
3
C o m m o n P r o g r a m m i n g

C o n c e p t s

This chapter covers concepts that appear in
almost every programming language and

how they work in Rust. Many programming
languages have much in common at their core.

None of the concepts presented in this chapter are
unique to Rust, but we’ll discuss them in the context
of Rust and explain its conventions.

Specifically, you’ll learn about variables, basic types, functions, com-
ments, and control flow. These foundations will be in every Rust program,
and learning them early will give you a strong core to start from.

Variables and Mutability
As mentioned in Chapter 2, by default variables are immutable. This is one
of many nudges Rust gives you to write your code in a way that takes advan-
tage of the safety and easy concurrency that Rust offers. However, you still

20 Chapter 3

have the option to make your variables mutable. Let’s explore how and why
Rust encourages you to favor immutability and why sometimes you might
want to opt out.

When a variable is immutable, once a value is bound to a name, you can’t
change that value. To illustrate this, let’s generate a new project called vari-
ables in your projects directory by using cargo new --bin variables.

Then, in your new variables directory, open src/main.rs and replace its
code with the following code that won’t compile just yet:

fn main() {
 let x = 5;
 println!("The value of x is: {}", x);
 x = 6;
 println!("The value of x is: {}", x);
}

Save and run the program using cargo run. You should receive an error
message, as shown in this output:

error[E0384]: cannot assign twice to immutable variable `x`
 --> src/main.rs:4:5
 |
2 | let x = 5;
 | - first assignment to `x`
3 | println!("The value of x is: {}", x);
4 | x = 6;
 | ^^^^^ cannot assign twice to immutable variable

This example shows how the compiler helps you find errors in your
programs. Even though compiler errors can be frustrating, they only mean
your program isn’t safely doing what you want it to do yet; they do not mean
that you’re not a good programmer! Experienced Rustaceans still get com-
piler errors.

The error indicates that the cause of the error is that you cannot assign
twice to immutable variable x, because you tried to assign a second value to
the immutable x variable.

It’s important that we get compile-time errors when we attempt to change
a value that we previously designated as immutable because this very situation
can lead to bugs. If one part of our code operates on the assumption that
a value will never change and another part of our code changes that value,
it’s possible that the first part of the code won’t do what it was designed to
do. The cause of a bug can be difficult to track down after the fact, espe-
cially when the second piece of code changes the value only sometimes.

In Rust, the compiler guarantees that when you state that a value won’t
change, it really won’t change. That means that when you’re reading and
writing code, you don’t have to keep track of how and where a value might
change. Your code is thus easier to reason through.

But mutability can be very useful. Variables are immutable only by
default; as you did in Chapter 2, you can make them mutable by adding

src/main.rs

Common Programming Concepts 21

mut in front of the variable name. In addition to allowing this value to
change, mut conveys intent to future readers of the code by indicating that
other parts of the code will be changing this variable value.

For example, let’s change src/main.rs to the following:

fn main() {
 let mut x = 5;
 println!("The value of x is: {}", x);
 x = 6;
 println!("The value of x is: {}", x);
}

When we run the program now, we get this:

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/variables`
The value of x is: 5
The value of x is: 6

We’re allowed to change the value that x binds to from 5 to 6 when mut
is used. In some cases, you’ll want to make a variable mutable because it
makes the code more convenient to write than if it had only immutable
variables.

There are multiple trade-offs to consider in addition to the prevention
of bugs. For example, in cases where you’re using large data structures,
mutating an instance in place may be faster than copying and return-
ing newly allocated instances. With smaller data structures, creating new
instances and writing in a more functional programming style may be eas-
ier to think through, so lower performance might be a worthwhile penalty
for gaining that clarity.

Ke y wor ds

The Rust language has a set of keywords that are reserved for use by the lan-
guage only, much as in other languages. Keep in mind that you cannot use
these words as names of variables or functions. Most of the keywords have
special meanings, and you’ll be using them to do various tasks in your Rust
programs; a few have no current functionality associated with them but have
been reserved for functionality that might be added to Rust in the future. You
can find a list of the keywords in Appendix A.

Differences Between Variables and Constants
Being unable to change the value of a variable might have reminded you of
another programming concept that most other languages have: constants.

22 Chapter 3

Like immutable variables, constants are values that are bound to a name and
are not allowed to change, but there are a few differences between constants
and variables.

First, you aren’t allowed to use mut with constants. Constants aren’t just
immutable by default—they’re always immutable.

You declare constants using the const keyword instead of the let keyword,
and the type of the value must be annotated. We’re about to cover types and
type annotations in “Data Types” on page 24 so don’t worry about the
details right now. Just know that you must always annotate the type.

