
8
HOW TO USE CLASSES AND

OBJECTS

Why is a giraffe like a sidewalk? Because a giraffe and
a sidewalk are both things, which are known in the En
glish language as nouns and in Python as objects. In
programming, objects are a way to organize code and
break things down to more easily work with complex
ideas. (We used an object in Chapter 4 when we worked
with the turtle module’s Turtle object.)

To fully understand how objects work in Python, we need to think about
types of objects. Let’s start with giraffes and sidewalks.

A giraffe is a type of mammal, which is a type of animal. A giraffe is also
an animate object—it’s alive.

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



There’s not much to say about a sidewalk other than it’s not a living
thing. Let’s call it an inanimate object (in other words, it’s not alive). The
terms mammal, animal, animate, and inanimate are all ways of classifying
things.

Breaking Things into Classes
In Python, objects are defined by classes, which classify objects into groups.
For example, the tree diagram in Figure 81 shows the classes that giraffes
and sidewalks fit into based on our preceding definitions.

Figure 8-1: Tree diagram of some classes

The main class is Thing. Below the Thing class, we have Inanimate and
Animate. These classes are further broken down into Sidewalk for Inanimate,
and Animal, Mammal, and Giraffe for Animate.

We can use classes to organize bits of code. For example, consider the
turtle module. All the things Python’s turtle module can do—such as moving
forward, moving backward, turning left, and turning right—are functions

82 Chapter 8

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



in the Turtle class. An object is a member of a class, and we can create any
number of objects for a class—which we’ll get to shortly.

Now let’s create the same set of classes shown in our tree diagram, start
ing from the top. We define classes using the class keyword followed by a
name. Thing is the broadest class, so we’ll create it first:

>>> class Thing:

pass

We name the class Thing and use the pass statement to let Python know
we’re not going to give any more information. The pass keyword is used
when we want to provide a class or function but don’t want to fill in the de
tails at the moment.

Next, we’ll add the other classes and build some relationships between
them.

Children and Parents
If a class is a part of another class, it’s considered a child of that class, and
the other class is its parent. Classes can be both children of and parents to
other classes. In our tree diagram, the class above another class is its par
ent and the class below it is its child. For example, Inanimate and Animate are
both children of the class Thing, meaning that Thing is their parent.

To tell Python that a class is a child of another class, we add the name of
the parent class in parentheses after the name of our new class, like this:

>>> class Inanimate(Thing):

pass

>>> class Animate(Thing):

pass

Here, we create a class called Inanimate and tell Python that its parent
class is Thing. Next, we create a class called Animate and tell Python that its
parent class is also Thing.

Let’s create the Sidewalk class with the parent class Inanimate like so:

>>> class Sidewalk(Inanimate):

pass

We can organize the Animal, Mammal, and Giraffe classes using their parent
classes as well:

>>> class Animal(Animate):

pass

>>> class Mammal(Animal):

pass

How to Use Classes and Objects 83

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



>>> class Giraffe(Mammal):

pass

Adding Objects to Classes
We now have a bunch of classes, but what about putting some more infor
mation into those classes? Say we have a giraffe named Reginald. We know
he belongs in the Giraffe class, but what do we use—in programming terms—
to describe the single giraffe called Reginald? We call Reginald an object
(also known as an instance) of the Giraffe class. To “introduce” Reginald to
Python, we use this little snippet of code:

>>> reginald = Giraffe()

This code tells Python to create an object of the Giraffe class and assign
it to the reginald variable. Like when we call a function, the class name is
followed by parentheses. Later in this chapter, we’ll see how to create objects
and use parameters in the parentheses.

But what does the reginald object do? Well, nothing at the moment. To
make our objects useful, when we create our classes, we also need to define
functions that can be used with the objects in that class. Rather than just
using the pass keyword immediately after defining the class, we can add func
tion definitions.

