPUs can leverage
special CPU instructions in order to efficiently process one or more 128-bit
blocks in parallel, for example, the Advanced Vector Extensions (AVX)
family of instructions in Intel CPUs.

The Codebook Attack

While blocks shouldn’t be too large, they also shouldn’t be too small;
otherwise, they may be susceptible to codebook attacks, which are attacks
against block ciphers that are only efficient when smaller blocks are used.
The codebook attack works like this with 16-bit blocks:

1. Get the 65,536 (216) ciphertexts corresponding to each 16-bit plaintext
block.

2. Build a lookup table—the codebook—mapping each ciphertext block to
its corresponding plaintext block.

3. To decrypt an unknown ciphertext block, look up its corresponding
plaintext block in the table.

When 16-bit blocks are used, the lookup table needs only 216 × 16 = 220
bits of memory, or 128 kilobytes. With 32-bit blocks, memory needs grow to
16 gigabytes, which is still manageable. But with 64-bit blocks, you’d have
to store 270 bits (a zetabit, or 128 exabytes), so forget about it. Codebook
attacks won’t be an issue for larger blocks.

How to Construct Block Ciphers

There are hundreds of block ciphers but only a handful of techniques to
construct one. First, a block cipher used in practice isn’t a gigantic algorithm
but a repetition of rounds, a short sequence of operations that is weak on its

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

4 Chapter 4

own but strong in number. Second, there are two main techniques to con-
struct a round: substitution–permutation networks (as in AES) and Feistel
schemes (as in DES). In this section, we look at how these work, after view-
ing an attack that works when all rounds are identical to each other.

A Block Cipher’s Rounds

Computing a block cipher boils down to computing a sequence of rounds. In
a block cipher, a round is a basic transformation that is simple to specify and
to implement, and which is iterated several times to form the block cipher’s
algorithm. This construction consisting of a small component repeated many
times is simpler to implement to analyze than a construction that would
consist of a single huge algorithm.

For example, a block cipher with three rounds encrypts a plaintext by
computing C = R3(R2(R1(P))), where the rounds are R1, R2, and R3 and
P is a plaintext. Rounds should also have an inverse, in order to make it
possible for a recipient or other to compute back to plaintext. Specifically,
P = iR1(iR2(iR3(C))), where iR1 is the inverse of R1, and so on.

The round functions—R1, R2, and so on—are usually identical algo-
rithms, but they are parameterized by a value called the round key. Two
round function with two distinct round keys will behave differently, and
therefore will produce distinct outputs if fed with the same input.

Round keys are keys derived from the main key, K, using an algorithm
called a key schedule. For example, R1 takes the round key K1, R2 takes the
round key K2, and so on.

Rounds keys should always be different from each other for every
round. For that matter, not all should be equal to the key K. Otherwise, all
the rounds would be identical and the block cipher would be less secure, as
described next.

The Slide Attack and Round Keys

In a block cipher, no round should be identical to another round, in
order to avoid a slide attack. Slide attacks look for two plaintext/ciphertext
pairs (P1, C1) and (P2, C2), where P2 = R(P1) if R is the cipher’s round (see
Figure 4-1). When rounds are identical, the relation between the two plain-
texts, P2 = R(P1), implies the relation C2 = R(C1) between their respective
ciphertexts. Figure 4-1 shows three rounds, but the relation C2 = R(C1) will
hold no matter the number of rounds, be it 3, 10, or 100. The problem is that
knowing the input and output of a single round often helps recover the key.
(For details, read the 1999 paper by Biryukov and Wagner called Slide Attacks,
available at https://www.iacr.org/archive/eurocrypt2000/1807/18070595-new.pdf)

The use of different round keys as parameters ensures that the rounds
will behave differently and thus foil slide attacks.

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 5

R R R C
2

R R RP
1

C
1

P
2

C
1

R(P
1
) = P

2

Figure 4-1: Principle of the slide attack, against block ciphers with
identical rounds

N O T E One potential byproduct and benefit of using round keys is protection against side-
channel attacks, or attacks that exploit information leaked from the implementation
of a cipher (for example, electromagnetic emanations). If the transformation from
the main key, K, to a round key, K i, is not invertible, then if an attacker finds K i,
they can’t use that key to find K. Unfortunately, few block ciphers have a one-way key
schedule. The key schedule of AES allows attackers to compute K from any round key,
K i, for example.

Substitution–Permutation Networks

If you’ve read textbooks about cryptography, you’ll undoubtedly have read
about confusion and diffusion. Confusion means that the input (plaintext
and encryption key) undergoes complex transforms, and diffusion means
that these transforms depend equally on all bits of the input. At a high
level, confusion is about depth whereas diffusion is about breadth. In the
design of a block cipher, confusion and diffusion take the form of substitu-
tion and permutation operations, which are combined within substitution–
permutation networks (SPNs).

Substitution often appears in the form of S-boxes, or substitution boxes,
which are small lookup tables that transform chunks of four or eight bits.
For example, the first of the eight S-boxes of the block cipher Serpent is
composed of the 16 element (3 8 f 1 a 6 5 b e d 4 2 7 0 9 c), where each ele-
ment represents a four-bit nibble. This particular S-box maps the four-bit
nibble 0000 to 3 (0011), the four-bit nibble 0101 (5 in decimal) to 6 (0111),
and so on.

