
8
HOW TO USE CLASSES AND

OBJECTS

Why is a giraffe like a sidewalk? Because a giraffe and
a sidewalk are both things, which are known in the En
glish language as nouns and in Python as objects. In
programming, objects are a way to organize code and
break things down to more easily work with complex
ideas. (We used an object in Chapter 4 when we worked
with the turtle module’s Turtle object.)

To fully understand how objects work in Python, we need to think about
types of objects. Let’s start with giraffes and sidewalks.

A giraffe is a type of mammal, which is a type of animal. A giraffe is also
an animate object—it’s alive.
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There’s not much to say about a sidewalk other than it’s not a living
thing. Let’s call it an inanimate object (in other words, it’s not alive). The
terms mammal, animal, animate, and inanimate are all ways of classifying
things.

Breaking Things into Classes
In Python, objects are defined by classes, which classify objects into groups.
For example, the tree diagram in Figure 81 shows the classes that giraffes
and sidewalks fit into based on our preceding definitions.

Figure 8-1: Tree diagram of some classes

The main class is Thing. Below the Thing class, we have Inanimate and
Animate. These classes are further broken down into Sidewalk for Inanimate,
and Animal, Mammal, and Giraffe for Animate.

We can use classes to organize bits of code. For example, consider the
turtle module. All the things Python’s turtle module can do—such as moving
forward, moving backward, turning left, and turning right—are functions
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in the Turtle class. An object is a member of a class, and we can create any
number of objects for a class—which we’ll get to shortly.

Now let’s create the same set of classes shown in our tree diagram, start
ing from the top. We define classes using the class keyword followed by a
name. Thing is the broadest class, so we’ll create it first:

>>> class Thing:

pass

We name the class Thing and use the pass statement to let Python know
we’re not going to give any more information. The pass keyword is used
when we want to provide a class or function but don’t want to fill in the de
tails at the moment.

Next, we’ll add the other classes and build some relationships between
them.

Children and Parents
If a class is a part of another class, it’s considered a child of that class, and
the other class is its parent. Classes can be both children of and parents to
other classes. In our tree diagram, the class above another class is its par
ent and the class below it is its child. For example, Inanimate and Animate are
both children of the class Thing, meaning that Thing is their parent.

To tell Python that a class is a child of another class, we add the name of
the parent class in parentheses after the name of our new class, like this:

>>> class Inanimate(Thing):

pass

>>> class Animate(Thing):

pass

Here, we create a class called Inanimate and tell Python that its parent
class is Thing. Next, we create a class called Animate and tell Python that its
parent class is also Thing.

Let’s create the Sidewalk class with the parent class Inanimate like so:

>>> class Sidewalk(Inanimate):

pass

We can organize the Animal, Mammal, and Giraffe classes using their parent
classes as well:

>>> class Animal(Animate):

pass

>>> class Mammal(Animal):

pass
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>>> class Giraffe(Mammal):

pass

Adding Objects to Classes
We now have a bunch of classes, but what about putting some more infor
mation into those classes? Say we have a giraffe named Reginald. We know
he belongs in the Giraffe class, but what do we use—in programming terms—
to describe the single giraffe called Reginald? We call Reginald an object
(also known as an instance) of the Giraffe class. To “introduce” Reginald to
Python, we use this little snippet of code:

>>> reginald = Giraffe()

This code tells Python to create an object of the Giraffe class and assign
it to the reginald variable. Like when we call a function, the class name is
followed by parentheses. Later in this chapter, we’ll see how to create objects
and use parameters in the parentheses.

But what does the reginald object do? Well, nothing at the moment. To
make our objects useful, when we create our classes, we also need to define
functions that can be used with the objects in that class. Rather than just
using the pass keyword immediately after defining the class, we can add func
tion definitions.

Defining Functions of Classes
Chapter 7 introduced functions as a way to reuse code. When we define a
function that’s associated with a class, we do so in the same way that we de
fine any other function, except we indent it beneath the class definition. For
example, here’s a normal function that isn’t associated with a class:

>>> def this_is_a_normal_function():

print('I am a normal function')

And here are a couple of functions that are defined for a class:

>>> class ThisIsMySillyClass:

def this_is_a_class_function():

print('I am a class function')

def this_is_also_a_class_function():

print('I am also a class function. See?')

Adding Class Characteristics as Functions
Consider the child classes of the Animate class we defined on page 83. We can
add characteristics to each class that describe what it is and what it can do. A
characteristic is a trait all members of the class (and its children) share.
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For example, what do all animals have in common? To start with, they
breathe, move, and eat. What about mammals? Mammals feed their young
with milk, and they also breathe, move, and eat. We know giraffes eat leaves
from high up in trees. And like all mammals, they feed their young with
milk, breathe, move, and eat. When we add these characteristics to our tree
diagram, we get something like Figure 82.

