
3
M o d e l s

In Rails, models represent the data in your applica-
tion and the rules to manipulate that data. Models
manage interactions between your application and a
corresponding database table. The bulk of your appli-
cation’s business logic should also be in the models.

This chapter covers Active Record, the Rails component that provides
model persistence (that is, storing data in the database), as well as data vali-
dations, database migrations, and model associations. Validations are rules
to ensure that only valid data is stored in the database. You create database
migrations to change the schema of the database, and associations are rela-
tionships between multiple models in your application.

The Post Model
In the previous chapter, we used the Rails scaffold generator to build a
 simple blog with models, views, and controllers for blog posts. Look at the
post model created by the scaffold generator by opening the file app/models/
post.rb in your favorite text editor.

Rails Crash Course,
© 2015 by Anthony Lewis

30 Chapter 3

class Post < ActiveRecord::Base
end

There’s not much to see here. Right now, the file just tells us that the
class Post inherits from ActiveRecord::Base. Before I talk about what you can
actually do with Post, let’s begin our discussion with Active Record.

Active Record
Active Record is an implementation of the object-relational mapping (ORM)
pattern described, using the same name, by Martin Fowler in Patterns of
Enterprise Application Architecture (Addison-Wesley Professional, 2002). It’s
an automated mapping between classes and tables as well as attributes and
columns.

Each table in your database is represented by a class in your applica-
tion. Each row of that table is represented by an instance (or object) of the
associated class, and each column of that row is represented by an attribute
of that object. The example in Table 3-1 demonstrates this structure. If you
could look inside your database, this is what you would see.

Table 3-1: The Posts Table

id title body created_at updated_at

1 Hello, World Welcome to my blog...

2 My Cat The cutest kitty in the...

3 Too Busy Sorry I haven’t posted...

Table 3-1 holds three example blog posts. This table is represented by
the Post class. The post with an id of 1 can be represented by a Post object.
Let’s call our object post.

You can access the data associated with a single column by calling an
attribute method on the object. For example, to see the post’s title, call
post.title. The ability to access and change database values by calling attri-
bute methods on an object is known as direct manipulation.

Create, Read, Update, and Delete
Let’s explore Active Record further by entering a few commands in the Rails
console. The Rails console is the IRB that you used in Chapter 1 with your
Rails application’s environment preloaded.

To start the Rails console, go to your blog directory and enter bin/rails
console. You might notice that the console takes a little longer to start than
the IRB. During that slight pause, your application’s environment is being
loaded.

As with the IRB, you can enter exit to quit the console when you’re done.

Rails Crash Course,
© 2015 by Anthony Lewis

Models 31

The four major functions of database applications are create, read,
update, and delete, usually abbreviated as CRUD. Once you know how to per-
form these four actions, you can build any type of application you need.

Rails makes these actions easy for you. In most cases, you can accom-
plish each with a single line of code. Let’s use them now to work with posts
on our blog.

Create
We’ll start by adding a few records to the database. Enter these commands in
the Rails console as you work through this section. The remaining examples
in this chapter use these records.

The easiest way to create a record in Rails is with the appropriately
named create method, as shown here:

2.1.0 :001 > Post.create title: "First Post"
u (0.1ms) begin transaction

 SQL (0.4ms) INSERT INTO "posts" ("created_at"...
 (1.9ms) commit transaction
 => #<Post id: 1, title: "First Post", ...>

The Rails console displays the SQL being sent to the database as com-
mands are run u. In the interest of brevity, I’m going to omit these SQL
statements in the rest of the samples.

The create method accepts a hash of attribute-value pairs and inserts
a record into the database with the appropriate values. In this case, it’s
setting the title attribute to the value "First Post". When you run this
 example, the values for id, created_at, and updated_at are set for you auto-
matically. The id column is an auto-incrementing value in the database,
whereas created_at and updated_at are timestamps set for you by Rails. The
body column is set to NULL since no value was passed for it.