N O T E S-boxes must be carefully chosen to be cryptographically strong: they should be as
nonlinear as possible (inputs and outputs should be related with complex equations)
and have no statistical bias (meaning, for example, that flipping an input bit should
potentially affect any of the output bits).

The permutation in a substitution–permutation network can be as simple
as changing the order of the bits, which is easy to implement but doesn’t
mix up the bits very much. Instead of a reordering of the bits, some ciphers
use basic linear algebra and matrix multiplications to mix up the bits: they
perform a series of multiplication operations with fixed values (the matrix’s

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

6 Chapter 4

coefficients) and then add the results. Such linear algebra operations can
quickly create dependencies between all the bits within a cipher and thus
ensure strong diffusion. For example, the block cipher FOX transforms a
four-byte vector (a, b, c, d) to (a , b , c , d), defined as follows:

a a b c d

b a b c d

c a

′

′

′

= + + + ×

= + × + × +

= × +

()

() ()

()

2

253 2

253 2

× + +

= × + + × +

()

() ()

b c d

d a b c d′ 2 253

In the above equations, numbers such as 2 or 253 are interpreted as
binary polynomials rather than integers; hence, additions and multiplications
are defined a bit differently than what we’re used to. For example, instead of
having 2 + 2 = 4, we’ll have 2 + 2 = 0. Regardless, the point is that each byte in
the initial state affects all four bytes in the final state.

Feistel Schemes

In the 1970s, IBM engineer Horst Feistel designed a block cipher called
Lucifer that worked as follows:

1. Split the 64-bit block into two 32-bit halves, L and R.

2. Set L to L F(R), where F is a substitution-permutation round.

3. Swap the values of L and R.

4. Go to step 2 and repeat 16 times.

5. Merge L and R into the 64-bit output block.

This construction became known as a Feistel scheme, as shown in
Figure 4-2. The left side is the scheme as just described; the right side is a
functionally equivalent representation where, instead of swapping L and R,
rounds alternate the operations L = L F(R) and R = R F(L).

I’ve omitted the keys from Figure 4-2
to simplify the diagrams, but note that the
first F takes a first round key, K1, and the
second F takes another round key, K2. In
DES, the F functions take a 48-bit round
key, which is derived from the 56-bit key, K.

In a Feistel scheme, the F function can be
either a pseudorandom permutation (PRP)
or a pseudorandom function (PRF). A PRP
yields distinct outputs for any two distinct
inputs, whereas a PRF will have values X and
Y for which F(X) = F(Y). But in a Feistel
scheme that difference doesn’t matter as
long as F is cryptographically strong.

P

L R

F

F

P

L R

F

F

Figure 4-2: The Feistel scheme
block cipher construction in two
equivalent forms

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 7

How many rounds should there be in a Feistel scheme? Well, DES
performs 16 rounds, whereas GOST 28147-89 performs 32 rounds. If the F
function is as strong as possible, four rounds are in theory sufficient, but
real ciphers use more rounds to defend against potential weaknesses in F.

The Advanced Encryption Standard (AES)

AES is the most used cipher in the universe. Prior to the adoption of AES,
the standard cipher in use was DES, with its ridiculous 56-bit security, as
well as the upgraded version of DES known as Triple DES, or 3DES.

Although 3DES provides a higher level of security (112-bit security), it’s
inefficient because the key needs to be 168 bits long in order to get 112-bit
security, and it’s slow in software (DES was created to be fast in integrated
circuits, not on mainstream CPUs). AES fixes both issues.

NIST standardized AES in 2000 as a replacement for DES, at which
point it became the world’s de facto encryption standard. Most commercial
encryption products today support AES, and the NSA has approved it for
protecting top-secret information. (Some countries do prefer to use their
own cipher, largely because they don’t want to use a US standard, but AES is
actually more Belgian than it is American.)

N O T E AES used to be called Rijndael (a portmanteau for its inventors’ names, Rijmen and
Daemen, pronounced like “rain-dull”) when it was one of the 15 candidates in the
AES competition, the process held by NIST from 1997 to 2000 to specify “an unclas-
sified, publicly disclosed encryption algorithm capable of protecting sensitive govern-
ment information well into the next century,” quoting the 1997 announce of the
competition in the Federal Register. The AES competition was kind of a “Got Talent”
competition for cryptographers, where anyone could participate by submitting a cipher
or breaking other contestants’ ciphers.

AES Internals

AES processes blocks of 128 bits using a secret key of 128, 192, or 256 bits,
with the 128-bit key being the most common because it makes encryption
slightly faster and because the difference between 128- and 256-bit security
is meaningless for most applications.

Whereas some ciphers work with individual
bits or 64-bit words, AES manipulates bytes. It views
a 16-byte plaintext as a two-dimensional array of
bytes (s = s0, s1, . . ., s15), as shown in Figure 4-3.
(The letter s is used because this array is called
the internal state, or just state.) AES transforms the
bytes, columns, and rows of this array to produce
a final value that is the ciphertext.

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

Figure 4-3: The internal
state of AES viewed as a
4 × 4 array of 16 bytes

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

8 Chapter 4

In order to transform its state, AES uses an SPN structure like that
shown in Figure 4-4, with 10 rounds for 128-bit keys, 12 for 192-bit keys, and
14 for 256-bit keys.

P

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

C

K
0

K
1

K
9

K
10

K

KeyExpansion

(7 rounds...)

Figure 4-4: The internal operations
of AES

Figure 4-4 shows the four building blocks of an AES round (note that
all but the last round are a sequence of SubBytes, ShiftRows, MixColumns,
and AddRoundKey):

AddRoundKey XORs a round key to the internal state.