Figure 8-2: Classes with characteristics

These characteristics can be thought of as actions, or functions—things
that an object of that class can do.

To add a function to a class, we use the def keyword. So the Animal class
will look like this:

>>> class Animal(Animate):

def breathe(self):

pass

def move(self):

pass

def eat_food(self):

pass

In the first line of this listing, we define the class as we did before, but
instead of using pass on the next line, we define a function called breathe and
give it the self parameter. The self parameter is a way for one function in
the class to call another function in the class (and in the parent class). We’ll
see this parameter in use later.
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On the next line, pass tells Python we’re not going to provide any more
information about the breathe function because it’s going to do nothing for
now. Then we add the move and eat_food functions and use the pass keyword
for both. We’ll recreate our classes shortly and put some proper code in the
functions. This is a common way to develop programs.

NO T E Often, programmers will create classes with functions that do nothing as a way to
figure out what the class should do before getting into the details of the individual
functions.

We can also add functions to the Mammal and Giraffe classes. Each class
will be able to use the characteristics (or functions) of its parent, meaning
you don’t need to make one really complicated class. Instead, you can put
your functions in the highest parent class where the characteristic applies.
(This makes your classes simpler and easier to understand.)

>>> class Mammal(Animal):

def feed_young_with_milk(self):

pass

>>> class Giraffe(Mammal):

def eat_leaves_from_trees(self):

pass

In the above code, the Mammal class provides a function feed_young_with_milk.
The Giraffe class is a child class (or subclass) of Mammal and provides another
function: eat_leaves_from_trees.
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Why Use Classes and Objects?
We’ve now added functions to our classes, but why use classes and objects at
all when you could just write normal functions called breathe, move, eat_food,
and so on?

To answer that question, we’ll use our giraffe called Reginald, which we
created earlier as an object of the Giraffe class, like this:

>>> reginald = Giraffe()

Because reginald is an object, we can call (or run) functions provided
by the Giraffe class and its parent classes. We call functions on an object by
using the dot (.) operator and the name of the function. To tell Reginald to
move or eat, we can call the functions like this:

>>> reginald = Giraffe()

>>> reginald.move()

>>> reginald.eat_leaves_from_trees()

Suppose Reginald has a giraffe friend named Harold. Let’s create an
other Giraffe object called harold:

>>> harold = Giraffe()

Because we’re using objects and classes, we can tell Python which giraffe
we’re talking about when we want to run the move function. For example, if
we want to make Harold move but leave Reginald in place, we could call the
move function using our harold object, like this:

>>> harold.move()

In this case, only Harold would be moving.
Let’s change our classes a little to make this more obvious. We’ll add a

print statement to each function instead of using pass:

>>> class Animal(Animate):

def breathe(self):

print('breathing')

def move(self):

print('moving')

def eat_food(self):

print('eating food')

>>> class Mammal(Animal):

def feed_young_with_milk(self):

print('feeding young')

>>> class Giraffe(Mammal):

def eat_leaves_from_trees(self):

print('eating leaves')
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Now when we create our reginald and harold objects and call functions
on them, we can see something actually happen:

>>> reginald = Giraffe()

>>> harold = Giraffe()

>>> reginald.move()

moving

>>> harold.eat_leaves_from_trees()

eating leaves

On the first two lines, we create the variables reginald and harold, which
are objects of the Giraffe class. Next, we call the move function on reginald,
and Python prints moving on the following line. In the same way, we call the
eat_leaves_from_trees function on harold, and Python prints eating leaves. If
these were real giraffes, rather than objects in a computer, one giraffe would
be walking and the other would be eating.

NO T E Functions defined for classes are actually called methods. The terms are almost inter
changeable except that methods can only be called on objects of a class. Another way
of saying this is that a method is associated with a class but a function is not. Given
they are almost the same, we’ll use the term function in this book.

Objects and Classes in Pictures
Let’s try taking a more graphical approach to objects and classes and return
to the turtle module we toyed with in Chapter 4. When we use turtle.Turtle(),
Python creates an object of the Turtle class that is provided by the turtle

module (similar to our reginald and harold objects). We can create two Turtle

objects (named Avery and Kate) just as we created two giraffes:

>>> import turtle

>>> avery = turtle.Turtle()
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>>> kate = turtle.Turtle()

Each turtle object (avery and kate) is a member of the Turtle class.
Now here’s where objects start to become powerful. Having created our

Turtle objects, we can call functions on each and they will draw indepen
dently. Try this code:

>>> avery.forward(50)

>>> avery.right(90)

>>> avery.forward(20)

With this series of instructions, we tell Avery to move forward 50 pix
els, turn right 90 degrees, and move forward 20 pixels so she finishes facing
downward. Remember that turtles always start off facing to the right.