Constants can also be declared in any scope, including the global scope,
which makes them useful for values that many parts of the code need to know
about.

The last difference is that constants may be set only to a constant expres-
sion, not to the result of a function call or any other value that could only be
computed at runtime.

Here’s an example of a constant declaration where the constant’s name
is MAX_POINTS and its value is set to 100,000. (Rust’s constant-naming conven-
tion is to use all uppercase with underscores between words):

const MAX_POINTS: u32 = 100_000;

Constants are valid for the entire time a program runs, within the
scope they were declared in, making them a useful choice for values in
your application domain that multiple parts of the program might need
to know about, such as the maximum number of points any player of a
game is allowed to earn or the speed of light.

Naming hardcoded values used throughout your program as constants
is useful in conveying the meaning of that value to future maintainers of
the code. It also helps to have only one place in your code you would need
to change if the hardcoded value needed to be updated in the future.

Shadowing
As you saw in the guessing game tutorial in Chapter 2, you can declare a
new variable with the same name as a previous variable, and the new vari-
able shadows the previous variable. Rustaceans say that the first variable is
shadowed by the second, which means that the second variable’s value is what
appears when the variable is used. We can shadow a variable by using the
same variable’s name and repeating the use of the let keyword as follows:

fn main() {
 let x = 5;

 let x = x + 1;

 let x = x * 2;

 println!("The value of x is: {}", x);
}

Common Programming Concepts 23

This program first binds x to a value of 5. Then it shadows x by repeating
let x =, taking the original value and adding 1 so the value of x is then 6. The
third let statement also shadows x, multiplying the previous value by 2 to give
x a final value of 12. When we run this program, it will output the following:

$ cargo run
 Compiling variables v0.1.0 (file:///projects/variables)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/variables`
The value of x is: 12

Shadowing is different than marking a variable as mut, because we’ll get
a compile-time error if we accidentally try to reassign to this variable without
using the let keyword. By using let, we can perform a few transformations on
a value but have the variable be immutable after those transformations have
been completed.

The other difference between mut and shadowing is that because we’re
effectively creating a new variable when we use the let keyword again, we
can change the type of the value but reuse the same name. For example, say
our program asks a user to show how many spaces they want between some
text by inputting space characters, but we really want to store that input as a
number:

let spaces = " ";
let spaces = spaces.len();

This construct is allowed because the first spaces variable is a string type
and the second spaces variable, which is a brand-new variable that happens
to have the same name as the first one, is a number type. Shadowing thus
spares us from having to come up with different names, such as spaces_str
and spaces_num; instead, we can reuse the simpler spaces name. However, if
we try to use mut for this, as shown here, we’ll get a compile-time error:

let mut spaces = " ";
spaces = spaces.len();

The error says we’re not allowed to mutate a variable’s type:

error[E0308]: mismatched types
 --> src/main.rs:3:14
 |
3 | spaces = spaces.len();
 | ^^^^^^^^^^^^ expected &str, found usize
 |
 = note: expected type `&str`
 found type `usize`

Now that we’ve explored how variables work, let’s look at more data
types they can have.

24 Chapter 3

Data Types
Every value in Rust is of a certain data type, which tells Rust what kind of
data is being specified so it knows how to work with that data. We’ll look at
two data type subsets: scalar and compound.

Keep in mind that Rust is a statically typed language, which means that
it must know the types of all variables at compile time. The compiler can
usually infer what type we want to use based on the value and how we use it.
In cases when many types are possible, such as when we converted a String
to a numeric type using parse in Chapter 2, we must add a type annotation,
like this:

let guess: u32 = "42".parse().expect("Not a number!");

If we don’t add the type annotation here, Rust will display the following
error, which means the compiler needs more information from us to know
which type we want to use:

error[E0282]: type annotations needed
 --> src/main.rs:2:9
 |
2 | let guess = “42”.parse().expect(“Not a number!”);
 | ^^^^^
 | |
 | cannot infer type for `_`
 | consider giving `guess` a type

You’ll see different type annotations for other data types.

Scalar Types
A scalar type represents a single value. Rust has four primary scalar types:
integers, floating-point numbers, Booleans, and characters. You may recog-
nize these from other programming languages. Let’s jump into how they
work in Rust.

Integer Types

An integer is a number without a fractional component. We used one integer
type in Chapter 2, the u32 type. This type declaration indicates that the value
it’s associated with should be an unsigned integer (signed integer types start
with i, instead of u) that takes up 32 bits of space. Table 3-1 shows the built-in
integer types in Rust. Each variant in the Signed and Unsigned columns (for
example, i16) can be used to declare the type of an integer value.