Defining Functions of Classes
Chapter 7 introduced functions as a way to reuse code. When we define a
function that’s associated with a class, we do so in the same way that we de
fine any other function, except we indent it beneath the class definition. For
example, here’s a normal function that isn’t associated with a class:

>>> def this_is_a_normal_function():

print('I am a normal function')

And here are a couple of functions that are defined for a class:

>>> class ThisIsMySillyClass:

def this_is_a_class_function():

print('I am a class function')

def this_is_also_a_class_function():

print('I am also a class function. See?')

Adding Class Characteristics as Functions
Consider the child classes of the Animate class we defined on page 83. We can
add characteristics to each class that describe what it is and what it can do. A
characteristic is a trait all members of the class (and its children) share.

84 Chapter 8

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



For example, what do all animals have in common? To start with, they
breathe, move, and eat. What about mammals? Mammals feed their young
with milk, and they also breathe, move, and eat. We know giraffes eat leaves
from high up in trees. And like all mammals, they feed their young with
milk, breathe, move, and eat. When we add these characteristics to our tree
diagram, we get something like Figure 82.

Figure 8-2: Classes with characteristics

These characteristics can be thought of as actions, or functions—things
that an object of that class can do.

To add a function to a class, we use the def keyword. So the Animal class
will look like this:

>>> class Animal(Animate):

def breathe(self):

pass

def move(self):

pass

def eat_food(self):

pass

In the first line of this listing, we define the class as we did before, but
instead of using pass on the next line, we define a function called breathe and
give it the self parameter. The self parameter is a way for one function in
the class to call another function in the class (and in the parent class). We’ll
see this parameter in use later.

How to Use Classes and Objects 85

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



On the next line, pass tells Python we’re not going to provide any more
information about the breathe function because it’s going to do nothing for
now. Then we add the move and eat_food functions and use the pass keyword
for both. We’ll recreate our classes shortly and put some proper code in the
functions. This is a common way to develop programs.

NO T E Often, programmers will create classes with functions that do nothing as a way to
figure out what the class should do before getting into the details of the individual
functions.

We can also add functions to the Mammal and Giraffe classes. Each class
will be able to use the characteristics (or functions) of its parent, meaning
you don’t need to make one really complicated class. Instead, you can put
your functions in the highest parent class where the characteristic applies.
(This makes your classes simpler and easier to understand.)

>>> class Mammal(Animal):

def feed_young_with_milk(self):

pass

>>> class Giraffe(Mammal):

def eat_leaves_from_trees(self):

pass

In the above code, the Mammal class provides a function feed_young_with_milk.
The Giraffe class is a child class (or subclass) of Mammal and provides another
function: eat_leaves_from_trees.

86 Chapter 8

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



Why Use Classes and Objects?
We’ve now added functions to our classes, but why use classes and objects at
all when you could just write normal functions called breathe, move, eat_food,
and so on?

To answer that question, we’ll use our giraffe called Reginald, which we
created earlier as an object of the Giraffe class, like this:

>>> reginald = Giraffe()

Because reginald is an object, we can call (or run) functions provided
by the Giraffe class and its parent classes. We call functions on an object by
using the dot (.) operator and the name of the function. To tell Reginald to
move or eat, we can call the functions like this:

>>> reginald = Giraffe()

>>> reginald.move()

>>> reginald.eat_leaves_from_trees()

Suppose Reginald has a giraffe friend named Harold. Let’s create an
other Giraffe object called harold:

>>> harold = Giraffe()

Because we’re using objects and classes, we can tell Python which giraffe
we’re talking about when we want to run the move function. For example, if
we want to make Harold move but leave Reginald in place, we could call the
move function using our harold object, like this:

>>> harold.move()

In this case, only Harold would be moving.
Let’s change our classes a little to make this more obvious. We’ll add a

print statement to each function instead of using pass:

>>> class Animal(Animate):

def breathe(self):

print('breathing')

def move(self):

print('moving')

def eat_food(self):

print('eating food')