Now it’s time to move Kate.

>>> kate.left(90)

>>> kate.forward(100)

We tell Kate to turn left 90 degrees and then move forward 100 pixels
so she ends facing up. So far, we have a line with arrowheads moving in two
different directions, with the head of each arrow representing a different
turtle object: Avery is pointing down and Kate is facing up (see Figure 83).

Figure 8-3: Kate and Avery

Now let’s add another turtle, Jacob, and move him without bugging
Kate or Avery.

>>> jacob = turtle.Turtle()

>>> jacob.left(180)

>>> jacob.forward(80)

How to Use Classes and Objects 89

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



First, we create a new Turtle object called jacob, then we turn him left
180 degrees and move him forward 80 pixels. Our drawing with three turtles
should look like Figure 84.

Figure 8-4: Kate and Avery and Jacob

Every time we call turtle.Turtle() to create a turtle, we add a new, in
dependent object. Each object is still an instance of the Turtle class, and we
can use the same functions on each object. But because we’re using objects,
we can move each turtle independently. Like our independent Giraffe ob
jects (Reginald and Harold), Avery, Kate, and Jacob are independent Turtle
objects. If we create a new object with the same variable name as an object
we’ve already created, the old object won’t necessarily vanish.

Other Useful Features of Objects and Classes
Classes and objects make it easy to group functions. They’re also really use
ful when we want to think about a program in smaller chunks.

For example, consider a huge software application like a word processor
or a 3D computer game. It’s nearly impossible for most people to fully un
derstand large programs like these because there’s so much code. But break
these monster programs into smaller pieces and each piece starts to make
sense—as long as you know its programming language, of course!
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When writing a large program, breaking it up also allows you to divide
the work among other programmers. The most complicated programs (like
your web browser) were written by many people, or teams of people, work
ing on different parts at the same time around the world. Imagine we want
to expand some of the classes we’ve created in this chapter (Animal, Mammal,
and Giraffe), but we have too much work to do, and our friends have offered
to help. We could divide the work of writing the code so that one person
works on the Animal class, another on the Mammal class, and still another on
the Giraffe class.

Inherited Functions
You may realize that whoever ends up working on the Giraffe class is lucky,
because any functions created by the people working on the Animal and Mammal

classes can also be used by the Giraffe class. The Giraffe class inherits func
tions from the Mammal class, which, in turn, inherits functions from the Animal

class. In other words, when we create a Giraffe object, we can use functions
defined in the Giraffe class, as well as functions defined in the Mammal and
Animal classes. And, by the same token, if we create a Mammal object, we can
use functions defined in the Mammal class as well as its parent class, Animal.

Take a look at the relationship between the Animal, Mammal, and Giraffe

classes again. The Animal class is the parent of the Mammal class, and Mammal is
the parent of the Giraffe class (Figure 85).

Figure 8-5: Classes and inherited functions

How to Use Classes and Objects 91

Python for Kids, 2nd Edition (Sample Chapter) © 04/29/22 by Jason R. Briggs



Even though Reginald is an object of the Giraffe class, we can still call
the move function we defined in the Animal class because functions defined in
any parent class are available to its child classes:

>>> reginald = Giraffe()

>>> reginald.move()

moving

In fact, all the functions we defined in both the Animal and Mammal classes
can be called from our reginald object because the functions are inherited:

>>> reginald = Giraffe()

>>> reginald.breathe()

breathing

>>> reginald.eat_food()

eating food

>>> reginald.feed_young_with_milk()

feeding young

In this code we create an object of the Giraffe class called reginald. When
we call each function it prints a message regardless of whether the function
is defined in Giraffe or in a parent class.

Functions Calling Other Functions
When we call functions on an object, we use the object’s variable name. For
example, we can call the move function on Reginald the giraffe like so:

>>> reginald.move()

To have a function in the Giraffe class call the move function, we’d use the
self parameter. The self parameter is a way for one function in the class
to call another function. For example, suppose we add a function called
find_food to the Giraffe class:

>>> class Giraffe(Mammal):

def find_food(self):

self.move()

print('I\'ve found food!')

self.eat_food()

We’ve created a function that combines two other functions, which is
quite common in programming. Often, you’ll write a function that does
something useful, which you can then use inside another function. (We’ll
do this in Chapter 11, where we’ll write more complex functions to create a
game.)

