Symbols
<- assignment operator, 11
#| (hash pipes), 160
() (parentheses), 7–8
... syntax, 207–209

A
Aden-Buie, Garrick, 201, 218
aesthetic properties
altering, 29–31, 34–36
mapping data to, 25–26,
33–34
albersusa package, 68, 70, 79
alignment
of content in slides, 129–131,
165–167
in tables, 90–92
American Community Survey data,
194–199
Analyzing US Census Data: Methods,
Maps, and Models in R
(Walker), 189, 199
application programming interface
(API) keys, 188–189
arguments
adding to custom functions,
203–204
in functions, 8
passing from one function to
another, 207–209
arithmetic operators, 6–7
as.character() function, 185
asides, 140
automatically accessing online data,
xxii, 181, 199
American Community Survey
data, 194–199
Decennial Census data, 189–194
with googlesheets4 package,
182–188
with tidycensus package,
188–189
automating report production.
See parameterized
reporting
axes
in bbplot package, 55
mapping data to aesthetic
properties, 25–26
tweaking appearance of, 35

B
background images, adding to slides,
131, 167
background in bbplot package,
56–57
bar charts, 29, 33–34. See also data
visualization
base R, 12
BBC custom theme (bbplot package),
47–48, 59
axes, 55
background, 56–57
bbc_style() function, 48, 51–58
color, 58–59
formatting text, 52–54
function definition, 51–52
grid lines, 56
installing bbplot, 50
legend, 54
small multiples, 57–58
styling plots with, 48–51
bounding boxes, 66
boxR package, 153
Bryan, Jenny, 154, 215, 217
Build Website option, RStudio, 140
Cascading Style Sheets (CSS)
 applying to slides, 131–135
 custom CSS
 applying to slides, 132–133, 167, 168–169
 applying to website, 141–143, 172–174
case_when() function, 71
cells_body() function, 94
cells_column_labels() function, 90
cell_text() function, 90
census_api_key() function, 188–189
Census Bureau data
 accessing, 188
 American Community Survey data, 194–199
 connecting to with API key, 188–189
 Decennial Census data, 189–194
center alignment
 in slides, 129, 167
 in tables, 90–91, 92
 .center[] content class, 129–131
Çetinkaya-Rundel, Mine, 16
c() function, 8–9, 15, 191
chartjunk, 20, 23
charts. See data visualization
clean_names() function, 144, 184, 206, 213
cloud hosting, 153–154
clutter
 chartjunk, 20, 23
 in graphs, 22–23
 minimizing in tables, 87–89
code chunks
 in Quarto, 160–161
 in R Markdown documents, 104–106, 109–111, 144
color
 bbplot package, 58–59
 fill in data visualizations, 30–31, 45
 intentional use in tables, 94
colorspace package, 68–69, 78
cols_align() function, 92
columns, importing from Google Sheets, 187–188
coma() function, 118
command line, working with R on, 4
comma-separated values (CSV) files, 9–10, 13–14
comments, 16–17, 104
comparison operators, 7–8
console, RStudio, 5
content, website
 adding, 143–148
 applying distill layouts to, 148
 interactive, 148–153
coordinate reference systems (CRSs), 66–67, 70, 81–82
Council of State Governments Justice Center website, 155
count() function, 49
COVID-19 map, 61, 68
 adding geospatial data, 73–74
 calculating daily COVID-19 cases, 70–71
 calculating incidence rates, 71–73
 importing data, 69–70
 importing packages, 68–69
 making, 74–79
 in New Zealand, xix–xx
create_theme() function, 141
CRSs (coordinate reference systems), 66–67, 70, 81–82
crsuggest package, 81
CSS. See Cascading Style Sheets
CSV (comma-separated values) files, 9–10, 13, 14
custom data visualization themes, xxi, 47–48, 59. See also BBC custom theme
 styling plots with, 48–51
custom fonts, 52
custom functions, 201. See also packages
 adding arguments, 203–204
 formatting race and ethnicity data, 204–207
 passing arguments to another function (... syntax), 207–209
 writing simple functions, 202–203
custom themes, 134
cut() function, 72
data. See also automatically accessing online data; geospatial data analyzing with tidyverse, 14–16 importing to create map, 69–70 working with in R, 9–13 data frames, 11 for creating drought visualization, 32 for creating tables, 86–87 vs. tibbles, 13 wrangling geospatial data, 82–83 data visualization, xxi, 19–20, 45–46. See also custom data visualization themes; maps; programming with R; tables complete drought visualization code, 42–45 drought visualization effectiveness, 20–23 grammar of graphics, 23–25 including parameters in code for, 118–119 interactive, on websites, 150–153 re-creating drought visualization, 32–42 with tidycensus package, 195–196 in website, 146–147 working with ggplot2 package, 25–32