>>> class Mammal(Animal):

def feed_young_with_milk(self):

print('feeding young')

>>> class Giraffe(Mammal):

def eat_leaves_from_trees(self):

print('eating leaves')

How to Use Classes and Objects 87

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



Now when we create our reginald and harold objects and call functions
on them, we can see something actually happen:

>>> reginald = Giraffe()

>>> harold = Giraffe()

>>> reginald.move()

moving

>>> harold.eat_leaves_from_trees()

eating leaves

On the first two lines, we create the variables reginald and harold, which
are objects of the Giraffe class. Next, we call the move function on reginald,
and Python prints moving on the following line. In the same way, we call the
eat_leaves_from_trees function on harold, and Python prints eating leaves. If
these were real giraffes, rather than objects in a computer, one giraffe would
be walking and the other would be eating.

NO T E Functions defined for classes are actually called methods. The terms are almost inter
changeable except that methods can only be called on objects of a class. Another way
of saying this is that a method is associated with a class but a function is not. Given
they are almost the same, we’ll use the term function in this book.

Objects and Classes in Pictures
Let’s try taking a more graphical approach to objects and classes and return
to the turtle module we toyed with in Chapter 4. When we use turtle.Turtle(),
Python creates an object of the Turtle class that is provided by the turtle

module (similar to our reginald and harold objects). We can create two Turtle

objects (named Avery and Kate) just as we created two giraffes:

>>> import turtle

>>> avery = turtle.Turtle()

88 Chapter 8

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



>>> kate = turtle.Turtle()

Each turtle object (avery and kate) is a member of the Turtle class.
Now here’s where objects start to become powerful. Having created our

Turtle objects, we can call functions on each and they will draw indepen
dently. Try this code:

>>> avery.forward(50)

>>> avery.right(90)

>>> avery.forward(20)

With this series of instructions, we tell Avery to move forward 50 pix
els, turn right 90 degrees, and move forward 20 pixels so she finishes facing
downward. Remember that turtles always start off facing to the right.

Now it’s time to move Kate.

>>> kate.left(90)

>>> kate.forward(100)

We tell Kate to turn left 90 degrees and then move forward 100 pixels
so she ends facing up. So far, we have a line with arrowheads moving in two
different directions, with the head of each arrow representing a different
turtle object: Avery is pointing down and Kate is facing up (see Figure 83).

Figure 8-3: Kate and Avery

Now let’s add another turtle, Jacob, and move him without bugging
Kate or Avery.

>>> jacob = turtle.Turtle()

>>> jacob.left(180)

>>> jacob.forward(80)

How to Use Classes and Objects 89

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



First, we create a new Turtle object called jacob, then we turn him left
180 degrees and move him forward 80 pixels. Our drawing with three turtles
should look like Figure 84.

Figure 8-4: Kate and Avery and Jacob

Every time we call turtle.Turtle() to create a turtle, we add a new, in
dependent object. Each object is still an instance of the Turtle class, and we
can use the same functions on each object. But because we’re using objects,
we can move each turtle independently. Like our independent Giraffe ob
jects (Reginald and Harold), Avery, Kate, and Jacob are independent Turtle
objects. If we create a new object with the same variable name as an object
we’ve already created, the old object won’t necessarily vanish.

Other Useful Features of Objects and Classes
Classes and objects make it easy to group functions. They’re also really use
ful when we want to think about a program in smaller chunks.

For example, consider a huge software application like a word processor
or a 3D computer game. It’s nearly impossible for most people to fully un
derstand large programs like these because there’s so much code. But break
these monster programs into smaller pieces and each piece starts to make
sense—as long as you know its programming language, of course!

90 Chapter 8

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



When writing a large program, breaking it up also allows you to divide
the work among other programmers. The most complicated programs (like
your web browser) were written by many people, or teams of people, work
ing on different parts at the same time around the world. Imagine we want
to expand some of the classes we’ve created in this chapter (Animal, Mammal,
and Giraffe), but we have too much work to do, and our friends have offered
to help. We could divide the work of writing the code so that one person
works on the Animal class, another on the Mammal class, and still another on
the Giraffe class.