Table 3-1: Integer Types in Rust

Length Signed Unsigned

8-bit i8 u8

16-bit i16 u16

Common Programming Concepts 25

Length Signed Unsigned

32-bit i32 u32

64-bit i64 u64

arch isize usize

Each variant can be either signed or unsigned and has an explicit size.
Signed and unsigned refer to whether it’s possible for the number to be nega-
tive or positive—in other words, whether the number needs to have a sign
with it (signed) or whether it will only ever be positive and can therefore be
represented without a sign (unsigned). It’s like writing numbers on paper:
when the sign matters, a number is shown with a plus sign or a minus sign;
however, when it’s safe to assume the number is positive, it’s shown with no
sign. Signed numbers are stored using two’s complement representation (if
you’re unsure what this is, you can search for it online; an explanation is
outside the scope of this book).

Each signed variant can store numbers from −(2n − 1) to 2n − 1 − 1 inclu-
sive, where n is the number of bits that variant uses. So an i8 can store num-
bers from −(27) to 27 − 1, which equals −128 to 127. Unsigned variants can
store numbers from 0 to 2n − 1, so a u8 can store numbers from 0 to 28 − 1,
which equals 0 to 255.

Additionally, the isize and usize types depend on the kind of computer
your program is running on: 64 bits if you’re on a 64-bit architecture and
32 bits if you’re on a 32-bit architecture.

You can write integer literals in any of the forms shown in Table 3-2. Note
that all number literals except the byte literal allow a type suffix, such as 57u8,
and _ as a visual separator, such as 1_000.

Table 3-2: Integer Literals in Rust

Number literals Example

Decimal 98_222

Hex 0xff

Octal 0o77

Binary 0b1111_0000

Byte (u8 only) b'A'

So how do you know which type of integer to use? If you’re unsure, Rust’s
defaults are generally good choices, and integer types default to i32: this type
is generally the fastest, even on 64-bit systems. The primary situation in which
you’d use isize or usize is when indexing some sort of collection.

Floating-Point Types

Rust also has two primitive types for floating-point numbers, which are num-
bers with decimal points. Rust’s floating-point types are f32 and f64, which

26 Chapter 3

are 32 bits and 64 bits in size, respectively. The default type is f64 because
on modern CPUs it’s roughly the same speed as f32 but is capable of more
precision.

Here’s an example that shows floating-point numbers in action:

fn main() {
 let x = 2.0; // f64

 let y: f32 = 3.0; // f32
}

Floating-point numbers are represented according to the IEEE-754 stan-
dard. The f32 type is a single-precision float, and f64 has double precision.

Numeric Operations

Rust supports the basic mathematical operations you’d expect for all of the
number types: addition, subtraction, multiplication, division, and remainder.
The following code shows how you’d use each one in a let statement:

fn main() {
 // addition
 let sum = 5 + 10;

 // subtraction
 let difference = 95.5 - 4.3;

 // multiplication
 let product = 4 * 30;

 // division
 let quotient = 56.7 / 32.2;

 // remainder
 let remainder = 43 % 5;
}

Each expression in these statements uses a mathematical operator and
evaluates to a single value, which is then bound to a variable. Appendix B
contains a list of all operators that Rust provides.

The Boolean Type

As in most other programming languages, a Boolean type in Rust has two
possible values: true and false. The Boolean type in Rust is specified using
bool. For example:

fn main() {
 let t = true;

 let f: bool = false; // with explicit type annotation
}

Common Programming Concepts 27

The main way to use Boolean values is through conditionals, such as an
if statement. We’ll cover how if statements work in Rust in “Control Flow”
on page 36.

The Character Type

So far we’ve worked only with numbers, but Rust supports letters too. Rust’s
char type is the language’s most primitive alphabetic type, and the following
code shows one way to use it. (Note that the char type is specified with single
quotes, as opposed to strings, which use double quotes.)

fn main() {
 let c = 'z';
 let z = 'ℤ';
 let heart_eyed_cat = '😻';
}

Rust’s char type represents a Unicode Scalar Value, which means it can
represent a lot more than just ASCII. Accented letters; Chinese, Japanese,
and Korean ideographs; emoji; and zero-width spaces are all valid char types
in Rust. Unicode Scalar Values range from U+0000 to U+D7FF and U+E000 to
U+10FFFF inclusive. However, a “character” isn’t really a concept in Unicode, so
your human intuition for what a “character” is may not match up with what a
char is in Rust. We’ll discuss this topic in detail in “Strings” in Chapter 8.

Compound Types
Compound types can group multiple values of other types into one type. Rust
has two primitive compound types: tuples and arrays.

The Tuple Type

A tuple is a general way of grouping together some number of other values
with a variety of types into one compound type.