Data Visualization (Healy), 17

E

element_functions, 53
environment pane, RStudio, 5
examples, adding to documentation, 215
execute field, Quarto YAML section, 159–160
exported functions, 215

F

facet_grid() function, 36
faceting data visualizations drought data visualization, 36–38, 41, 45 in maps, 76 reducing clutter by, 23 in websites, 146

facet_wrap() function, 58, 76
fct_inorder() function, 74
fig-height option, Quarto, 160–161, 163
fig.height option, R Markdown, 128
file_show() function, 203
files pane, RStudio, 5
fill aesthetic property, 29–31, 34, 59, 83, 198
filter() function, 16, 32, 145, 192
finalise_plot() function, 48, 53
FiveThirtyEight website, tables on, 96–97
fmt_currency() function, 93
fonts
 custom, 52–53
 in slides, 132–133, 135
format field, Quarto YAML section, 159
format() function, 74
format section, 172
fs package, 154, 202–203
functions. See also packages
 accessing documentation for, 17
 accessing geospatial data with, 79–81
 adding to arguments, 203–204
 adding to packages, 210, 217
 basic R syntax, 8–9
 creating, xxii, 201–209
 definition of in bbplot package, 51–52
 exported, 215
 internal, 215
 referring to correctly in packages, 213–214
 tidyverse package, 15–16
 writing simple, 202–203
Fundamentals of Data Visualization
 (Wilke), 85–86
G
gapminder package, 25, 86
gdp data frame, 86–87
Geocomputation with R (Lovelace, Nowosad, and Muenchow), 79, 81–82
GeoJSON files, 79
gem_col() function, 29, 33–34, 146
geometric objects (geoms), 26–29, 40
gem_line() function, 27–28
gem_point() function, 27
gem_rect() function, 40–42
gem_sf() function, 62–63, 76, 198
geospatial data, 62
 accessing, 79–81
 adding to COVID-19 map, 73–74
 bounding box, 66
 coordinate reference system, 66–67
dimensions, 66
 geometry column, 62, 67
 geometry type, 62–66
 wrangling, 82–83
Gerke, Travis, 201, 218
get_acs() function, 194–199, 207, 213
get_decennial() function, 189–191, 193–194, 199
ggplot2 package, 20, 25. See also custom data visualization themes
 altering aesthetic properties, 29–31
 choosing geometric objects, 26–29
 complete themes, 38
 documentation for, 53
 entry themes, 31–32
 faceting, 36–38
 and grammar of graphics, 24–25
 mapping data to aesthetic properties, 25–26, 33–34
 and tidycensus package, 195–198
ggplot() function, 26, 33, 195, 198
ggplotly() function, 150–153
GitHub, sharing packages on, 217
GitHub Pages hosting, 138, 154–155, 175–176
glimpse() function, 183
googledrive package, 153
googlesheets4 package, 181–182, 199
 connecting to Google, 182
 importing only certain columns, 187–188
 reading data from sheet, 182–183
 using data in R Markdown, 183–187
grammar of graphics, 20, 23–25, 31–32. See also data visualization
Grammar of Graphics, The (Wilkinson), 24
grid lines, 56, 87–89
Grolemund, Garrett, 16
group_by() function, 71
group_by(NAME) function, 192
gs4_auth() function, 182
gtExtras package, 86, 95–97
gt() function, 88
gt package, 86, 88–94, 97, 145
gt_plt_sparkline() function, 95–96

gt_theme_538() function, 96–97

Guibourg, Clara, 47, 59

guide_legend() function, 78

Happy Git and GitHub for the useR (Bryan), 154, 217

Harris, Meghan, 182–187

hash pipe (#|), 160

Healy, Kieran, 17

hello.R file, 210

help resources, 17–18

Herman, Matt, 137–138, 148–149, 155, 188

Hill, Alison, 110–111

hosting, website, 153–155, 175–177

HTML documents
 div tags, 165–167, 175
 slides as, 126
 for websites, 138, 154–155