Inherited Functions
You may realize that whoever ends up working on the Giraffe class is lucky,
because any functions created by the people working on the Animal and Mammal

classes can also be used by the Giraffe class. The Giraffe class inherits func
tions from the Mammal class, which, in turn, inherits functions from the Animal

class. In other words, when we create a Giraffe object, we can use functions
defined in the Giraffe class, as well as functions defined in the Mammal and
Animal classes. And, by the same token, if we create a Mammal object, we can
use functions defined in the Mammal class as well as its parent class, Animal.

Take a look at the relationship between the Animal, Mammal, and Giraffe

classes again. The Animal class is the parent of the Mammal class, and Mammal is
the parent of the Giraffe class (Figure 85).

Figure 8-5: Classes and inherited functions

How to Use Classes and Objects 91

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



Even though Reginald is an object of the Giraffe class, we can still call
the move function we defined in the Animal class because functions defined in
any parent class are available to its child classes:

>>> reginald = Giraffe()

>>> reginald.move()

moving

In fact, all the functions we defined in both the Animal and Mammal classes
can be called from our reginald object because the functions are inherited:

>>> reginald = Giraffe()

>>> reginald.breathe()

breathing

>>> reginald.eat_food()

eating food

>>> reginald.feed_young_with_milk()

feeding young

In this code we create an object of the Giraffe class called reginald. When
we call each function it prints a message regardless of whether the function
is defined in Giraffe or in a parent class.

Functions Calling Other Functions
When we call functions on an object, we use the object’s variable name. For
example, we can call the move function on Reginald the giraffe like so:

>>> reginald.move()

To have a function in the Giraffe class call the move function, we’d use the
self parameter. The self parameter is a way for one function in the class
to call another function. For example, suppose we add a function called
find_food to the Giraffe class:

>>> class Giraffe(Mammal):

def find_food(self):

self.move()

print('I\'ve found food!')

self.eat_food()

We’ve created a function that combines two other functions, which is
quite common in programming. Often, you’ll write a function that does
something useful, which you can then use inside another function. (We’ll
do this in Chapter 11, where we’ll write more complex functions to create a
game.)

Let’s use self to add some functions to the Giraffe class:

>>> class Giraffe(Mammal):

def find_food(self):

92 Chapter 8

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



self.move()

print('I\'ve found leaves!')

self.eat_food()

def eat_leaves_from_trees(self):

print('tear leaves from branches')

self.eat_food()

def dance_a_jig(self):

self.move()

self.move()

self.move()

self.move()

We use the eat_food and move functions from the parent Animal class to de
fine eat_leaves_from_trees and dance_a_jig for the Giraffe class, because these
are inherited functions. By adding functions that call other functions, when
we create objects of these classes, we can call a single function that does
more than just one thing. See what happens when we call the dance_a_jig

function below:

>>> reginald = Giraffe()

>>> reginald.dance_a_jig()

moving

moving

moving

moving

In this code, our giraffe moves four times (that is, the text moving is printed
four times).

If we call the find_food function we get three lines printed:

>>> reginald.find_food()

moving

I've found leaves!

eating food

How to Use Classes and Objects 93

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



Initializing an Object
Sometimes when creating an object, we want to set some values (also called
properties) for later use. When we initialize an object, we’re getting it ready to
be used.