We create a tuple by writing a comma-separated list of values inside
parentheses. Each position in the tuple has a type, and the types of the dif-
ferent values in the tuple don’t have to be the same. We’ve added optional
type annotations in this example:

fn main() {
 let tup: (i32, f64, u8) = (500, 6.4, 1);
}

The variable tup binds to the entire tuple, since a tuple is considered
a single compound element. To get the individual values out of a tuple, we
can use pattern matching to destructure a tuple value, like this:

fn main() {
 let tup = (500, 6.4, 1);

 let (x, y, z) = tup;

28 Chapter 3

 println!("The value of y is: {}", y);
}

This program first creates a tuple and binds it to the variable tup. It then
uses a pattern with let to take tup and turn it into three separate variables,
x, y, and z. This is called destructuring, because it breaks the single tuple into
three parts. Finally, the program prints the value of y, which is 6.4.

In addition to destructuring through pattern matching, we can access
a tuple element directly by using a period (.) followed by the index of the
value we want to access. For example:

fn main() {
 let x: (i32, f64, u8) = (500, 6.4, 1);

 let five_hundred = x.0;

 let six_point_four = x.1;

 let one = x.2;
}

This program creates a tuple, x, and then makes new variables for each
element by using their index. As with most programming languages, the
first index in a tuple is 0.

The Array Type

Another way to have a collection of multiple values is with an array. Unlike a
tuple, every element of an array must have the same type. Arrays in Rust are
different from arrays in some other languages because arrays in Rust have a
fixed length: once declared, they cannot grow or shrink in size.

In Rust, the values going into an array are written as a comma-separated
list inside square brackets:

fn main() {
 let a = [1, 2, 3, 4, 5];
}

Arrays are useful when you want your data allocated on the stack rather
than the heap (we will discuss the stack and the heap more in Chapter 4)
or when you want to ensure you always have a fixed number of elements.
An array isn’t as flexible as the vector type, though. A vector is a similar
collection type provided by the standard library that is allowed to grow
or shrink in size. If you’re unsure whether to use an array or a vector, you
should probably use a vector. Chapter 8 discusses vectors in more detail.

An example of when you might want to use an array rather than a vec-
tor is in a program that needs to know the names of the months of the year.

Common Programming Concepts 29

It’s very unlikely that such a program will need to add or remove months, so
you can use an array because you know it will always contain 12 items:

let months = ["January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"];

Accessing Array Elements

An array is a single chunk of memory allocated on the stack. You can access
elements of an array using indexing, like this:

fn main() {
 let a = [1, 2, 3, 4, 5];

 let first = a[0];
 let second = a[1];
}

In this example, the variable named first will get the value 1, because
that is the value at index [0] in the array. The variable named second will get
the value 2 from index [1] in the array.

Invalid Array Element Access

What happens if you try to access an element of an array that is past the end
of the array? Say you change the example to the following code, which will
compile but exit with an error when it runs:

fn main() {
 let a = [1, 2, 3, 4, 5];
 let index = 10;

 let element = a[index];

 println!("The value of element is: {}", element);
}

Running this code using cargo run produces the following result:

$ cargo run
 Compiling arrays v0.1.0 (file:///projects/arrays)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/arrays`
thread '<main>' panicked at 'index out of bounds: the len is 5 but the index
is
 10', src/main.rs:6
note: Run with `RUST_BACKTRACE=1` for a backtrace.

The compilation didn’t produce any errors, but the program resulted
in a runtime error and didn’t exit successfully. When you attempt to access

30 Chapter 3

an element using indexing, Rust will check that the index you’ve specified is
less than the array length. If the index is greater than the length, Rust will
panic, which is the term Rust uses when a program exits with an error.

This is the first example of Rust’s safety principles in action. In many
low-level languages, this kind of check is not done, and when you provide
an incorrect index, invalid memory can be accessed. Rust protects you
against this kind of error by immediately exiting instead of allowing the
memory access and continuing. Chapter 9 discusses more of Rust’s error
handling.

Functions
Functions are pervasive in Rust code. You’ve already seen one of the most
important functions in the language: the main function, which is the entry
point of many programs. You’ve also seen the fn keyword, which allows you
to declare new functions.

Rust code uses snake case as the conventional style for function and vari-
able names. In snake case, all letters are lowercase and underscores sepa-
rate words. Here’s a program that contains an example function definition:

fn main() {
 println!("Hello, world!");

 another_function();
}

fn another_function() {
 println!("Another function.");
}

Function definitions in Rust start with fn and have a set of parentheses
after the function name. The curly brackets tell the compiler where the
function body begins and ends.

We can call any function we’ve defined by entering its name followed
by a set of parentheses. Because another_function is defined in the program,
it can be called from inside the main function. Note that we defined another_
function after the main function in the source code; we could have defined it
before as well. Rust doesn’t care where you define your functions, only that
they’re defined somewhere.