The create method is a shortcut for instantiating a new Post object,
assigning values, and saving it to the database. If you don’t want to take the
shortcut, you could also write a separate line of code for each action:

2.1.0 :002 > post = Post.new
 => #<Post id: nil, title: nil, ...>
2.1.0 :003 > post.title = "Second Post"
 => "Second Post"
2.1.0 :004 > post.save
 => true

We had to use multiple commands this time, but just like before, we’ve
created a brand new Post object. Two posts are now stored in the database.
In both examples, we only assigned values to the post’s title attribute, but
you would assign values to the post body in exactly the same way. Rails
assigns values to id, created_at, and updated_at automatically. You shouldn’t
change these.

Rails Crash Course,
© 2015 by Anthony Lewis

32 Chapter 3

Read
Once you have a few posts in your database, you’ll probably want to read
them back out for display. First, let’s look at all of the posts in the database
with the all method:

2.1.0 :005 > posts = Post.all
 => #<ActiveRecord::Relation [#<Post id: 1, ...>, #<Post id: 2, ...>]>

This returns an Active Record relation, which contains an array of all
posts in your database, and stores it in posts. You can chain additional meth-
ods onto this relation, and Active Record combines them into a single query.

Active Record also implements the first and last methods, which return
the first and last entries in an array. The Active Record version of these
methods returns only the first or last record in the database table. This is
much more efficient than fetching all of the records in the table and then
calling first or last on the array. Let’s try fetching a couple of posts from
our database:

2.1.0 :006 > Post.first
 => #<Post id: 1, title: "First Post", ...>
2.1.0 :007 > Post.last
 => #<Post id: 2, title: "Second Post", ...>

This example returns the first and last posts, as ordered by id. You’ll
learn how to order records by a different field in the next section. Sometimes,
however, you’ll know exactly which record you want, and it might not be the
first or last one. In that case, you can use the find method to retrieve a record
by id.

2.1.0 :008 > post = Post.find 2
 => #<Post id: 2, title: "Second Post", ...>

Just don’t ask find to fetch a record that doesn’t exist. If a record
with the specified id isn’t in your database, Active Record will raise an
ActiveRecord::RecordNotFound exception. When you know a specific record
exists but you don’t know its id, you can use the where method to specify an
attribute that you do know:

2.1.0 :009 > post = Post.where(title: "First Post").first
 => #<Post id: 1, title: "First Post", ...>

The where method also returns a relation. If more than one record
matches, you can chain the all method after where and tell Rails to retrieve
all matching records on demand when they are needed.

Rails Crash Course,
© 2015 by Anthony Lewis

Models 33

If you know the database has only one matching record, you can chain
the first method after where to retrieve that specific record as in the previ-
ous example. This pattern is so common that Active Record also provides
the find_by method as a shortcut:

2.1.0 :010 > post = Post.find_by title: "First Post"
 => #<Post id: 1, title: "First Post", ...>

This method takes a hash of attribute-value pairs and returns the first
matching record.

Update
Updating a record is as easy as reading it into a variable, changing values
via direct manipulation, and then saving it back to the database:

2.1.0 :011 > post = Post.find 2
 => #<Post id: 2, title: "Second Post", ...>
2.1.0 :012 > post.title = "2nd Post"
 => "2nd Post"
2.1.0 :013 > post.save
 => true

Rails also provides the update method, which takes a hash of attribute-
value pairs, updates the record, and saves to the database all on one line:

2.1.0 :014 > post = Post.find 2
 => #<Post id: 2, title: "2nd Post", ...>
2.1.0 :015 > post.update title: "Second Post"
 => true

The update method, like the save method, returns true when successful
or false if it has a problem saving the record.

Delete
Once you have read a record from the database, you can delete it with the
destroy method. But this time don’t type in these commands. You don’t want
to delete the posts you created earlier!