Let’s use self to add some functions to the Giraffe class:

>>> class Giraffe(Mammal):

def find_food(self):
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self.move()

print('I\'ve found leaves!')

self.eat_food()

def eat_leaves_from_trees(self):

print('tear leaves from branches')

self.eat_food()

def dance_a_jig(self):

self.move()

self.move()

self.move()

self.move()

We use the eat_food and move functions from the parent Animal class to de
fine eat_leaves_from_trees and dance_a_jig for the Giraffe class, because these
are inherited functions. By adding functions that call other functions, when
we create objects of these classes, we can call a single function that does
more than just one thing. See what happens when we call the dance_a_jig

function below:

>>> reginald = Giraffe()

>>> reginald.dance_a_jig()

moving

moving

moving

moving

In this code, our giraffe moves four times (that is, the text moving is printed
four times).

If we call the find_food function we get three lines printed:

>>> reginald.find_food()

moving

I've found leaves!

eating food
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Initializing an Object
Sometimes when creating an object, we want to set some values (also called
properties) for later use. When we initialize an object, we’re getting it ready to
be used.

For example, suppose we want to set the number of spots on our giraffe
objects when they’re created (or initialized). To do this, we create an __init__

function (note that there are two underscore characters on each side, for a
total of four). The init function sets the properties for an object when the
object is first created. Python will automatically call this function when we
create a new object. Here’s how to use it:

>>> class Giraffe(Mammal):

def __init__(self, spots):

self.giraffe_spots = spots

First, we define the __init__ function with the self and spots parameters.
Just like the other functions we’ve defined in the class, the __init__ function
also needs to have self as the first parameter. Next, we set the spots param
eter to an object variable (its property) called giraffe_spots using the self

parameter. You might think of this line of code as saying, “Take the value of
the spots parameter and save it for later (using the giraffe_spots object vari
able).” Just as one function in a class can call another function using the self

parameter, variables in the class are also accessed using self.
Next, if we create a couple of new giraffe objects (called Ozwald and

Gertrude) and display their number of spots, you can see the initialization
function in action:

>>> ozwald = Giraffe(100)

>>> gertrude = Giraffe(150)

>>> print(ozwald.giraffe_spots)

100

>>> print(gertrude.giraffe_spots)

150

First, we create an instance of the Giraffe class using the parameter value
100. This has the effect of calling the __init__ function and using 100 for the
value of the spots parameter. Next, we create another instance of the Giraffe

class with a value of 150. Lastly, we print the object variable giraffe_spots for
each of our giraffe objects, and we see that the results are 100 and 150. It
worked!

Remember, when we create an object of a class, such as ozwald above, we
can refer to its variables or functions using the dot operator and the name of
the variable or function we want to use (for example, ozwald.giraffe_spots).
But when we’re creating functions inside a class, we refer to those same vari
ables (and other functions) using the self parameter (self.giraffe_spots).
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What You Learned
In this chapter, we used classes to create categories of things and made ob
jects (or instances) of those classes. You learned how the child of a class in
herits the functions of its parent, and that even though two objects are of
the same class, they’re not necessarily clones. For example, two giraffe ob
jects can have their own distinct number of spots. You learned how to call
(or run) functions on an object and how object variables are a way of saving
values in those objects. Lastly, we used the self parameter in functions to
refer to other functions and variables. These concepts are fundamental to
Python, and you’ll see them multiple times throughout the rest of this book.

Programming Puzzles
Give the following examples a try to experiment with creating your own
functions. The solutions can be found at http://pythonforkids.com.

#1: The Giraffe Shuffle
Add functions to the Giraffe class to move the giraffe’s left and right feet
forward and backward. A function for moving the left foot forward might
look like this:

>>> def left_foot_forward(self):

print('left foot forward')

Then create a function called dance to teach our giraffes to dance (the
function will call the four foot functions you’ve just created). The result of
calling this new function will be a simple dance:

>>> reginald = Giraffe()

>>> reginald.dance()

left foot forward

left foot back

right foot forward

right foot back

left foot back

right foot back

right foot forward

left foot forward

#2: Turtle Pitchfork
Create the following picture of a sideways pitchfork using four Turtle ob
jects (the exact length of the lines isn’t important). Remember to import the
turtle module first!
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#3: Two Small Spirals
Create the following picture of two small spirals using two Turtle objects
(again the exact size of the spirals isn’t important).

#4: Four Small Spirals
Let’s take the two spirals we created in the previous code and make a mirror
image to create four spirals, which should look like the following image.
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