Let’s start a new binary project named functions to explore functions
further. Place the another_function example in src/main.rs and run it. You
should see the following output:

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/functions`
Hello, world!
Another function.

Common Programming Concepts 31

The lines execute in the order in which they appear in the main func-
tion. First, the “Hello, world!” message prints, and then another_function is
called and its message is printed.

Function Parameters
Functions can also be defined to have parameters, which are special variables
that are part of a function’s signature. When a function has parameters, you
can provide it with concrete values for those parameters. Technically, the
concrete values are called arguments, but in casual conversation, people
tend to use the words parameter and argument interchangeably for either the
variables in a function’s definition or the concrete values passed in when
you call a function.

The following rewritten version of another_function shows what param-
eters look like in Rust:

fn main() {
 another_function(5);
}

fn another_function(x: i32) {
 println!("The value of x is: {}", x);
}

Try running this program; you should get the following output:

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/functions`
The value of x is: 5

The declaration of another_function has one parameter named x. The
type of x is specified as i32. When 5 is passed to another_function, the println!
macro puts 5 where the pair of curly brackets were in the format string.

In function signatures, you must declare the type of each parameter.
This is a deliberate decision in Rust’s design: requiring type annotations
in function definitions means the compiler almost never needs you to use
them elsewhere in the code to figure out what you mean.

When you want a function to have multiple parameters, separate the
parameter declarations with commas, like this:

fn main() {
 another_function(5, 6);
}

fn another_function(x: i32, y: i32) {
 println!("The value of x is: {}", x);
 println!("The value of y is: {}", y);
}

32 Chapter 3

This example creates a function with two parameters, both of which
are i32 types. The function then prints the values in both of its parameters.
Note that function parameters don’t all need to be the same type; they just
happen to be in this example.

Let’s try running this code. Replace the program currently in your
functions project’s src/main.rs file with the preceding example and run it
using cargo run:

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/functions`
The value of x is: 5
The value of y is: 6

Because we called the function with 5 as the value for x and 6 is passed
as the value for y, the two strings are printed with these values.

Function Bodies
Function bodies are made up of a series of statements optionally ending
in an expression. So far, we’ve only covered functions without an ending
expression, but you have seen an expression as part of statements. Because
Rust is an expression-based language, this is an important distinction to
understand. Other languages don’t have the same distinctions, so let’s look
at what statements and expressions are and how their differences affect the
bodies of functions.

Statements and Expressions
We’ve actually already used statements and expressions. Statements are instruc-
tions that perform some action and do not return a value. Expressions evaluate
to a resulting value. Let’s look at some examples.

Creating a variable and assigning a value to it with the let keyword is a
statement. In Listing 3-1, let y = 6; is a statement.

fn main() {
 let y = 6;
}

Listing 3-1: A main function declaration containing one statement

Function definitions are also statements; the entire preceding example
is a statement in itself.

Statements do not return values. Therefore, you can’t assign a let state-
ment to another variable, as the following code tries to do; you’ll get an error:

fn main() {
 let x = (let y = 6);
}

Common Programming Concepts 33

When you run this program, the error you’ll get looks like this:

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)

error: expected expression, found statement (`let`)
 --> src/main.rs:2:14
 |
2 | let x = (let y = 6);
 | ^^^
 |
 = note: variable declaration using `let` is a statement

The let y = 6 statement does not return a value, so there isn’t anything
for x to bind to. This is different from what happens in other languages, such
as C and Ruby, where the assignment returns the value of the assignment. In
those languages, you can write x = y = 6 and have both x and y contain the
value 6; that is not the case in Rust.

Expressions evaluate to something and make up most of the rest of
the code that you’ll write in Rust. Consider a simple math operation, such
as 5 + 6, which is an expression that evaluates to the value 11. Expressions
can be part of statements: in Listing 3-1, the 6 in the statement let y = 6; is
an expression that evaluates to the value 6. Calling a function is an expres-
sion. Calling a macro is an expression. The block that we use to create new
scopes, {}, is an expression, for example:

fn main() {
 let x = 5;

  let vy = {
 let x = 3;
 wx + 1
 };

 println!("The value of y is: {}", y);
}

The expression  is a block that, in this case, evaluates to 4. That
value gets bound to y as part of the let statement . Note the line without
a semicolon at the end , which is unlike most of the lines you’ve seen so
far. Expressions do not include ending semicolons. If you add a semicolon
to the end of an expression, you turn it into a statement, which will then not
return a value. Keep this in mind as you explore function return values and
expressions next.