SubBytes Replaces each byte (s0, s1, . . ., s15) with another byte accord-
ing to an S-box. In this example, the S-box is a lookup table of 256
elements.

ShiftRows Shifts the ith row of i positions, for i ranging from 0 to 3
(see Figure 4-5).

MixColumns Applies the same linear transform to each of the four
columns of the state (that is, each group of cells with the same shade of
grey, as shown on the left side of Figure 4-5).

Remember that in SPN, the S stands for substitution and the P for
permutation. Here, the substitution layer is SubBytes and the permutation
layer is the combination of ShiftRows and MixColumns.

The key schedule function KeyExpansion, shown in Figure 4-5 (right),
is the AES key schedule algorithm. This expansion creates 11 round keys
(K0, K1, . . ., K10) of 16 bytes each from the 16-byte key, using the same
S-box as SubBytes and a combination of XORs. One important property of

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 9

KeyExpansion is that given any round key, Ki, an attacker can determine
all other round keys as well as the main key K, by reversing the algorithm.
The ability to get the key from any round key is usually seen as an imperfect
defense against side-channel attacks, where attacker may easily recover a
round key.

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

s
15

s
0

s
5

s
10

s
15

s
4

s
9

s
14

s
3

s
8

s
13

s
2

s
7

s
12

s
1

s
6

s
11

Figure 4-5: ShiftRows rotates bytes within each row of the internal state.

Without these operations, AES would be totally insecure. Each operation
contributes to AES security in a specific way:

Without KeyExpansion, all rounds would use the same key, K, and AES
would be vulnerable to slide attacks.

Without AddRoundKey, encryption wouldn’t depend on the key; hence,
anyone could decrypt any ciphertext without the key.

SubBytes brings nonlinear operations, which add cryptographic
strength. Without it, AES would just be a large system of linear equa-
tions that is solvable using high-school algebra.

Without ShiftRows, changes in a given column would never affect the
other columns, meaning you could break AES by building four 232-ele-
ment codebooks for each column. (Remember that in a secure block
cipher, flipping a bit in the input should affect all the output bits.)

Without MixColumns, changes in a byte would not affect any other
bytes of the state. A chosen-plaintext attacker could then decrypt any
ciphertext after storing 16 lookup tables of 256 bytes each that hold the
encrypted values of each possible value of a byte.

Notice in Figure 4-4 that the last round of AES doesn’t include the
MixColumns operation. That operation is omitted in order to save useless
computation: because MixColumns is linear (meaning, predictable), you
could cancel its effect in the very last round by combining bits in a way
that doesn’t depend on their value or the key. SubBytes, however, can’t be
inverted without the state’s value being known prior to AddRoundKey.

To decrypt a ciphertext, AES unwinds each operation by taking its
inverse function: ShiftRow (the inverse lookup table of SubBytes) shifts in
the opposite direction, MixColumns’ inverse is applied (as in the matrix
inverse of the matrix encoding its operation), and AddRoundKey’s XOR is
unchanged because the inverse of an XOR is another XOR.

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

10 Chapter 4

AES in Action

To try encrypting and decrypting with AES, you can use Python’s PyCrypto
toolkit, as in Listing 4-1.

#!/usr/bin/env python

from Crypto.Cipher import AES
from binascii import hexlify as hexa
from os import urandom

pick a random 16-byte key using Python's crypto PRNG
k = urandom(16)
print "k = %s" % hexa(k)

create an instance of AES-128 to encrypt a single block
aes = AES.new(k, AES.MODE_ECB)

set plaintext block p to the all-zero string
p = '\x00'*16

encrypt plaintext p to ciphertext c
c = aes.encrypt(p)
print "enc(%s) = %s" % (hexa(p), hexa(c))

decrypt ciphertext c to plaintext p
p = aes.decrypt(c)
print "dec(%s) = %s" % (hexa(c), hexa(p))

Listing 4-1: Trying AES with Python’s crypto module

Running this script produces something like the following output:

$./aes_block.py
k = 2c6202f9a582668aa96d511862d8a279
enc(00000000000000000000000000000000) = 12b620bb5eddcde9a07523e59292a6d7
dec(12b620bb5eddcde9a07523e59292a6d7) = 00000000000000000000000000000000

You’ll get different results because the key is randomized at every new
execution.

Implementing AES

Real AES software works differently than the algorithm shown in
Figure 4-4. You won’t find production-level AES code calling a SubBytes()
function, then a ShiftRows()function, and then a MixColumns()function
because that would be inefficient. Instead, fast AES software uses special
techniques called table-based implementations and native instructions.

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 11

Table-Based Implementations

Table-based implementations of AES replace the sequence SubBytes-
ShiftRows-MixColumns with a combination of XORs and lookups in
tables hard-coded into the program and loaded in memory at execution
time. This is possible because MixColumns is equivalent to XORing four
32-bit values, where each depends on a single byte from the state and on
SubBytes. Thus, you can build four tables with 256 entries each, one for
each byte value, and implement the sequence SubBytes-MixColumns by
looking up four 32-bit values and XORing them together.

For example, the table-based C implementation in the OpenSSL toolkits
looks like Listing 4-2.