For example, suppose we want to set the number of spots on our giraffe
objects when they’re created (or initialized). To do this, we create an __init__

function (note that there are two underscore characters on each side, for a
total of four). The init function sets the properties for an object when the
object is first created. Python will automatically call this function when we
create a new object. Here’s how to use it:

>>> class Giraffe(Mammal):

def __init__(self, spots):

self.giraffe_spots = spots

First, we define the __init__ function with the self and spots parameters.
Just like the other functions we’ve defined in the class, the __init__ function
also needs to have self as the first parameter. Next, we set the spots param
eter to an object variable (its property) called giraffe_spots using the self

parameter. You might think of this line of code as saying, “Take the value of
the spots parameter and save it for later (using the giraffe_spots object vari
able).” Just as one function in a class can call another function using the self

parameter, variables in the class are also accessed using self.
Next, if we create a couple of new giraffe objects (called Ozwald and

Gertrude) and display their number of spots, you can see the initialization
function in action:

>>> ozwald = Giraffe(100)

>>> gertrude = Giraffe(150)

>>> print(ozwald.giraffe_spots)

100

>>> print(gertrude.giraffe_spots)

150

First, we create an instance of the Giraffe class using the parameter value
100. This has the effect of calling the __init__ function and using 100 for the
value of the spots parameter. Next, we create another instance of the Giraffe

class with a value of 150. Lastly, we print the object variable giraffe_spots for
each of our giraffe objects, and we see that the results are 100 and 150. It
worked!

Remember, when we create an object of a class, such as ozwald above, we
can refer to its variables or functions using the dot operator and the name of
the variable or function we want to use (for example, ozwald.giraffe_spots).
But when we’re creating functions inside a class, we refer to those same vari
ables (and other functions) using the self parameter (self.giraffe_spots).

94 Chapter 8

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



What You Learned
In this chapter, we used classes to create categories of things and made ob
jects (or instances) of those classes. You learned how the child of a class in
herits the functions of its parent, and that even though two objects are of
the same class, they’re not necessarily clones. For example, two giraffe ob
jects can have their own distinct number of spots. You learned how to call
(or run) functions on an object and how object variables are a way of saving
values in those objects. Lastly, we used the self parameter in functions to
refer to other functions and variables. These concepts are fundamental to
Python, and you’ll see them multiple times throughout the rest of this book.

Programming Puzzles
Give the following examples a try to experiment with creating your own
functions. The solutions can be found at http://pythonforkids.com.

#1: The Giraffe Shuffle
Add functions to the Giraffe class to move the giraffe’s left and right feet
forward and backward. A function for moving the left foot forward might
look like this:

>>> def left_foot_forward(self):

print('left foot forward')

Then create a function called dance to teach our giraffes to dance (the
function will call the four foot functions you’ve just created). The result of
calling this new function will be a simple dance:

>>> reginald = Giraffe()

>>> reginald.dance()

left foot forward

left foot back

right foot forward

right foot back

left foot back

right foot back

right foot forward

left foot forward

#2: Turtle Pitchfork
Create the following picture of a sideways pitchfork using four Turtle ob
jects (the exact length of the lines isn’t important). Remember to import the
turtle module first!

How to Use Classes and Objects 95

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs

http://python-for-kids.com


#3: Two Small Spirals
Create the following picture of two small spirals using two Turtle objects
(again the exact size of the spirals isn’t important).

#4: Four Small Spirals
Let’s take the two spirals we created in the previous code and make a mirror
image to create four spirals, which should look like the following image.

96 Chapter 8

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



How to Use Classes and Objects 97

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs


	Acknowledgments
	Introduction
	Why Python
	How To Learn To Code
	Who Should Read This Book
	What's In This Book
	Python for Kids Website
	Have Fun!

	Part ILearning To Program
	1Not All Snakes Slither
	A Few Words About Language
	Installing Python
	Installing Python On Windows 11
	Installing Python on Ubuntu
	Installing Python on Raspberry Pi (Raspberry Pi OS or Raspbian)

	Once You've Installed Python
	Saving Your Python Programs
	What You Learned

	2Calculations And Variables
	Calculating With Python
	Python Operators
	The Order of Operations
	Variables Are Like Labels
	Using Variables
	What You Learned