Functions with Return Values
Functions can return values to the code that calls them. We don’t name
return values, but we do declare their type after an arrow (->). In Rust,
the return value of the function is synonymous with the value of the final
expression in the block of the body of a function. You can return early

34 Chapter 3

from a function by using the return keyword and specifying a value, but
most functions return the last expression implicitly. Here’s an example of
a function that returns a value:

fn five() -> i32 {
 5
}

fn main() {
 let x = five();

 println!("The value of x is: {}", x);
}

There are no function calls, macros, or even let statements in the five
function—just the number 5 by itself. That’s a perfectly valid function in
Rust. Note that the function’s return type is specified, too, as -> i32. Try
running this code; the output should look like this:

$ cargo run
 Compiling functions v0.1.0 (file:///projects/functions)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/functions`
The value of x is: 5

The 5 in five is the function’s return value, which is why the return type
is i32. Let’s examine this in more detail. There are two important bits: first,
the line let x = five(); shows that we’re using the return value of a function
to initialize a variable. Because the function five returns a 5, that line is the
same as the following:

let x = 5;

Second, the five function has no parameters and defines the type of
the return value, but the body of the function is a lonely 5 with no semico-
lon because it’s an expression whose value we want to return.

Let’s look at another example:

fn main() {
 let x = plus_one(5);

 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1
}

Running this code will print The value of x is: 6. But if we place a semi-
colon at the end of the line containing x + 1, changing it from an expression
to a statement, we’ll get an error.

Common Programming Concepts 35

fn main() {
 let x = plus_one(5);

 println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
 x + 1;
}

Running this code produces an error, as follows:

error[E0308]: mismatched types
 --> src/main.rs:7:28
 |
7 | fn plus_one(x: i32) -> i32 {
 | ____________________________^
8 | | x + 1;
 | | = help: consider removing this semicolon
9 | | }
 | |_^ expected i32, found ()
 |
 = note: expected type `i32`
 found type `()`

The main error message, “mismatched types,” reveals the core issue
with this code. The definition of the function plus_one says that it will return
an i32, but statements don’t evaluate to a value, which is expressed by (), the
empty tuple. Therefore, nothing is returned, which contradicts the function
definition and results in an error. In this output, Rust provides a message
to possibly help rectify this issue: it suggests removing the semicolon, which
would fix the error.

Comments
All programmers strive to make their code easy to understand, but some-
times extra explanation is warranted. In these cases, programmers leave
notes, or comments, in their source code that the compiler will ignore but
people reading the source code may find useful.

Here’s a simple comment:

// Hello, world.

In Rust, comments must start with two slashes and continue until the
end of the line. For comments that extend beyond a single line, you’ll need
to include // on each line, like this:

// So we're doing something complicated here, long enough that we need
// multiple lines of comments to do it! Whew! Hopefully, this comment will
// explain what’s going on.

36 Chapter 3

Comments can also be placed at the end of lines containing code:

fn main() {
 let lucky_number = 7; // I'm feeling lucky today.
}

But you’ll more often see them used in this format, with the comment
on a separate line above the code it’s annotating:

fn main() {
 // I'm feeling lucky today.
 let lucky_number = 7;
}

Rust also has another kind of comment, documentation comments,
which we’ll discuss in Chapter

Control Flow
Deciding whether or not to run some code depending on whether a condi-
tion is true and deciding to run some code repeatedly while a condition is
true are basic building blocks in most programming languages. The most
common constructs that let you control the flow of execution of Rust code
are if expressions and loops.

if Expressions
An if expression allows you to branch your code depending on conditions.
You provide a condition and then state, “If this condition is met, run this
block of code. If the condition is not met, do not run this block of code.”

Create a new project called branches in your projects directory to explore
the if expression. In the src/main.rs file, input the following:

fn main() {
 let number = 3;

 if number < 5 {
 println!("condition was true");
 } else {
 println!("condition was false");
 }
}

All if expressions start with the keyword if, which is followed by a con-
dition. In this case, the condition checks whether or not the variable number
has a value less than 5. The block of code we want to execute if the condi-
tion is true is placed immediately after the condition inside curly brackets.
Blocks of code associated with the conditions in if expressions are some-
times called arms, just like the arms in match expressions that we discussed
in “Comparing the Guess to the Secret Number” on page 5.

Common Programming Concepts 37

Optionally, we can also include an else expression, which we chose to
do here, to give the program an alternative block of code to execute should
the condition evaluate to false. If you don’t provide an else expression
and the condition is false, the program will just skip the if block and move
on to the next bit of code.