 /* round 1: */
 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];
 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[5];
 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[6];
 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[7];
 /* round 2: */
 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[8];
 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[9];
 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[10];
 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[11];
--snip--

Listing 4-2: The table-based C implementation of AES in OpenSSL

A basic table-based implementation of AES encryption needs four
kilobytes’ worth of tables because each table stores 256 32-bit values, which
occupy 256 × 32 = 8192 bits, or one kilobyte. Decryption requires another
four tables, and thus four more kilobytes. But there are tricks to reduce the
storage from four kilobytes to one, or even fewer.

Alas, table-based implementations are vulnerable to cache-timing attacks,
which exploit timing variations when a program reads or writes elements in
cache memory. Depending on the relative position in cache memory of the
elements accessed, access time varies. Timings thus leak information about
what element was accessed, which in turns leaks information on the secrets
involved.

Cache-timing attacks are difficult to avoid. One obvious solution would
be to ditch lookup tables altogether by writing a program whose execution
time doesn’t depend on its inputs, but that’s almost impossible to do and
still retain the same speed, so chip manufacturers have opted for a radical
solution: instead of relying on potentially vulnerable software, they rely on
hardware.

Native Instructions

AES native instructions (AES-NI) solve the problem of cache-timing attacks
on AES software implementations. To understand how AES-NI works, you
need to think about the way software runs on hardware: to run a program, a

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

12 Chapter 4

microprocessor translates binary code into a series of instructions executed
by integrated circuit components. For example, a MUL assembly instruction
between two 32-bit values will activate the transistors implementing a 32-bit
multiplier in the microprocessor. To implement a crypto algorithm, we
usually just express a combination of such basic operations—additions,
multiplications, XORs, and so on—and the microprocessor activates its
adders, multipliers, and XOR circuits in the prescribed order.

AES native instructions take this to a whole new level by providing
developers with dedicated assembly instructions that compute AES. Instead
of coding an AES round as a sequence of assembly instructions, when using
AES-NI, you just call the instruction AESENC and the chip will compute the
round for you. Native instructions allow you to just tell the processor to run
an AES round instead of your having to program rounds as a combination
of basic operations.

A typical assembly implementation of AES using native instructions
looks like Listing 4-3.

 PXOR %xmm5, %xmm0
 AESENC %xmm6, %xmm0
 AESENC %xmm7, %xmm0
 AESENC %xmm8, %xmm0
 AESENC %xmm9, %xmm0
 AESENC %xmm10, %xmm0
 AESENC %xmm11, %xmm0
 AESENC %xmm12, %xmm0
 AESENC %xmm13, %xmm0
 AESENC %xmm14, %xmm0
 AESENCLAST %xmm15, %xmm0

Listing 4-3: AES native instructions

This code encrypts the 128-bit plaintext initially in the register xmm0,
assuming that registers xmm5 to xmm15 hold the precomputed round keys,
with each instruction writing its result into xmm0. The initial PXOR instruction
XORs the first round key prior to computing the first round, and the final
AESENCLAST instruction performs the last round slightly different from the
others (MixColumns is omitted).

N O T E AES is about ten times faster on platforms that implement native instructions, which
as I write this, are virtually all laptop, desktop, and server microprocessors, as well
as most mobile phones and tablets. In fact, on the latest Intel microarchitecture the
AESENC instruction has a latency of seven cycles with a reciprocal throughput of one
cycle, meaning that a call to AESENC takes seven cycles to complete and that a new
call can be made every cycle. To encrypt a series of blocks consecutively it thus takes
7 × 10 = 70 cycles to complete the ten rounds or 70 / 16 = 4.375 cycles per byte. At
2 GHz (2 × 10

9
 cycles per second), that gives a throughput of about 54 megabytes per

second. If the blocks to encrypt or decrypt are independent of each other, as certain mode
of operations allow, then seven blocks can be processed in parallel to take full advantage
of the AESENC circuit in order to reach a latency of 10 cycles per block instead of 70, or
about 381 megabytes per second.

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 13

Is AES Secure?

AES is as secure as a block cipher can be, and it will never be broken.
Fundamentally, AES is secure because all output bits depend on all input bits
in some complex, pseudorandom way. To achieve this, the designers of AES
carefully chose each component for a particular reason—MixColumns for
its maximal diffusion properties and SubBytes for its optimal non-linearity—
and they have shown that this assemblage of pieces protects AES against a
whole classes of cryptanalytic attacks.

But there’s no proof that AES is immune to all possible attacks. For one
thing, we don’t know what all possible attacks are, and we don’t always know
how to prove that a cipher is secure against a given attack. The only way to
really gain confidence in the security of AES is to crowdsource attacks: hav-
ing many skilled people attempt to break AES and, hopefully, fail to do so.

After more than 15 years and hundreds of research publications, the
theoretical security of AES has only been scratched. In 2011 cryptanalysts
found a way to recover an AES-128 key by performing about 2126 operations
instead of 2128, a speed-up of a factor four. But this “attack” requires an
insane amount of plaintext–ciphertext pairs, about 288 bits worth. In other
words, it’s a nice finding but not one you need to worry about.

The upshot is that you should care about a million things when imple-
menting and deploying crypto, but AES security is not one of those. The
biggest threat to block ciphers isn’t in their core algorithms but in their
modes of operation. When an incorrect mode is chosen, or when the right
one is misused, even a strong cipher like AES won’t save you.

Modes of Operation

Chapter 1 explained how encryption schemes combine a permutation with
a mode of operation to handle messages of any length. In this section, I’ll
cover the main modes of operations used by block ciphers, their security
and function properties, and how (not) to use them. I’ll begin with the
dumbest one: electronic codebook.