	3Strings, Lists, Tuples, and Dictionaries
	Strings
	Creating Strings
	Handling Problems with Strings
	Embedding Values in Strings
	Multiplying Strings
	Lists Are More Powerful than Strings
	Adding Items to a List
	Removing Items from a List
	List Arithmetic
	Tuples
	Python Dictionaries
	What You Learned
	Programming Puzzles
	#1: Favorites
	#2: Counting Combatants
	#3: Greetings!
	#4: Multi-line Letter


	4Drawing with Turtles
	Using Python's Turtle Module
	Creating a Canvas
	Moving the Turtle
	What You Learned
	Programming Puzzles
	#1: A Rectangle
	#2: A Triangle
	#3: A Box Without Corners
	#4: A Tilted Box Without Corners


	5Asking Questions with if and else
	If Statements
	A Block is a Group of Programming Statements
	Conditions Help Us Compare Things
	If-Then-Else Statements
	if and elif Statements
	Combining Conditions
	Variables with No Value—None
	The Difference Between Strings and Numbers
	What You Learned
	Programming Puzzles
	#1: Are You Rich?
	#2: Twinkies!
	#3: Just the Right Number
	#4: I Can Fight Those Ninjas


	6Going Loopy
	Using for Loops
	While We're Talking About Looping...
	What You Learned
	Programming Puzzles
	#1: The Hello Loop
	#2: Even Numbers
	#3: My Five Favorite Ingredients
	#4: Your Weight on the Moon


	7Recycling Your Code with Functions and Modules
	Using Functions
	Parts of a Function
	Variables and Scope
	Using Modules
	The input function
	What You Learned
	Programming Puzzles
	#1: Basic Moon Weight Function
	#2: Moon Weight Function and Years
	#3: Moon Weight Program
	#4: Mars Weight Program


	8How to Use Classes and Objects
	Breaking Things into Classes
	Children and Parents
	Adding Objects to Classes
	Defining Functions of Classes
	Adding Class Characteristics as Functions
	Why Use Classes and Objects?
	Objects and Classes in Pictures
	Other Useful Features of Objects and Classes
	Inherited Functions
	Functions Calling Other Functions
	Initializing an Object
	What You Learned
	Programming Puzzles
	#1: The Giraffe Shuffle
	#2: Turtle Pitchfork
	#3: Two Small Spirals
	#4: Four Small Spirals


	9More Turtle Graphics
	Starting with the Basic Square
	Drawing stars
	Drawing a Car
	Coloring Things In
	A Function to Draw a Filled Circle
	Creating Pure Black and White
	A Square-Drawing Function
	Drawing Filled Squares
	Drawing Filled Stars
	What You Learned
	Programming Puzzles
	#1: Drawing an Octagon
	#2: Drawing a Filled Octagon
	#3: Another Star-drawing Function
	#4: Four Spirals revisited


	10Using tkinter for Better Graphics
	Creating a Clickable Button
	Using Named Parameters
	Creating a Canvas for Drawing
	Drawing Lines
	Drawing Boxes
	Drawing a Lot of Rectangles
	Setting the Color
	Drawing Arcs
	Drawing Polygons
	Displaying Text
	Displaying Images
	Creating Basic Animation
	Making an Object React to Something
	More Ways to Use the Identifier
	What You Learned
	Programming Puzzles
	#1: Fill the Screen with Triangles
	#2: The Moving Triangle
	#3: The Moving Photo
	#4: Fill the Screen with Photos



	Part IIBounce
	11Beginning Your First Game: Bounce!
	Whack the Bouncing Ball
	Creating the Game Canvas
	Creating the Ball Class
	Adding Some Action
	Making the Ball Move
	Making the Ball Bounce
	Changing the Ball's Starting Direction

	What You Learned
	Programming Puzzles
	#1: Changing colors
	#2: Flashing colors
	#3: Take your positions!
	#4: Adding the paddle...?