IDE (integrated development environment), 4–5

if_else() function, 82–83

import() function, 32

importing data
 to create map, 69–70
 from CSV file, 9–10
 with googlesheets4 package, 182–188
 raw geospatial, 79

importing files into projects, 14

incidence rates, calculating, 71–73

incidental reveal in slideshows, 128–129, 165

index.qmd file, 170–171

inline R code, in R Markdown, 108–109, 117

install.packages() function, 12, 211

integrated development environment (IDE), 4–5

interactive tables, 97

interactive tooltip, 148, 150–153

interactive website content, 148–153

internal functions, 215

Ismay, Chester, 4, 12

J

janitor package, 144, 184, 206, 212–213

JavaScript, 148

JavaScript Object Notation (JSON) format, 32

K

Karamanis, Georgios, 19–20, 32, 34–42

Kim, Albert, 4, 12

Knitr package, 158, 169

knitr::opts_chunk$set() function, 106

knitting, 103–107, 109–111, 120

labs() function, 78

lag() function, 71

layouts, distill package, 148

left alignment in tables, 90–92

.left-column[] content class, 130

legends
 bbplot package, 54
 drought data visualization, 42
 license for packages, 215–217
 line charts, 27–28
 LINESTRING geometry type, 64

lists
 revealing incrementally in slideshows, 165
 in R Markdown documents, 107

load_variables() function, 190

Lovelace, Robin, 79, 81–82

l-screen-inset layout, 148

lubridate package, 144

M

Madjid, Abdoul, 61, 68–69, 83–84

map() function, 121

mapping data to aesthetic properties, 25–26, 33–34

maps, xxi, 61, 83–84

geospatial data
 accessing simple features, 79–81
 primer, 62–67
 wrangling, 82–83
maps (continued)
- making, 79–83
- re-creating COVID-19 map, 68–79
 with tidycensus package, 196–199
- using appropriate projections, 81–82
 in website, 145–147
- margin() function, 53
- markdown text, 106–108
- mean() function, 8–9, 15
- metadata, package, 215–217
- meta descriptions, 139
- middle content class, 131
- Mock, Tom, 86, 90, 95
- Moffitt Cancer Center, 201, 218
- moon_reader output format,
 R Markdown, 126
- Mucciolo, Livia, 113
- Muenchow, Jannes, 79, 81–82
- MULTILINESTRING geometry type, 65
- multiple reports, generating simultaneously.
 See parameterized reporting
- MULTIPOLYGON geometry type, 65–66
- multi-tool workflow for reports, 101–102, 114
- mutate() function, 82–83, 185, 192

N
- named lists, 121–122
- NAMESPACE file, 215
- ne_countries() function, 80
- Nowosad, Jakub, 79, 81–82

O
- objects, saving data as, 11
- online data. See automatically accessing online data
- options in Quarto, 160–161
- output directory for website, 140
- output widths in Quarto websites, 175

P
- packages
 - adding functions, 210, 217
 - adding license and metadata, 215–217
 - checking with devtools, 211–212
 - creating, xxii, 201–202, 209–218
 - creating documentation, 214–215
 - dependencies, 211, 212–213
 - documentation websites associated with, 18
 - importing to create COVID-19 map, 68–69
 - installing, 12–13, 217
 - loading, 12
 - referring to functions correctly, 213–214
- palmerpenguins package, 48–49, 103
- parameterized reporting, xxi–xxii, 113, 124
 - best practices, 124
 - creating R script, 119–123
 - with Quarto, 161–163
 - report templates in R Markdown, 114–119
- params variable, 121–122
- parentheses () in functions, 8
 - using with arithmetic operators, 7
- plotly package, 148, 150–153
- plots. See data visualization
- POINT geometry type, 63
- points, adding to graphs, 27
- POLYGON geometry type, 62–63
- precision, 93
- presentations. See slideshow presentations
- print() function, 8
- programming with R, xxi, 3, 18, 218
 - basic syntax, 6–9
 - comments, 16–17
 - help resources, 17–18
 - installing, 4
 - R script files, 5–6, 104, 119–123
 - RStudio projects, 13–14
 - setting up, 4–5
 - working with data, 9–13
 - analysis with tidyverse, 14–16
 - projections, 66–67, 81–82
 - projects, RStudio, 13–14
 - pull() function, 118, 120, 144–145
Index