The Electronic Codebook (ECB) Mode

The simplest of the block cipher encryption modes
is electronic codebook (ECB), which is barely
a mode of operation at all. ECB takes plaintext
blocks P1, P2, …, PN and processes each indepen-
dently by computing C1 = E(K, P1), C2 = E(K, P2),
and so on, as shown in Figure 4-6. It’s a simple
operation but also an insecure one. I repeat: ECB
is insecure and you should not use it!

Marsh Ray, a cryptographer at Microsoft,
once said, “Everybody knows ECB mode is bad
because we can see the penguin.” He was refer-
ring to a famous illustration of ECB’s insecurity

P
1

C
1

E
K

P
2

C
2

E
K

P
3

C
3

E
K

Figure 4-6: The ECB mode

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

14 Chapter 4

that uses an image of Linux’s mascot, Tux, as shown in Figure 4-7. You
can see the original image of Tux on the left, and the image encrypted in
ECB mode using AES (though the underlying cipher doesn’t matter) on the
right. It’s easy to see the penguin’s shape in the encrypted version because
all blocks of the same shade of grey in the original image are encrypted to
the same shade of grey block; in other words, ECB encryption just gives you
the same image but with different colors.

Figure 4-7: Original image (left) and ECB-encrypted image (right)

The Python program in Listing 4-4 also shows ECB’s insecurity. It picks
a pseudorandom key and encrypts a 32-byte message p containing two
blocks of null bytes. Notice that encryption yields two identical blocks and
that repeating encryption with the same key and the same plaintext yields
the same two blocks again.

#!/usr/bin/env python

from Crypto.Cipher import AES
from binascii import hexlify as hexa
from os import urandom

BLOCKLEN = 16

def blocks(data):
 split = [hexa(data[i:i+BLOCKLEN]) for i in range(0, len(data), BLOCKLEN)]
 return ' '.join(split)

k = urandom(16)
print "k = %s" % hexa(k)

aes = AES.new(k, AES.MODE_ECB)

p = '\x00'*BLOCKLEN*2

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 15

c = aes.encrypt(p)
print "enc(%s) = %s" % (blocks(p), blocks(c))

Listing 4-4: Using AES in ECB mode in Python.

Running this script gives ciphertext blocks like this, for example:

$./aes_ecb.py
k = 50a0ebeff8001250e87d31d72a86e46d
enc(00000000000000000000000000000000 00000000000000000000000000000000) =
5eb4b7af094ef7aca472bbd3cd72f1ed 5eb4b7af094ef7aca472bbd3cd72f1ed

As you can see, when the ECB mode is used, identical ciphertext blocks
reveal identical plaintext blocks to an attacker, whether those are blocks
within a single ciphertext or across different ciphertexts. This shows that
block ciphers in ECB mode aren’t semantically secure.

Another problem with ECB is that it only takes complete blocks of data,
so if blocks were 16-byte, as in AES, you could only encrypt chunks of 16
bytes, 32 bytes, 48 bytes, or any other multiple of 16 bytes. There are few
ways to deal with this, as you’ll see with the next mode, CBC. (I won’t tell
you how these tricks work with ECB because you shouldn’t be using ECB in
the first place.)

The Cipher Block Chaining (CBC) Mode

Cipher block chaining (CBC) is like ECB but with a small twist that makes a
big difference: instead of encrypting the ith block, Pi, as Ci = E(K, Pi), CBC
sets Ci = E(K, Pi Ci-1), where Ci-1 is the previous ciphertext block—thereby
chaining the blocks Ci-1 and Ci. When encrypting the first block, P1, there is
no previous ciphertext block to use, so CBC takes a random initial value
(IV), as shown in Figure 4-8.

The CBC mode makes each ciphertext
block dependent on all the previous blocks,
and ensures that identical plaintext blocks
won’t be identical ciphertext blocks. The
random initial value guarantees that two
identical plaintexts will encrypt to distinct
ciphertexts when calling the cipher twice
with two distinct initial values.

Listing 4-5 illustrates these two ben-
efits. This program it takes an all-zero,
32-byte message (like the one in Listing
4-4), encrypts it twice with CBC, and shows the two ciphertexts. The line iv =
urandom(16), shown in bold, picks a new random IV for each new encryption:

#!/usr/bin/env python

from Crypto.Cipher import AES
from binascii import hexlify as hexa

P
1

C
1

E
K

P
2

C
2

E
K

P
3

C
3

E
K

IV

Figure 4-8: The CBC mode

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

16 Chapter 4

from os import urandom

BLOCKLEN = 16

the blocks() function splits a data string into space-separated blocks
def blocks(data):
 split = [hexa(data[i:i+BLOCKLEN]) for i in range(0, len(data), BLOCKLEN)]
 return ' '.join(split)

k = urandom(16)
print "k = %s" % hexa(k)

pick a random IV
iv = urandom(16)
print "iv = %s" % hexa(iv)

pick an instance of AES in CBC mode
aes = AES.new(k, AES.MODE_CBC, iv)

p = '\x00'*BLOCKLEN*2

c = aes.encrypt(p)
print "enc(%s) = %s" % (blocks(p), blocks(c))

now with a different IV and the same key
iv = urandom(16)
print "iv = %s" % hexa(iv)

aes = AES.new(k, AES.MODE_CBC, iv)
c = aes.encrypt(p)
print "enc(%s) = %s" % (blocks(p), blocks(c))

Listing 4-5: Using AES in CBC mode.