2.1.0 :016 > post = Post.find 2
 => #<Post id: 2, title: "Second Post", ...>
2.1.0 :017 > post.destroy
 => #<Post id: 2, title: "Second Post", ...>

The destroy method can also be called on the class to delete a record by
id, which has the same effect as reading the record into a variable first:

2.1.0 :018 > Post.destroy 2
 => #<Post id: 2, title: "Second Post", ...>

Rails Crash Course,
© 2015 by Anthony Lewis

34 Chapter 3

You can also delete records based on a relation:

2.1.0 :019 > Post.where(title: "First Post").destroy_all
 => [#<Post id: 1, title: "First Post", ...>]

This example deletes all records with a title of "First Post". Be careful
with the destroy_all method, however. If you call it without a where clause,
you’ll delete all records of the specified class!

More Active Record Methods
If you’re familiar with SQL or other methods of accessing records in a data-
base, you know there’s much more to working with a database than simple
CRUD. Active Record provides methods for more database operations, such
as ordering, limiting, counting, and other calculations.

Query Conditions
In addition to the simple where conditions you’ve seen so far, Active Record
also has several methods to help refine your queries. The order method
specifies the order of returned records; limit specifies how many records
to return; and offset specifies the first record to return from a list.

The limit and offset methods are often used together for pagination.
For example, if you want to show 10 blog posts per page, you can read the
posts for the first page like this:

2.1.0 :020 > posts = Post.limit(10)
 => #<ActiveRecord::Relation [#<Post id: 1, ...>, #<Post id: 2, ...>]>

To read the posts for the second page of your site, you’ll need to skip
the first 10 posts:

2.1.0 :021 > posts = Post.limit(10).offset(10)
 => #<ActiveRecord::Relation []>

Entering this returns an empty set since we only have two posts in
our database. When you combine offset with limit in this way, you can
pass offset multiples of what you passed limit to view different pages of
your blog.

You can also change how the entries in a relation are ordered. When
using limit, the order of records returned is undefined, so you need to
specify an order. With the order method, you can specify a different order
for the set of records returned:

2.1.0 :022 > posts = Post.limit(10).order "created_at DESC"
 => #<ActiveRecord::Relation [#<Post id: 2, ...>, #<Post id: 1, ...>]>

Using DESC tells order to return the posts from newest to oldest. You
could also use ASC to order them the opposite way. If you would rather see

Rails Crash Course,
© 2015 by Anthony Lewis

Models 35

posts alphabetized by title, try replacing "created_at DESC" with "title ASC".
The order method defaults to ascending order if you don’t specify ASC or
DESC, but I always give an order so my intention is clear.

Calculations
Databases also provide methods for performing calculations on records.
We could read the records and perform these operations in Ruby, but the
methods built in to the database are usually optimized to be faster and use
less memory.

The count method returns the number of records matching a given
condition:

2.1.0 :023 > count = Post.count
 => 2

If you don’t specify a condition, count counts all records by default, as in
this example.

The sum, average, minimum, and maximum methods perform the requested
function on a field. For example, this line of code finds and returns the
date on the newest blog post:

2.1.0 :024 > date = Post.maximum :created_at
 => 2014-03-12 04:10:08 UTC

The maximum created_at date you see should match the date for your
newest blog post, not necessarily the date you see in the example.

Migrations
Database migrations are used any time you need to change your database’s
structure. When we used the scaffold generator to create blog posts, it gen-
erated a migration for us, but you can also create migrations yourself. As
you build your application, your database migrations contain a complete
record of the changes made to your database.

Migration files are stored in the db/migrate directory and start with a
timestamp that indicates when they were created. For example, you can
see the migration created by the scaffold generator by editing the file
db/migrate/*_create_posts.rb. (Because the timestamps on your files will
surely be different from mine, I’ll use an asterisk from now on to refer to
the date part of the filename.) Let’s look at that file now:

class CreatePosts < ActiveRecord::Migration
u def change

 create_table :posts do |t|
 t.string :title
 t.text :body

 t.timestamps

Rails Crash Course,
© 2015 by Anthony Lewis

36 Chapter 3

 end
 end
end

Database migrations are actually Ruby classes. The change method is
called u when the migration is run. In this case, the method creates a table
named posts with fields for title, body, and timestamps. The timestamps field
refers to both the created_at and updated_at fields. Rails also automatically
adds the id column.