Try running this code; you should see the following output:

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/branches`
condition was true

Let’s try changing the value of number to a value that makes the condi-
tion false to see what happens:

let number = 7;

Run the program again, and look at the output:

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/branches`
condition was false

It’s also worth noting that the condition in this code must be a bool. If the
condition isn’t a bool, we’ll get an error. For example:

fn main() {
 let number = 3;

 if number {
 println!("number was three");
 }
}

The if condition evaluates to a value of 3 this time, and Rust throws an
error:

error[E0308]: mismatched types
 --> src/main.rs:4:8
 |
4 | if number {
 | ^^^^^^ expected bool, found integral variable
 |
 = note: expected type `bool`
 found type `{integer}`

The error indicates that Rust expected a bool but got an integer. Unlike
languages such as Ruby and JavaScript, Rust will not automatically try to

38 Chapter 3

convert non-Boolean types to a Boolean. You must be explicit and always
provide if with a boolean as its condition. If we want the if code block to run
only when a number is not equal to 0, for example, we can change the if
expression to the following:

fn main() {
 let number = 3;

 if number != 0 {
 println!("number was something other than zero");
 }
}

Running this code will print number was something other than zero.

Handling Multiple Conditions with else if

You can have multiple conditions by combining if and else in an else if
expression. For example:

fn main() {
 let number = 6;

 if number % 4 == 0 {
 println!("number is divisible by 4");
 } else if number % 3 == 0 {
 println!("number is divisible by 3");
 } else if number % 2 == 0 {
 println!("number is divisible by 2");
 } else {
 println!("number is not divisible by 4, 3, or 2");
 }
}

This program has four possible paths it can take. After running it, you
should see the following output:

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/branches`
number is divisible by 3

When this program executes, it checks each if expression in turn and
executes the first body for which the condition holds true. Note that even
though 6 is divisible by 2, we don’t see the output number is divisible by 2,
nor do we see the number is not divisible by 4, 3, or 2 text from the else
block. That’s because Rust only executes the block for the first true condi-
tion, and once it finds one, it doesn’t even check the rest.

Common Programming Concepts 39

Using too many else if expressions can clutter your code, so if you have
more than one, you might want to refactor your code. Chapter 6 describes a
powerful Rust branching construct called match for these cases.

Using if in a let statement

Because if is an expression, we can use it on the right side of a let state-
ment, as in Listing 3-2.

fn main() {
 let condition = true;
 let number = if condition {
 5
 } else {
 6
 };

 println!("The value of number is: {}", number);
}

Listing 3-2: Assigning the result of an if expression to a variable

The number variable will be bound to a value based on the outcome of
the if expression. Run this code to see what happens:

$ cargo run
 Compiling branches v0.1.0 (file:///projects/branches)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/branches`
The value of number is: 5

Remember that blocks of code evaluate to the last expression in them,
and numbers by themselves are also expressions. In this case, the value of
the whole if expression depends on which block of code executes. This
means the values that have the potential to be results from each arm of
the if must be the same type; in Listing 3-2, the results of both the if arm
and the else arm were i32 integers. If the types are mismatched, as in the
following example, we’ll get an error.

fn main() {
 let condition = true;

 let number = if condition {
 5
 } else {
 "six"
 };

 println!("The value of number is: {}", number);
}

40 Chapter 3

When we try to run this code, we’ll get an error. The if and else arms
have value types that are incompatible, and Rust indicates exactly where to
find the problem in the program:

error[E0308]: if and else have incompatible types
 --> src/main.rs:4:18
 |
4 | let number = if condition {
 | __________________^ starting here...
5 | | 5
6 | | } else {
7 | | "six"
8 | | };
 | |_____^ ...ending here: expected integral variable, found reference
 |
 = note: expected type `{integer}`
 found type `&str`

The expression in the if block evaluates to an integer, and the expres-
sion in the else block evaluates to a string. This won’t work because variables
must have a single type. Rust needs to know at compile time what type the
number variable is, definitively, so it can verify at compile time that its type is
valid everywhere we use number. Rust wouldn’t be able to do that if the type of
number was only determined at runtime; the compiler would be more complex
and would make fewer guarantees about the code if it had to keep track of
multiple hypothetical types for any variable.

Repetition with Loops
It’s often useful to execute a block of code more than once. For this task,
Rust provides several loops. A loop runs through the code inside the loop
body to the end and then starts immediately back at the beginning. To
experiment with loops, let’s make a new project called loops.

Rust has three kinds of loops: loop, while, and for. Let’s try each one.

Repeating Code with loop

The loop keyword tells Rust to execute a block of code over and over again
forever or until you explicitly tell it to stop.

As an example, change the src/main.rs file in your loops directory to
look like this:

fn main() {
 loop {
 println!("again!");
 }
}

When we run this program, we’ll see again! printed over and over con-
tinuously until we stop the program manually. Most terminals support a

Common Programming Concepts 41

keyboard shortcut, ctrl-C, to halt a program that is stuck in a continual
loop. Give it a try:

$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/loops`
again!
again!
again!
again!
^Cagain!