The two plaintexts are the same (two all-zero blocks), but the
encrypted blocks should be distinct, as in this example execution:

$./aes_cbc.py
k = 9cf0d31ad2df24f3cbbefc1e6933c872
iv = 0a75c4283b4539c094fc262aff0d17af
enc(00000000000000000000000000000000 00000000000000000000000000000000) =
370404dcab6e9ecbc3d24ca5573d2920 3b9e5d70e597db225609541f6ae9804a
iv = a6016a6698c3996be13e8739d9e793e2
enc(00000000000000000000000000000000 00000000000000000000000000000000) =
655e1bb3e74ee8cf9ec1540afd8b2204 b59db5ac28de43b25612dfd6f031087a

Alas, CBC is often used with a constant IV instead of a random one,
which exposes identical plaintexts and plaintexts that start with identical
blocks. For example, say the two-block plaintext P1 || P2 is encrypted in CBC
mode to the two-block ciphertext C1 || C2. If P1 || P2’ is encrypted with the
same IV, where P2’ is some block distinct from P2, then the ciphertext will

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 17

look like C1 || C2’, with C2’ different from C2 but with the same first block C1.
Thus, an attacker can guess that the first block is the same for both plain-
texts, even though they only see the ciphertexts.

N O T E In CBC mode, decryption needs to know the IV used to encrypt, so the IV is sent along
with the ciphertext, in the clear.

With CBC, decryption can be much faster than encryption due to par-
allelism. While encryption of a new block, Pi, needs to wait for the previous
block, Ci-1, decryption of a block computes Pi = D(K, Ci) Ci-1, where there’s
no need for the previous plaintext block, Pi-1. This means that all blocks can
be decrypted in parallel simultaneously, as long as you also know the previous
ciphertext block, which you usually do.

How to Encrypt Any Message in CBC Mode

Let’s circle back to the block termination issue and look at how to process
a plaintext whose length is not a multiple of the block length. For example,
how would we encrypt an 18-byte plaintext with AES-CBC when blocks are
16 bytes? What do we do with the two bytes left? We’ll look at two widely
used techniques to deal with this problem. The first one, padding, makes the
ciphertext a bit longer than the plaintext, while the second one, ciphertext
stealing, produces a ciphertext of the same length as the plaintext.

Padding a Message

Padding is a technique that allows you to encrypt a message of any length,
even one smaller than a single block. Padding for block ciphers is specified
in the PKCS#7 standard and in RFC 5652, and is used almost everywhere
CBC is used, such as in some HTTPS connections.

Padding is used to expand a message to fill a complete block by adding
extra bytes to the plaintext. Here are the rules for padding 16-byte blocks:

If there’s one byte left—for example, if the plaintext is 1-byte, 17-bytes,
or 33-bytes long—pad the message with 15 bytes, or 0x0f (15 in
decimal).

If there are two bytes left, pad the message with 14 bytes, or 0x0e (14 in
decimal).

If there are three bytes left, pad the message with 13 bytes, or 0x0d (13
in decimal).

If there are 15 plaintext bytes and a single byte missing to fill a block,
padding adds a single 0x01 byte. If the plaintext is already a multiple of 16,
the block length, add 16 bytes, or 0x10 (16 in decimal). You get the idea.
The trick generalizes to any block length up to 255-bytes (for larger blocks,
a byte is too small to encodes values greater than 255).

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

18 Chapter 4

Decryption of a padded message then works like this:

1. Decrypt all the blocks as with unpadded CBC.

2. Make sure that the last bytes of the last block conform to the padding
rule: that they finish with at least one 0x01 byte, at least two 0x02 bytes,
or at least three 0x032 bytes, and so on. If the padding isn’t valid—for
example, if the last bytes are 0x01 0x02 0x03—the message is rejected.
Otherwise, decryption strips the padding bytes and returns the plain-
text bytes left.

One downside of padding is that it makes ciphertext longer by at least
one byte and at most a block.

Ciphertext Stealing

Ciphertext stealing is another trick used to encrypt a message whose length
isn’t a multiple of the block size. Ciphertext stealing is more complex and
less popular than padding, but it offers at least three benefits:

Plaintexts can be of any bit length, not just bytes. You can, for example,
encrypt a message of 131 bits.

Ciphertexts are exactly the same length as plaintexts.

Ciphertext stealing is not vulnerable to padding oracle attacks, powerful
attacks that sometimes work against CBC with padding (as we’ll see in
“How Things Can Go Wrong” on page 20).

In CBC mode, ciphertext stealing adds zero bytes to the last incomplete
block Pn, then encrypts the whole plaintext P1, P2, …, Pn, and finally strips
the last bits (those bits that have been XORed with Pn’s zero bytes) off of
Cn-1 , as shown in Figure 4-9.

In Figure 4-9, we have three blocks,
where the last block, P3, is incomplete
and padded with zeros. P3 is XORed with
the previous ciphertext block, and the
encrypted result is returned as C2. The
ciphertext block is then XORed with the
last block and
stripped of its last bits (the ones XORed
with the zero padding) and set as the last
incomplete block, C3. Decryption is sim-
ply the inverse.

There aren’t any major problems with
ciphertext stealing, but it’s inelegant and
hard to get right, especially when NIST’s
standard specifies three different ways
to implement it (see Special Publication
800-38A).