You can run migrations as tasks with the rake command. For example,
you enter bin/rake db:migrate to run all pending migrations and bring your
database up-to-date.

Rails keeps track of which migrations have been run by storing the
timestamps in a database table called schema_migrations.

If you make a mistake in a database migration, use the db:rollback task
to undo it. After you correct the migration, use db:migrate to run it again.

The Schema
In addition to the individual migration files, Rails also stores your data-
base’s current state. You can see this by opening the file db/schema.rb.
Ignoring the comment block at the top of the file, it should look like this:

--snip--
ActiveRecord::Schema.define(version: 20130523013959) do

 create_table "posts", force: true do |t|
 t.string "title"
 t.text "body"
 t.datetime "created_at"
 t.datetime "updated_at"
 end

end

This file is updated whenever you run a database migration. You should
not edit it manually. If you are moving your application to a new computer
and would like to create a new, empty database all at once instead of by
 running the individual migrations, you can do that with the db:schema:load
rake task:

$ bin/rake db:schema:load

Running this command resets the database structure and removes all
of your data in the process.

Rails Crash Course,
© 2015 by Anthony Lewis

db:migrate

Models 37

Adding a Column
Now that you know more about migrations, let’s create one and run it.
When we created our blog post model, we forgot that posts need authors.
Add a string column to the posts table by generating a new migration:

$ bin/rails g migration add_author_to_posts author:string

The Rails generator (g is short for generate) looks at the name of your
migration, in this case, add_author_to_posts, and tries to figure out what
you want to do. This is another example of convention over configuration:
name your migration in the format add_ColumnName_to_TableName, and Rails
will parse that to add what you need. Based on the name, we clearly want to
add a column named author to the posts table. We also specified that author
is a string, so Rails has all the information it needs to create the migration.

N o t e You can name a migration anything you want, but you should follow the convention
so you don’t have to edit the migration manually.

Enter bin/rake db:migrate to run the migration and add the author col-
umn to your database. If you still have a Rails console open, you’ll need to
exit and restart with bin/rails console for your changes to take effect. You
can also look at the db/schema.rb file to see the new column in the posts table.

Inside the Author Migration
The code you just generated for adding a column is simple. Edit the file
db/migrate/*_add_author_to_posts.rb to see how it works.

class AddAuthorToPosts < ActiveRecord::Migration
 def change
 add_column :posts, :author, :string
 end
end

Like *_create_posts.rb, this migration is a class containing a change method.
The add_column method is called with the table name, column name, and col-
umn type. If you want to add multiple columns, you could create separate
migrations for each, or you could call this method multiple times.

Active Record migrations also provide the rename_column method for
changing a column’s name, the remove_column method for removing a col-
umn from a table, and the change_column method for changing a column’s
type or other options, such as default value.

Rails Crash Course,
© 2015 by Anthony Lewis

38 Chapter 3

Validations
Remember that models have rules for manipulating application data. Active
Record validations are sets of rules created to protect your data. Add valida-
tion rules to ensure that only good data makes it into your database.

Adding a Validation
Let’s look at an example. Because we’re making a blog, we should ensure
that all posts have a title so readers don’t get confused, and we can do that
with a validation rule.

Validations are implemented as class methods in Rails. Open the post
model (app/models/post.rb) in your editor and add this line:

class Post < ActiveRecord::Base
 validates :title, :presence => true
end

This validates the presence of text in the title field. Attempting to
create a blog post with a blank title should now result in an error.

ot he r CoMMoN Va l idat ioNs

Rails provides a variety of other validations in addition to the :presence valida-
tion. For example, you can use the :uniqueness validation to ensure that no two
posts have the same title.

The :length validation accepts a hash of options to confirm that the value
is the correct length. Adding this line to your post model confirms that all titles
are at least five characters:

 validates :title, :length => { :minimum => 5 }

You can also specify a :maximum value instead of a :minimum, or you can
use :is to set an exact value.