.pul-left[] content class, 129–130
.pul-right[] content class, 129–130
purr package, 121–123
pwalk() function, 122–123

Q
.qmd files, 169–171
Quarto, xxi, 157–158, 177
creating document, 158–159
making slideshows, 163–169
making websites, 169–177
parameterized reporting, 161–163
Quarto Pub, 176–177
vs. R Markdown, 111, 157, 159–161, 177
.quarto.yml file, 169, 171–172, 174

R
ragg package, 52
raster data, 62
rbind() function, 120
R CMD check, 211–213
rdrop2 package, 153
reactable package, 97, 149–150
read_csv() function, 12–13, 202
read.csv() function, 10, 17
read_sf() function, 79, 81
read_sheet() function, 183, 187–188
rectangular data, 13
reknitting R Markdown documents, 108–109
relative paths, 13
relocate() function, 74, 185
.remark-slide-content, 132
remotes package, 50
rename() function, 185
Render button, Quarto, 161
render() function, 120–123, 163
Render Website option, RStudio, 170
replace_na() function, 71
reports, xxi–xxii. See also parameterized reporting:
R Markdown
and googlesheets4 package, 183–187
multi-tool workflow for, 101–102, 114
templates for, 114–119
reproducibility, 102
revealing content incrementally in slideshows, 128–129, 165
reveal.js JavaScript library, 163, 169
R for Data Science (Wickham, Çetinkaya-Rundel, and Grolemund), 16
right alignment in tables, 90–91
.right-column[] content class, 130
rio package, 32
R Markdown, xxi–xxii, 102, 111
code chunks in documents, 104–106
creating document, 102–103
creating R script, 119–123
creating tables, 86
formatting text, 107
generating numbers with parameters, 117–118
and googlesheets4 package, 183–187
headings, 107
inline R code, 108–109
markdown text, 106–108
vs. Quarto, 111, 157, 159–161, 177
report templates in, 114–119
running code chunks interactively, 109–111
setup code chunk, 105–106
website project files, 138–139
xaringan package, working with, 126–127
YAML section in documents, 104
rmarkdown package, 120–123
rnaturalearth package, 80
Rodrigues, Bruno, 203–204
rolling averages, 71–73
rollmean() function, 72
row_number() function, 184–185
Roxygen, 214–215
R Packages (Wickham and Bryan), 215
R programming language, xx, 3, 18, 218
basic syntax, 6–9
comments, 16–17
help resources, 17–18
installing, 4
R script files, 5–6, 104, 119–123
RStudio projects, 13–14
R programming language (continued)
setting up, 4–5
working with data, 9–13
analysis with tidyverse, 14–16
R script files, 5–6, 104, 119–123
RStudio
building websites, 140, 170
creating documents
Quarto, 158–159
R Markdown, 102–103
exploring interface, 4–5
installing, 4
packages
creating, 209–210
installing, 12–13
projects in, 13–14
creating new distill project, 138
publishing Quarto website, 176
R script files, 5–6
script file pane, 5–6
working with custom fonts, 52
working with data, 9–13
S
scss:defaults section, 168–169
scss:rules section, 169
Sayed, Safia, 113
scale_fill_discrete_sequential() function, 78
scale_fill_viridis_c() function, 30–31, 198
scale_fill_viridis_d() function, 34, 42
scales package, 118
Scherer, Cédric, 19–20, 32, 34–42
Schwabish, Jon, 91, 93
Scientific American. See drought data visualization
sf package, 68–70, 79, 81
shift_geometry() function, 198–199
show_in_excel() function, 203–204
show_in_excel_penguins() function, 202–203
simple features (sf) data, 62
accessing geospatial data, 79–81
bounding box, 66
coordinate reference system, 66–67
dimensions, 66
fields, 62
geometry column, 62, 67
geometry type, 62–66
wrangling geospatial data, 82–83
_site.yml file, 139–140, 143
slice_max() function, 144, 145
slideshow presentations, xxii, 125, 135
adding background images, 131
adjusting size of figures, 128
aligning content with content classes, 129–131
applying CSS to slides, 131–135
creating new slides, 127–128
getting started, 126–127
with Quarto, 163–169
revealing content incrementally, 128–129
two-column layouts, 129–130, 165–167
xaringan package, advantages of, 125–126