E
K

E
K

P
3

E
K

IV

P
2

P
1

C
1

C
2

C
3

0

Figure 4-9: Ciphertext stealing for
CBC-mode encryption

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 19

The Counter (CTR) Mode

To avoid the troubles and retain the benefits of ciphertext stealing, you
should use counter mode (CTR). CTR is hardly a block cipher mode: it
turns a block cipher into a stream cipher that just takes bits in and spits bits
out and doesn’t embarrass itself with the notion of blocks. (I’ll discuss
stream ciphers in detail in Chapter 5.)

In CTR mode (see Figure 4-10), the
block cipher algorithm won’t transform
plaintext data. Instead, it will encrypt
blocks composed of a counter and a nonce.
A counter is an integer that is incremented
for each block. No two blocks should use
the same counter within a message, but dif-
ferent messages can use the same sequence
of counter values (1, 2, 3, …). A nonce is a
number used only once. It is the same for
all blocks in a single message, but no two
messages should use the same nonce.

As shown in Figure 4-10, in CTR mode, encryption XORs the plaintext
and the stream taken from “encrypting” the nonce, N, and counter, Ctr.
Decryption is the same, so you only need the encryption algorithm for both
encryption and decryption. The Python script in Listing 4-6 gives you a
hands-on example.

#!/usr/bin/env python

from Crypto.Cipher import AES
from Crypto.Util import Counter
from binascii import hexlify as hexa
from os import urandom
from struct import unpack

k = urandom(16)
print "k = %s" % hexa(k)

pick a starting value for the counter
nonce = unpack('<Q', urandom(8))[0]
instantiate a counter function
ctr = Counter.new(128, initial_value=nonce)

pick an instance of AES in CTR mode, using ctr as counter
aes = AES.new(k, AES.MODE_CTR, counter=ctr)

no need for an entire block with CTR
p = '\x00\x01\x02\x03'

encrypt p
c = aes.encrypt(p)
print "enc(%s) = %s" % (hexa(p), hexa(c))

P
1

C
1

E
K

P
2

C
2

E
K

P
3

C
3

E
K

N || Ctr N || Ctr+1 N || Ctr+2

Figure 4-10: CTR mode

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

20 Chapter 4

decrypt using the encrypt function
ctr = Counter.new(128, initial_value=nonce)
aes = AES.new(k, AES.MODE_CTR, counter=ctr)
p = aes.encrypt(c)
print "enc(%s) = %s" % (hexa(c), hexa(p))

Listing 4-6: Using AES in CTR mode

The example execution encrypts a 4-byte plaintext and gets a 4-byte
ciphertext. It then decrypts that ciphertext using the encryption function:

$./aes_ctr.py
k = 130a1aa77fa58335272156421cb2a3ea
enc(00010203) = b23d284e
enc(b23d284e) = 00010203

As with the initial value in CBC, CTR’s nonce is supplied by the encryp-
ter and sent with the ciphertext in the clear. But unlike CBC’s initial value,
CTR’s nonce doesn’t need to be random, it simply needs to be unique. A
nonce should be unique for the same reason that a one-time pad shouldn’t
be reused: when calling the pseudorandom stream, S, if you encrypt P1 to
C1 = P1 S and P2 to C2 = P2 S using the same nonce, then C1 C2 reveals
P1 P2.

A random nonce will do the trick only if it’s long enough; for example,
if the nonce is n-bit, chances are that after 2n / 2 encryptions and as many
nonces you’ll run into duplicates. 64 bits are therefore insufficient for a
random nonce, since you can expect a repetition after approximately 232
nonces, which is an unacceptably low number.

The counter is guaranteed unique if it’s incremented for every new
plaintext, and if it’s long enough, for example 64-bit.

One particular benefit to CTR is that it can be faster than in any other
mode. Not only is it parallelizable, but you can also start encrypting even
before knowing the message by picking a nonce and computing the stream
that you’ll later XOR with the plaintext.

How Things Can Go Wrong

There are two must-know attacks on block ciphers: Meet-in-the-middle
attacks, a technique discovered in the 1970s but still used in many crypt-
analytic attacks (not to be confused with man-in-the-middle attacks) and
padding oracle attacks, a class of attacks discovered in 2002 by academic
cryptographers, then mostly ignored, and finally rediscovered a decade later
along with several vulnerable applications.

Meet-in-the-Middle Attacks

The 3DES block cipher is an upgraded version of the 1970s standard DES
that takes a key of 56 × 3 = 168 bits (and improvement on DES’ 56-bit key).
But the security level of 3DES is 112 bits instead of 168 bits, because of the
meet-in-the-middle (MitM) attack.

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 21

As you can see in Figure 4-11, 3DES encrypts a block using the DES
encryption and decryption functions: first encryption with a key, K1, then
decryption with a key, K2, and finally encryption with another key K3. If
K1 = K2, the first two calls cancel themselves out and 3DES boils down to
a single DES with key K3. 3DES does encrypt-decrypt-encrypt rather than
encrypting thrice to allow systems to emulate DES when necessary using the
new 3DES interface.

P

K
1

DES’ E

K
2

DES’ D

K
3

DES’ E C

Figure 4-11: The 3DES block cipher construction

Why use triple DES and not just double DES, that is E(K1, E(K2, P))? It
turns out that the MitM attack makes double DES only as secure as single
DES. Figure 4-12 shows the MitM attack in action.

P

K
1

E D

K
2

C?