The :exclusion validation ensures the value does not belong to a given set
of values. For example, adding this validation prohibits blog posts with the title
Title:

 validates :title, :exclusion => { :in => ["Title"] }

You can think of :exclusion as a blacklist for values you don’t want to allow.
Rails also provides an :inclusion validation for specifying a whitelist of accepted
values.

Rails Crash Course,
© 2015 by Anthony Lewis

Models 39

Testing Data
Validations are automatically run before data is saved to the database.
Attempt to store invalid data, and save returns false. You can also test a
model manually with the valid? method:

2.1.0 :025 > post = Post.new
 => #<Post id: nil, title: nil, ...>
2.1.0 :026 > post.valid?
 => false
2.1.0 :027 > post.errors.full_messages
 => ["Title can't be blank"]

In this example, the valid? method should return false because you
didn’t set a value for the title. Failing validations add messages to an array
called errors, and calling full_messages on the errors array should return a
list of error messages generated by Active Record based on your validations.

Use validations freely to keep bad data out of your database, but also
consider your users when you create those validations. Make it clear which
values are valid, and display error messages if invalid data is given so the
user can correct the mistake.

Associations
Only the simplest of applications contain a single model. As your applica-
tion grows, you’ll need additional models, and as you add more, you’ll
need to describe the relationships between them. Active Record associations
describe the relationships between models. For example, let’s add comments
to our blog posts.

Posts and comments are associated. Each post has many comments, and
each comment belongs to a post. This one-to-many relationship is one of the
most commonly used associations, and we’ll explore it here.

Generating the Model
A blog comment should have an author, a body, and a reference to a post.
You can easily generate a model using that information:

$ bin/rails g model Comment author:string body:text post:references

N o t e Remember to run database migrations after generating this new model!

The post:references option tells the Rails generator to add a foreign key
to the comments database table. In this case, the foreign key is named post_id
because it refers to a post. The post_id field contains the id of this comment’s
post. The migration created the column we need in the database, so now we
need to edit our models to finish setting up the association.

Rails Crash Course,
© 2015 by Anthony Lewis

40 Chapter 3

Adding Associations
First, open app/model/post.rb again to add the comments association. Earlier
I said that each post has many comments, and that’s the association we
need here:

class Post < ActiveRecord::Base
 validates :title, :presence => true
 has_many :comments
end

Rails uses a class method called has_many to create this association in
a readable way. Now, edit app/model/comment.rb, and you’ll see that the
Rails generator already added the matching belongs_to statement for you
automatically:

class Comment < ActiveRecord::Base
 belongs_to :post
end

The post to comments association should now work as intended. If your
Rails console was still running while you made these changes, you’ll need to
restart it to see the effects.

Using Associations
When you create an association in a model, Rails automatically defines
several methods for that model. Use these methods, and you won’t have to
worry about keeping the post_id updated. They maintain this relationship
for you automatically.

The has_many Methods

The has_many :comments statement you saw inside Post defines several methods:

comments Returns an Active Record relation representing the array of
comments for this post

comments< Adds an existing comment to this post

comments= Replaces the existing array of comments for this post with
a given array

comment_ids Returns an array of the comment ids associated with
this post

comment_ids= Replaces the existing array of comments for this post
with the comments corresponding to the given array of ids

Because the comments method returns a relation, it is commonly used
with other methods. For example, you can create new comments associ-
ated with a post with post.comments.build, which builds a new comment
belonging to this post, or post.comments.create, which creates a new com-
ment belonging to this post and saves it to the database. Each of these

Rails Crash Course,
© 2015 by Anthony Lewis

Models 41

methods automatically assigns the post_id of the newly created comment.
This example creates a new comment associated with your first post. You
should see the new comment in the output from post.comments:

2.1.0 :028 > post = Post.first
 => #<Post id: 1, title: "First Post", ...>
2.1.0 :029 > post.comments.create :author => "Tony", :body => "Test comment"
 => #<Comment id: 1, author: "Tony", ...>
2.1.0 :030 > post.comments
 => #<ActiveRecord::Relation [#<Comment id: 1, author: "Tony", ...>]>