	12Finishing Your First Game: Bounce!
	Adding the Paddle
	Making the Paddle Move
	Finding Out When the Ball Hits the Paddle
	Adding an Element of Chance
	What You Learned
	Programming Puzzles
	#1: Delay the Game Start
	#2: A Proper ``Game Over"
	#3: Accelerate the Ball
	#4: Record the Player's Score



	Part IIIMr. Stick Man Races For The Exit
	13Creating Graphics for the Mr. Stick Man Game
	Mr. Stick Man Game Plan
	Getting GIMP
	Creating the Game Elements
	Preparing a Transparent Image
	Drawing Mr. Stick Man
	Mr. Stick Man Running to the Right
	Mr. Stick Man Running to the Left

	Drawing the Platforms
	Drawing the Door
	Drawing the Background
	Transparency
	What You Learned

	14Developing the Mr. Stick Man Game
	Creating the Game Class
	Setting the Window Title and Creating the Canvas
	Finishing the __init__ Function
	Creating the mainloop Function
	Creating the Coords Class
	Checking for Collisions
	Sprites Colliding Horizontally
	Sprites Colliding Vertically
	Putting It All Together: Our Final Collision-Detection Code
	The collided_left Function
	The collided_right Function
	The collided_top Function
	The collided_bottom Function

	Creating the Sprite Class
	Adding the Platforms
	Adding a Platform Object
	Adding a Bunch of Platforms
	What You Learned
	Programming Puzzles
	#1: Checkerboard
	#2: Two-Image Checkerboard
	#3: Bookshelf and Lamp
	#4: Random Background


	15Creating Mr. Stick Man
	Initializing the Stick Figure
	Loading the Stick Figure Images
	Setting Up Variables
	Binding to Keys
	Turning the Stick Figure Left and Right
	Making the Stick Figure Jump
	What We Have So Far
	What You Learned

	16Completing the Mr. Stick Man Game
	Animating the Stick Figure
	Creating the Animate Function
	Checking for Movement
	Changing the Image

	Getting the Stick Figure's Position
	Making the Stick Figure Move
	Starting the move Function
	Has the stick Figure Hit the Bottom or Top of the Canvas?
	Has the Stick Figure Hit the Side of the Canvas?
	Colliding with Other Sprites
	Colliding at the Bottom
	Checking Left and Right

	Testing Our Stick Figure Sprite
	The Exit!
	Creating the DoorSprite Class
	Detecting the Door
	Adding the Door Object
	The Final Game
	What You Learned
	Programming Puzzles
	#1: ``You Win!"
	#2: Animating the Door
	#3: Moving Platforms
	#4: Lamp as a Sprite


	Afterword
	Where to Go from Here
	Installing Python Pip on Windows
	Installing Python Pip on Ubuntu
	Installing Python Pip on Raspberry Pi
	Installing Python Pip on macOS
	Trying out PyGame
	Other Games and Graphics Programming
	Other Programming Languages
	JavaScript
	Java
	C#
	C/C++
	Ruby
	Go
	Rust
	Swift

	Final Words

	APython Keywords
	and
	as
	assert
	async
	await
	break
	class
	continue
	def
	del
	elif
	else
	except
	finally
	for
	from
	global
	if
	import
	in
	is
	lambda
	nonlocal
	not
	or
	pass
	raise
	return
	try
	while
	with
	yield

	BPython's Built-in Functions
	Using Built-in Functions
	The abs Function
	The all Function
	The any Function
	The bin Function
	The bool Function
	The callable Function
	The chr Function
	The dir Function
	The divmod Function
	The eval Function
	The exec Function
	The float Function
	The input Function
	The int Function
	The len Function
	The list Function
	The max and min Functions
	The range Function
	The ord Function
	The pow Function
	The sum Function
	Opening a File in Python
	Opening a Windows File
	Opening a macOS File
	Opening an Ubuntu or Raspberry Pi File

	Writing to Files

	CTroubleshooting
	``TK" errors importing turtle on Ubuntu
	Attribute error using turtle
	Problems running turtle
	Class takes no arguments

	Index