small multiples charts, 57–58. See also faceting data visualizations
snake case, 206
sparklines, 95–96
states() function, 79–80
statistical analysis, xx
Statistical Inference via Data Science (Ismay and Kim), 4, 12
str_glue() function, 144, 202
strip text, modifying with bbplot package, 57–58
st_transform() function, 70, 81
styles.css file, 169, 172
styles.scss file, 173–174
style_xaringan() function, 135
Stylianou, Nassos, 47, 59
suggest_top_crs() function, 81
summarize() function, 15–16
syntax, R, 6–9
systemfonts package, 52
T
tables, xxi, 85–86, 97
adding data visualizations, 95–97
alignment in, 90–92
creating data frames, 86–87
differentiating header from body, 89–90
intentional use of color, 94
interactive, on websites, 149–150
minimizing clutter, 87–89
using correct level of precision, 93
in website, 145, 147
tab_style() function, 89–90, 94
tempfile() function, 202
templates, report, 114–119
text
 aligning in tables, 91–92
 formatting, with bbplot package, 52–54
theme.css file, 141–143
themes, BBC. See BBC custom themes
themes, ggplot2 package, 38
 theme() function, 38–40, 52, 58–59, 78
 theme_light() function, 38
 theme_minimal() function, 31, 146
themes, Quarto, 167–168, 172
themes, xaringan package, 133–134
tibbles, 13, 120–123
tidycensus package, 181, 188, 199
 adding dependency packages, 212–213
 connecting to Census Bureau with API key, 188–189
 custom functions, 204–205, 207
 visualizing American Community Survey data, 194–199
 working with Decennial Census data, 189–194
tidyverse package, 3, 12
 and bbplot package, 48–49
 creating maps, 68–69
data analysis with, 14–16
functions, 15–16
loading, 14
pipe, 15–16
R Markdown documents, errors
 when knitting, 110
tables, 86
websites, 144
wrangling geospatial data, 82–83
writing simple functions, 202
tigris package, 70–80, 144, 196–199
tooltip, interactive, 148, 150–153
Tufte, Edward, 20
U
ungroup() function, 71, 192
Urban Institute parameterized reporting, 113, 124, 161–163
county-level reports, 124
fiscal briefs, 113, 124
urbnthemes package, 114
url() function, 131
usa_sf() function, 70, 79
US Census Bureau data, 188
 American Community Survey data, 194–199
 connecting to with API key, 188–189
 Decennial Census data, 189–194
use_mit_license() function, 216
use_package() function, 212
use_r() function, 210
usethis package, 210, 216
V
variables
 data frame, 11
 Decennial Census data, working with, 189–194
 mapping to aesthetic properties, 25–26, 33–34
 vector geospatial data, 62
 vectors, creating, 120–121
Visual Display of Quantitative Information, The (Tufte), 20
visualization of data. See data visualization
W
Walker, Kyle, 188, 189, 193, 196, 199
websites, xxii, 137–138, 155
 applying custom CSS, 141–143
 applying layouts, 148
 building, 140–141
 creating new distill project, 138
 hosting, 153–155
 interactive content, 148–153
websites (continued)
 making with Quarto, 169–177
 navigation bars, 140, 174–175
 pagination, 149–150
 project files, 138–140
 table of contents, 174
 titles, 174
 vignettes on documentation sites, 18
 working with content, 143–148
Westchester County COVID-19 website project, 137–138, 148–149
Wickham, Hadley, 16, 24–25, 202, 215
Wilke, Claus, 85–86
Wilkinson, Leland, 24
Williams, Aaron, 113
write_csv() function, 204
write_sheet() function, 188
X
xaringan package, 125, 135, 157
 adding background images to slides, 131
 adjusting size of figures, 128
 advantages of, 125–126
 aligning content with content classes, 129–131
 applying CSS to slides, 131–135
 creating new slides, 127–128
 getting started with, 126–127
 revealing content incrementally, 128–129
xaringanthemer package, 134–135
x-axis
 mapping data to aesthetic properties, 25–26
 tweaking appearance of, 35
Y
YAML section
 R Markdown documents, 104, 117–119, 138–139
y-axis
 mapping data to aesthetic properties, 25–26
 tweaking appearance of, 35
Z
zoo package, 68–69, 72