If you want to check if any comments are associated with a post, use
comments.empty?, which returns true if there are none. You might also find it
helpful to know how many comments are associated with a particular post;
in that case, you use comments.size:

2.1.0 :031 > post.comments.empty?
 => false
2.1.0 :032 > post.comments.size
 => 1

When you know a post has comments associated with it, you can look
for a particular comment by passing post.comments.find a comment id. This
method raises an ActiveRecord::RecordNotFound exception if a matching
comment cannot be found belonging to this post. Use post.comments.where
instead if you would rather not raise an exception. This method just returns
an empty relation if a matching comment is not found.

The belongs_to Methods

The belongs_to :post statement inside the Comment model defines five methods.
Because belongs_to is a singular association (a comment can only belong to
one post), all of these methods have singular names:

post Returns an instance of the post that this comment belongs to

post= Assigns this comment to a different post

build_post Builds a new post for this comment

create_post Creates a new post for this comment and saves it to the
database

create_post! Creates a new post for this comment but raises
ActiveRecord::RecordInvalid if the post is not valid

These methods are the inverse of the methods defined in the Post model.
Use them when you have a comment and you would like to manipulate its
post. For example, let’s fetch the post associated with our first comment:

2.1.0 :033 > comment = Comment.first
 => #<Comment id: 1, author: "Tony", ...>
2.1.0 :034 > comment.post
 => #<Post id: 1, title: "First Post", ...>

Rails Crash Course,
© 2015 by Anthony Lewis

42 Chapter 3

Calling post on the first comment, which is also our only comment so
far, should return our first post. This confirms the association works both
ways. Assuming you still have more than one post in your database, you can
also assign this comment to a different post:

2.1.0 :035 > comment.post = Post.last
 => #<Post id: 2, title: "Second Post", ...>
2.1.0 :036 > comment.save
 => true

Assigning a comment to another post updates the comment’s post_id,
but does not write that to the database. Don’t forget to call save after updat-
ing the post_id! If you make this common mistake, the comment’s post_id
won’t actually change.

Summary
This chapter has been a whirlwind tour of Active Record, so play around
in the console until you’re comfortable with these ideas. Add more posts,
update the existing posts with body text, and create comments associated
with these posts. Focus on the CRUD operations and association methods
in particular. These methods are commonly used in all Rails applications.

The next chapter covers Rails controllers. There, you’ll see all of these
methods in use as you work your way through the various controller actions.

Exercises
1. It might be nice to contact the people leaving comments on our blog.

Generate a new migration to add a string column to the comments
table to store an email address. Run this migration, and use the Rails
console to verify that you can add an email address to comments now.

2. We need to ensure that users actually enter some text when they create
a comment. Add validations to the comments model for the author and
body fields.

3. Write a query to determine the number of comments belonging to each
post. You can’t do this with a single query, but you should be able to find
the answer by iterating over a collection of posts as if it were an array.

Rails Crash Course,
© 2015 by Anthony Lewis

	__RefHeading__2144_78954892
	__RefHeading__2146_78954892
	__RefHeading__2148_78954892
	__RefHeading__2152_78954892
	__RefHeading__2154_78954892
	__RefHeading__2156_78954892
	__RefHeading__2158_78954892
	__RefHeading__2160_78954892
	__RefHeading__2162_78954892
	__RefHeading__2164_78954892
	__RefHeading__2166_78954892
	__RefHeading__2170_78954892
	__RefHeading__2172_78954892
	__RefHeading__2174_78954892
	__RefHeading__2176_78954892
	__RefHeading__5253_1800176054
	__RefHeading__2182_78954892
	__RefHeading__2184_78954892
	__RefHeading__2186_78954892
	__RefHeading__2188_789548921111111111111
	__RefHeading__5255_1800176054
	__RefHeading__2192_78954892
	__RefHeading__2194_78954892
	__RefHeading__2196_78954892
	__RefHeading__2198_78954892