The symbol ^C represents where you pressed ctrl-C. You may or may
not see the word again! printed after the ^C, depending on where the code
was in the loop when it received the halt signal.

Fortunately, Rust provides another, more reliable way to break out of a
loop. You can place the break keyword within the loop to tell the program
when to stop executing the loop. Recall that we did this in the guessing
game in “Quitting After a Correct Guess” on page XX to exit the program
when the user won the game by guessing the correct number.

Conditional Loops with while

It’s often useful for a program to evaluate a condition within a loop. While
the condition is true, the loop runs. When the condition ceases to be
true, the program calls break, stopping the loop. This loop type could be
implemented using a combination of loop, if, else, and break; you could try
that now in a program, if you’d like.

However, this pattern is so common that Rust has a built-in language
construct for it, called a while loop. The following example uses while: the
program loops three times, counting down each time, and then, after the
loop, it prints another message and exits.

fn main() {
 let mut number = 3;

 while number != 0 {
 println!("{}!", number);

 number = number - 1;
 }

 println!("LIFTOFF!!!");
}

Listing 3-3: Using a while loop to run a loop while a condition holds true

This construct eliminates a lot of nesting that would be necessary if you
used loop, if, else, and break, and it’s clearer. While a condition holds true,
the code runs; otherwise, it exits the loop.

42 Chapter 3

Looping Through a Collection with for

You could use the while construct to loop over the elements of a collection,
such as an array. For example, let’s look at Listing 3-4:

fn main() {
 let a = [10, 20, 30, 40, 50];
 let mut index = 0;

 while index < 5 {
 println!("the value is: {}", a[index]);

 index = index + 1;
 }
}

Listing 3-4: Looping through each element of a collection using a while loop

Here, the code counts up through the elements in the array. It starts at
index 0, and then loops until it reaches the final index in the array (that is,
when index < 5 is no longer true). Running this code will print every element
in the array:

$ cargo run
 Compiling loops v0.1.0 (file:///projects/loops)
 Finished dev[unoptimized + debug info] target(s) in 1.50 sec
 Running `target/debug/loops`
the value is: 10
the value is: 20
the value is: 30
the value is: 40
the value is: 50

All five array values appear in the terminal, as expected. Even though
index will reach a value of 5 at some point, the loop stops executing before
trying to fetch a sixth value from the array.

But this approach is error prone; we could cause the program to panic
if the index length is incorrect. It’s also slow, because the compiler adds
runtime code to perform the conditional check on every element on every
iteration through the loop.

As a more concise alternative, you can use a for loop and execute
some code for each item in a collection. A for loop looks like this code in
Listing 3-5:

fn main() {
 let a = [10, 20, 30, 40, 50];

 for element in a.iter() {
 println!("the value is: {}", element);
 }
}

Listing 3-5: Looping through each element of a collection using a for loop

Common Programming Concepts 43

When we run this code, we’ll see the same output as in Listing 3-4.
More importantly, we’ve now increased the safety of the code and elimi-
nated the chance of bugs that might result from going beyond the end of
the array or not going far enough and missing some items.

For example, in the code in Listing 3-4, if you removed an item from
the a array but forgot to update the condition to while index < 4, the code
would panic. Using the for loop, you wouldn’t need to remember to change
any other code if you changed the number of values in the array.

The safety and conciseness of for loops make them the most commonly
used loop construct in Rust. Even in situations in which you want to run
some code a certain number of times, as in the countdown example that
used a while loop in Listing 3-3, most Rustaceans would use a for loop. The
way to do that would be to use a Range, which is a type provided by the stan-
dard library that generates all numbers in sequence starting from one num-
ber and ending before another number.

Here’s what the countdown would look like using a for loop and
another method we’ve not yet talked about, rev, to reverse the range:

fn main() {
 for number in (1..4).rev() {
 println!("{}!", number);
 }
 println!("LIFTOFF!!!");
}

This code is a bit nicer, isn’t it?

Summary
You made it! That was a sizable chapter: you learned about variables, scalar
and compound data types, functions, comments, if expressions, and loops!
If you want to practice with the concepts discussed in this chapter, try build-
ing programs to do the following:

•	 Convert temperatures between Fahrenheit and Celsius.

•	 Generate the nth Fibonacci number.

•	 Print the lyrics to the Christmas carol “The Twelve Days of Christmas,”
taking advantage of the repetition in the song.

When you’re ready to move on, we’ll talk about a concept in Rust that
doesn’t commonly exist in other programming languages: ownership.