Figure 4-12: Meet-in-the-middle attack

The meet-in-the-middle attack works as follows to attack double DES:

1. Say you have P and C = E(K1, E(K2, P)) with two unknown 56-bit keys,
K1 and K2. (DES takes 56-bit keys, so double DES takes 112 key bits in
total.) You build a key–value table with 256 entries of E(K1, P), where E
is the DES encryption function and K1 is the value stored.

2. For all 256 values of K2, compute D(K2, C) and check whether the
resulting value appears in the table as an index (thus as a middle
value, represented by a question mark in Figure 4-12).

3. If a middle value is found as an index of the table, you fetch the cor-
responding K1 from the table and verify that the (K1, K2) found is the
right one by using other pairs of P and C. Encrypt P using K1 and K2
and then check that the ciphertext obtained is the given C.

This method recovers K1 and K2 by performing about 257 instead of
2112 operations: step 1 encrypts 256 blocks and then step 2 decrypts at most
256 blocks, for 256 + 256 = 257 operations in total. You also need to store 256
elements of 15 bytes each, or about 128 petabytes. That’s a lot, but there’s a
trick that allows you to run the same attack with only negligible memory (as
you’ll see in Chapter 6).

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

22 Chapter 4

As you can see, you can apply the MitM attack to 3DES in almost the
same way you would to double DES, except that the third stage will go
through all 2112 values of K2 and K3. The whole attack thus succeeds after
performing about 2112 operations, meaning that 3DES gets only 112-bit
security despite having 168 bits of key material.

Padding Oracle Attacks

Let’s conclude this chapter with one of the simplest and yet most devastating
attacks of the 2000’s: the padding oracle attack. Remember that padding fills
the plaintext with extra bytes in order to fill a block. A plaintext of 111 bytes,
for example, is a sequence of six 16-byte blocks followed by 15 bytes. To
form a complete block, padding adds a 0x01 byte. For a 110-byte plaintext,
padding adds two 0x02 bytes, and so on.

A padding oracle is a system that behaves differently depending on
whether the padding in a CBC-encrypted ciphertext is valid. You can see it
as a black box or an API that returns either a success or an error value. A pad-
ding oracle can be found in a service on a remote host sending error mes-
sages when it receives malformed ciphertexts. Given a padding oracle,
padding oracle attacks observe on which inputs the padding is signaled as
valid and invalid, and exploit this information to decrypt chosen ciphertext
values.

Say you want to decrypt ciphertext block C2.
I’ll call X the value you’re looking for, namely
D(K, C2), and P2 the block obtained after decrypt-
ing in CBC mode (see Figure 4-13). If you pick a
random block C1 and send the two-block cipher-
text C1 || C2 to the oracle, decryption will only
succeed if C1 P2 = X ends with valid padding—a
single 0x01 byte, two 0x02 bytes, or three 0x03
bytes, and so on.

Based on this observation, padding oracle
attacks on CBC encryption can decrypt a block
C2 like this (bytes are denoted is array notation:
C1[0] is C1’s first byte, C1[1] its second byte, and so
on up to C1[15],C1’s last byte):

1. Pick a random block C1 and vary its last byte until the padding
oracle accepts the ciphertext as valid. Usually, in a valid ciphertext,
C1[15] X[15] = 0x01, so you’ll find X[15] after trying around 128 val-
ues of C1[15].

2. Find the value X[14] by setting C1[15] to X[15] 0x02 and searching
for the C1[14] that gives correct padding. When the oracle accepts
the ciphertext as valid, it means you have found C1[14] such that
C1[14] X[14] = 0x02.

3. Repeat steps 1 and 2 for all 16 bytes.

P
1

C
1

E
K

P
2

C
2

E
K

IV X

Figure 4-13: Padding
oracle attacks recover
X by choosing C1 and
checking the validity of
padding.

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

Block Ciphers 23

The attack needs on average 128 queries to the oracle for each of the 16
bytes, which is about 2000 queries in total. (Note that each query must use
the same initial value.)

N O T E In practice, implementing a padding oracle attack is a bit more complicated than
what I’ve described, because you have to deal with wrong guesses at step 1. A cipher-
text may have valid padding not because P2 ends with a single 0x01 but because it
ends with two 0x02 bytes or three 0x03 bytes. But that’s easily managed by testing the
validity of ciphertexts where more bytes are modified.

Further Reading

There’s a lot to say about block ciphers, be it in how algorithms work or in
how they can be attacked. For instance, Feistel networks and SPNs aren’t the
only ways to build a block cipher. The block ciphers IDEA and FOX use the
Lai-Massey construction, and Threefish uses ARX networks, a combination
of addition, word rotations, and XORs.

There are also many more modes than just ECB, CBC, and CTR. Some
modes are folklore techniques that nobody uses, like CFB and OFB, while
others are for specific applications, like XTS for tweakable encryption or
GCM for authenticated encryption.

I’ve discussed Rijndael, the AES winner, but there were 14 other
algorithms in the race: CAST-256, CRYPTON, DEAL, DFC, E2, FROG,
HPC, LOKI97, Magenta, MARS, RC6, SAFER+, Serpent, and Twofish. I
recommend that you look them up to see how they work, how they were
designed, how they have been attacked, and how fast they are. It’s also
worth checking out the NSA’s designs (Skipjack, and more recently, SIMON
and SPECK) and more recent “lightweight” block ciphers such as KATAN,
PRESENT, or PRINCE.

� � � � � � � � � � 	
 � � � � 	 � � � � 	 	 � � � � � � � � �

