
PYTHON FOR KIDS

PYTHON FOR
KIDS

Solutions to Programming Puzzles

by Jason R. Briggs

San Francisco

PYTHON FOR KIDS, 2ND EDITION. SOLUTIONS TO PROGRAMMING PUZZLES.
Copyright © 2023 by Jason R. Briggs.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, elec­
tronic or mechanical, including photocopying, recording, or by any information storage or retrieval system,
without the prior written permission of the copyright owner and the publisher.

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Editor: Paula Williamson
Developmental Editors: William Pollock, Eva Morrow, Jill Franklin
Cover and Interior Design: Octopod Studios
Illustrator: Miran Lipovača

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch Press,
Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900
www.nostarch.com

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other prod­
uct and company names mentioned herein may be the trademarks of their respective owners. Rather than
use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an ed­
itorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

CONTENTS IN DETAIL

INTRODUCTION ix

3
STRINGS, LISTS, TUPLES, AND DICTIONARIES 1
#1: Favorites . 1
#2: Counting Combatants . 2
#3: Greetings! . 2
#4: Multiline Letter . 3

4
DRAWING WITH TURTLES 5
#1: A Rectangle . 5
#2: A Triangle . 6
#3: A Box Without Corners . 9
#4: A Tilted Box Without Corners . 10

5
ASKING QUESTIONS WITH IF AND ELSE 13
#1: Are You Rich? . 13
#2: Twinkies! . 14
#3: Just the Right Number . 14
#4: I Can Fight Those Ninjas . 15

6
GOING LOOPY 17
#1: The Hello Loop . 17
#2: Even Numbers . 18
#3: My Five Favorite Ingredients . 18
#4: Your Weight on the Moon . 19

7
RECYCLING YOUR CODE WITH FUNCTIONS AND MODULES 21
#1: Basic Moon Weight Function . 21
#2: Moon Weight Function and Years . 22

#3: Moon Weight Program . 23
#4: Mars Weight Program . 24

8
HOW TO USE CLASSES AND OBJECTS 25
#1: The Giraffe Shuffle . 25
#2: Turtle Pitchfork . 26
#3: Two Small Spirals . 27
#4: Four Small Spirals . 29

9
MORE TURTLE GRAPHICS 33
#1: Drawing an Octagon . 33
#2: Drawing a Filled Octagon . 34
#3: Another Star-Drawing Function . 35
#4: Four Spirals Revisited . 36

10
USING TKINTER FOR BETTER GRAPHICS 39
#1: Fill the Screen with Triangles . 39
#2: The Moving Triangle . 41
#3: The Moving Photo . 42
#4: Fill the Screen with Photos . 43

11
BEGINNING YOUR FIRST GAME: BOUNCE! 45
#1: Changing colors . 45
#2: Flashing colors . 47
#3: Take your positions! . 47
#4: Adding the Paddle . . . ? . 48

12
FINISHING YOUR FIRST GAME: BOUNCE! 49
#1: Delay the Game Start . 49
#2: A Proper “Game Over” . 50
#3: Accelerate the Ball . 51
#4: Record the Player’s Score . 52

vi CONTENTS IN DETAIL

14
DEVELOPING THE MR. STICK MAN GAME 57
#1: Checkerboard . 57
#2: Two-Image Checkerboard . 58
#3: Bookshelf and Lamp . 59
#4: Random Background . 60

16
COMPLETING THE MR. STICK MAN GAME 63
#1: “You Win!” . 63
#2: Animating the Door . 64
#3: Moving Platforms . 66
#4: Lamp as a sprite . 68

CONTENTS IN DETAIL vii

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

INTRODUCTION

Here you’ll find the solutions to the programming puzzles found at the
end of each chapter in Python for Kids. Oftentimes, these puzzles will
have multiple solutions; as long as your solution works, there’s no need
to match what is shown in this supplement. These examples will give
you an idea of possible approaches, particularly if you find yourself stuck.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

3
STRINGS, LISTS, TUPLES,

AND DICTIONARIES

#1: Favorites
Make a list of your favorite hobbies and give the list the variable name
games. Now make a list of your favorite foods and name the variable foods.
Join the two lists and name the result favorites. Lastly, print the vari-
able favorites.

Here’s one possible solution with three favorite hobbies and three
favorite foods:

>>> games = ['Pokemon', 'LEGO MINDSTORMS', 'Mountain Biking']
>>> foods = ['Pancakes', 'Chocolate', 'Apples']
>>> favorites = games + foods
>>> print(favorites)

['Pokemon', 'LEGO MINDSTORMS', 'Mountain Biking', 'Pancakes',
'Chocolate', 'Apples']

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

#2: Counting Combatants
If there are three buildings with 25 ninjas hiding on each roof and two
tunnels with 40 samurai hiding inside each tunnel, how many ninjas
and samurai are about to do battle?

We can do the calculation for this puzzle in a number of ways. Since
we know that there are three buildings with 25 ninjas on each roof, and
two tunnels with 40 samurai in each, we could calculate the total num-
ber of ninjas and the total number of samurai, then add the two totals
like this:

>>> 3 * 25
75
>>> 2 * 40
80
>>> 75 + 80
155

We could choose to combine these three equations by using paren-
theses to determine the order of operations, make our equation easier to
read, and simplify things overall, like so:

>>> (3 * 25) + (2 * 40)

Or we could name our variables, which tells us, and anyone who
reads our code, what we’re calculating:

>>> roofs = 3
>>> ninjas_per_roof = 25
>>> tunnels = 2
>>> samurai_per_tunnel = 40
>>> print((roofs * ninjas_per_roof) + (tunnels * samurai_per_tunnel))
155

This is one of the best ways to calculate this equation, as our vari-
ables are clearly labeled.

#3: Greetings!
Create two variables: one that points to your first name and one that
points to your last name. Now create a string and use placeholders to
print your name with a message using those two variables, such as
“Hi there, Brando Ickett!”

We’ll give the variables meaningful names, then use format place-
holders ({} {}) in our string to embed the variable values:

>>> first_name = 'Brando'
>>> last_name = 'Ickett'

2 CHAPTER 3

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

>>> print(f'Hi there, {first_name} {last_name}!')

Hi there, Brando Ickett!

#4: Multiline Letter
Take the letter we created earlier in the chapter and try to print the exact
same text by using a single print call (and a multiline string).

To print the letter as a multiline string, we can either format the
letter manually, line by line, or use the spaces variable.

Here’s what the result would look like if we formatted by hand:

print(''' 12 Butts Wynd
Twinklebottom Heath
West Snoring

Dear Sir

I wish to report that tiles are missing from the outside toilet roof.
I think it was bad wind the other night that blew them away.

Regards
Malcolm Dithering''')

Using the spaces variable, our result looks like the following:

spaces = ' ' * 25
print(f'''{spaces}12 Butts Wynd
{spaces}Twinklebottom Heath
{spaces}West Snoring

Dear Sir

I wish to report that tiles are missing from the outside toilet roof.
I think it was bad wind the other night that blew them away.

Regards
Malcolm Dithering''')

On the first line we create the spaces variable with 25 spaces by mul-
tiplying the space character (' ') by 25. Next, we print the multiline
string using the spaces variable ({spaces}) at the start of each line of the
letterhead so that the words are correctly indented.

STRINGS, LISTS, TUPLES, AND DICTIONARIES 3

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

4
DRAWING WITH TURTLES

#1: A Rectangle
Create a new canvas using the turtle module’s Turtle function and then
draw a rectangle.

Drawing a rectangle is similar to drawing a square, except that two
parallel sides should be longer than the other two:

>>> import turtle
>>> t = turtle.Pen()
>>> t.forward(100)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(100)
>>> t.left(90)
>>> t.forward(50)

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

#2: A Triangle
Create another canvas and draw a triangle.

The puzzle didn’t specify what kind of triangle to draw. There are
three types of triangles: equilateral, isosceles, and scalene. For this ex-
ample, we’ll concentrate on the first two types, because they’re the most
straightforward to draw.

An equilateral triangle has three equal sides and three equal angles:

>>> import turtle
>>> t = turtle.Pen()

¶ >>> t.forward(100)
· >>> t.left(120)
¸ >>> t.forward(100)
¹ >>> t.left(120)
º >>> t.forward(100)

We draw the base of the triangle by moving forward 100 pixels ¶.
We turn left 120 degrees (which creates an interior angle of 60 degrees)
·, and move forward 100 pixels again ¸. The next turn is also 120 de-
grees ¹, and the turtle moves back to the starting position by moving
forward another 100 pixels º. Here’s the result of running the code:

An isosceles triangle has two equal sides and two equal angles:

>>> import turtle
>>> t = turtle.Pen()
>>> t.forward(50)
>>> t.left(104.47751218592992)
>>> t.forward(100)
>>> t.left(151.04497562814015)
>>> t.forward(100)

In this solution, the turtle moves forward 50 pixels, and then turns
104.47751218592992 degrees. It moves forward 100 pixels, followed by
a turn of 151.04497562714015 degrees, and then forward 100 pixels

6 CHAPTER 4

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

again. To turn the turtle back to face its starting position, we can call
the following line again:

>>> t.left(104.47751218592992)

Here’s the result of running this code:

NOTE The remainder of this solution uses more complicated mathematics equa-
tions and Python code that we’ll learn about later in the book. You might
like to come back to this once you’ve finished reading Python for Kids.

How do we come up with angles like 104.47751218592992 degrees
and 151.04497562814015 degrees? After all, those are rather obscure
numbers! Once we’ve decided on the lengths of each of the sides of the
triangle, we can calculate the interior angles using Python and a bit of
trigonometry.

The following diagram shows that if we know the degree of angle a,
we can work out the degrees of the (outside) angle b that the turtle needs
to turn. The two angles a and b should add up to 180 degrees.

Once we know the right equation to use, we can calculate the in-
side angle. For example, say we want to create a triangle with a bottom

DRAWING WITH TURTLES 7

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

length of 50 pixels (let’s call that side C), and two sides A and B, both
100 pixels long.

The equation to calculate the inside angle a using sides A, B, and C
would be:

a = arccos

(
A2 + C2 – B3

2AC

)
(4.1)

We can create a program to calculate the value by using Python’s
math module:

¶ >>> import math
>>> A = 100
>>> B = 100
>>> C = 50

· >>> a = math.acos((math.pow(A,2) + math.pow(C,2) - \
math.pow(B,2)) / (2 * A * C))

>>> print(a)
1.31811607165

We first import the math module ¶ and create variables for each of
the sides (A, B, and C). We then use the math function acos (arc cosine)
to calculate the angle ·. This calculation returns the radians value
1.31811607165. Radians is another unit used to measure angles, like
degrees.

NOTE The backslash (\) at the end of the line at · isn’t part of the equation—
backslashes are used to separate long lines of code. They’re not always
necessary, but in this case we’re splitting a long line because it won’t fit
on the page otherwise.

The radians value can be converted into degrees using the math
function degrees. We can calculate the outside angle (the amount we
need to tell the turtle to turn) by subtracting this value from 180
degrees:

8 CHAPTER 4

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

>>> print(180 - math.degrees(a))
104.477512186

The equation for the turtle’s next turn is similar:

a = arccos

(
A2 + B2 – C3

2AB

)
(4.2)

The code for this equation also looks similar to what we wrote before:

>>> b = math.acos((math.pow(A,2) + math.pow(B,2) - \
math.pow(C,2)) / (2*A*B))

>>> print(180 - math.degrees(b))
151.04497562814015

You don’t need to use equations to work out the angles, especially if
you haven’t learned these topics in school yet. You can also just turn the
turtle various degrees until you get something that looks about right.

#3: A Box Without Corners
Write a program to draw the four lines shown below (the size isn’t impor-
tant, just the shape).

To create the solution—an octagon missing four sides—we’ll tell the
turtle to do the same thing four times in a row. Move forward, turn left
45 degrees, lift the pen, move forward, put the pen down, and turn left
45 degrees again:

t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)

DRAWING WITH TURTLES 9

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

The final set of commands should be similar to the following code.
Create a new window in the Shell, and then save the file as nocorners.py:

import turtle
t = turtle.Pen()
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)

#4: A Tilted Box Without Corners
Write a program to draw the four lines shown below (similar to the pre-
vious puzzle, but the box is tilted on its side). Again, the size of the box
isn’t important—just the shape.

10 CHAPTER 4

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

The code to create a titled box without corners is very similar to the
previous puzzle. The path that the turtle takes is almost exactly the
same, with the difference being when you call t.up() and t.down():

import turtle
t = turtle.Pen()
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()

DRAWING WITH TURTLES 11

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

5
ASKING QUESTIONS WITH IF

AND ELSE

#1: Are You Rich?
What do you think the following code will do? Try to figure out the an-
swer without typing it into the Python Shell and then check your work.

>>> money = 2000
>>> if money > 1000:

print("I'm rich!!")
else:

print("I'm not rich!!")
print("But I might be later...")

With this code, you’ll get an indentation error once you reach the
last line of the if statement:

>>> money = 2000
>>> if money > 1000:

¶ print("I'm rich!!")

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

else:
· print("I'm not rich!!")

¸ print("But I might be later...")

SyntaxError: unexpected indent

This error occurs because the blocks of code at ¶ and · start with
four spaces, so Python doesn’t expect to see two extra spaces on the fi-
nal line ¸. IDLE highlights where it sees a problem with a red rectan-
gular block so you can see where you went wrong:

#2: Twinkies!
Create an if statement that checks whether a number of Twinkies (in
the variable twinkies) is less than 100 or greater than 500. Your program
should print the message “Too few or too many” if the condition is True.

The code to check for a number of Twinkies less than 100 or more
than 500 should look like this:

>>> twinkies = 600
>>> if twinkies < 100 or twinkies > 500:

print('Too few or too many')

Too few or too many

#3: Just the Right Number
Create an if statement that checks whether the amount of money con-
tained in the money variable is between 100 and 500 or between 1,000
and 5,000.

You could write more than one if statement to check whether an
amount of money falls between 100 and 500 or 1,000 and 5,000, but by
using the and and or keywords, we can do it with a single statement:

14 CHAPTER 5

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

if (amount >= 100 and amount <= 500) or (amount >= 1000
and amount <= 5000):

print('amount is between 100 & 500 or between 1000 & 5000')

Be sure to put brackets around the first and last two conditions so
that Python will check whether the amount is between 100 and 500 or
between 1,000 and 5,000.

We can test the code by setting the amount variable to different values:

>>> amount = 800
>>> if (amount >= 100 and amount <= 500) or (amount >= 1000

and amount <= 5000):
print('amount is between 100 & 500 or between 1000 & 5000')

>>> amount = 400
>>> if (amount >= 100 and amount <= 500) or (amount >= 1000

and amount <= 5000):
print('amount is between 100 & 500 or between 1000 & 5000')

amount is between 100 & 500 or between 1000 & 5000

>>> amount = 3000
>>> if (amount >= 100 and amount <= 500) or (amount >= 1000

and amount <= 5000):
print('amount is between 100 & 500 or between 1000 & 5000')

amount is between 100 & 500 or between 1000 & 5000

#4: I Can Fight Those Ninjas
Create an if statement that prints “That’s too many” if the variable ninjas
contains a number less than 50; prints “It’ll be a struggle, but I can take
’em” if it’s less than 30; and prints “I can fight those ninjas!” if it’s less
than 10.

This was a bit of a trick puzzle. If you create the if statement in the
same order as the instructions, you won’t get the expected result. For
example:

>>> ninjas = 5
>>> if ninjas < 50:

print("That's too many")
elif ninjas < 30:

print("It'll be a struggle, but I can take 'em")

ASKING QUESTIONS WITH IF AND ELSE 15

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

elif ninjas < 10:
print("I can fight those ninjas!")

That's too many

Even though the number of ninjas is less than 10, you get the mes-
sage “That’s too many.” This is because the condition (ninjas < 50) is
evaluated first, and the variable is less than 50, so the program prints
the message you didn’t expect to see.

For this code to work properly, reverse the order in which you check
the number so that you see whether the number is less than 10 first:

>>> ninjas = 5
>>> if ninjas < 10:

print("I can fight those ninjas!")
elif ninjas < 30:

print("It'll be a struggle, but I can take 'em")
elif ninjas < 50:

print("That's too many")

I can fight those ninjas!

16 CHAPTER 5

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

6
GOING LOOPY

#1: The Hello Loop
What do you think the following code will do?

for x in range(0, 20):
print(f'hello {x}')

if x < 9:
break

The print statement in this for loop is run only once. When Python
hits the if statement, x is less than 9 because the first value in the loop
is 0, so it immediately breaks out of the loop.

>>> for x in range(0, 20):
print(f'hello {x}')
if x < 9:

break

hello 0

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

#2: Even Numbers
Create a loop that prints even numbers until it reaches your age (if your
age is an odd number, create a loop that prints out odd numbers until it
reaches your age).

We can use the step parameter with the range function to produce
the list of even numbers. If you are 14 years old, the start parameter
will be 2, and the end parameter will be 16 (because the for loop will
run until the value just before the end parameter).

>>> for x in range(2, 16, 2):
print(x)

2
4
6
8
10
12
14

#3: My Five Favorite Ingredients
Create a list containing five different sandwich ingredients, such as the
following:

>>> ingredients = ['snails', 'leeches', 'gorilla belly-button lint',
'caterpillar eyebrows', 'centipede toes']

Now create a loop that prints out the list (including the numbers):

1 snails
2 leeches
3 gorilla belly-button lint
4 caterpillar eyebrows
5 centipede toes

There are a couple of ways to print numbers alongside the items in
your list. For example:

>>> ingredients = ['snails', 'leeches', 'gorilla belly-button lint',
'caterpillar eyebrows', 'centipede toes']

¶ >>> x = 1
· >>> for i in ingredients:

¸ print(f'{x} {i}')
¹ x = x + 1

18 CHAPTER 6

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

1 snails
2 leeches
3 gorilla belly-button lint
4 caterpillar eyebrows
5 centipede toes

We create a variable x to store the number we want to print ¶. Next,
we create a for loop to loop through the items in the list ·, assigning
each to the variable i, and we print the value of the x and i variables ¸
using the {} placeholder. We add 1 to the x variable ¹ so that each time
we loop, the number we print increases.

#4: Your Weight on the Moon
If you were standing on the moon right now, your weight would be 16.5
percent of what it is on Earth. You can calculate that by multiplying
your Earth weight by 0.165. If you gained two pounds every year for
the next 15 years, what would your weight be when you visited the moon
each year and at the end of the 15 years? Write a program using a for
loop that prints your moon weight for each year.

To calculate your weight in kilograms on the moon over 15 years,
first create a variable to store your starting weight:

>>> weight = 30

For each year, you can calculate the new weight by adding a kilo-
gram and then multiplying by 16.5 percent (0.165):

>>> weight = 30
>>> for year in range(1, 16):

weight = weight + 1
moon_weight = weight * 0.165
print(f'Year {year} is {moon_weight}')

Year 1 is 5.115
Year 2 is 5.28
Year 3 is 5.445
Year 4 is 5.61
Year 5 is 5.775
Year 6 is 5.94
Year 7 is 6.105
Year 8 is 6.2700000000000005
Year 9 is 6.4350000000000005
Year 10 is 6.6000000000000005
Year 11 is 6.765000000000001
Year 12 is 6.930000000000001

GOING LOOPY 19

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Year 13 is 7.095000000000001
Year 14 is 7.260000000000001
Year 15 is 7.425000000000001

20 CHAPTER 6

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

7
RECYCLING YOUR CODE WITH
FUNCTIONS AND MODULES

#1: Basic Moon Weight Function
We created a for loop to determine your weight on the moon over a period
of 15 years. That for loop could easily be turned into a function. Try cre-
ating a function that takes a starting weight and increases its amount
each year.

The function should take two parameters: weight and increase (the
amount the weight will increase each year). The rest of the code is very
similar to the solution for Project #4: Your Weight on the Moon in
Chapter 6.

>>> def moon_weight(weight, increase):
for year in range(1, 16):

weight = weight + increase
moon_weight = weight * 0.165
print(f'Year {year} is {moon_weight}')

>>> moon_weight(40, 0.5)

Year 1 is 6.6825
Year 2 is 6.765

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Year 3 is 6.8475
Year 4 is 6.93
Year 5 is 7.0125
Year 6 is 7.095
Year 7 is 7.1775
Year 8 is 7.26
Year 9 is 7.3425
Year 10 is 7.425
Year 11 is 7.5075
Year 12 is 7.59
Year 13 is 7.6725
Year 14 is 7.755
Year 15 is 7.8375

#2: Moon Weight Function and Years
Take the function you’ve just created and change it to work out the weight
over different periods, such as 5 years or 20 years. Be sure to change
the function so it takes three arguments: the initial weight, the weight
gained each year, and the number of years.

We’ll change the previous function slightly so that the number of
years can be passed in as a parameter.

>>> def moon_weight(weight, increase, years):
years = years + 1
for year in range(1, years):

weight = weight + increase
moon_weight = weight * 0.165
print(f'Year {year} is {moon_weight}')

>>> moon_weight(35, 0.3, 5)

Year 1 is 5.8245
Year 2 is 5.874
Year 3 is 5.9235
Year 4 is 5.973
Year 5 is 6.0225

On the second line of the function, we add 1 to the years parameter
so that the for loop will end on the correct year (rather than the year
before).

22 CHAPTER 7

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

#3: Moon Weight Program
Instead of using a simple function and passing in the values as param-
eters, you can use sys.stdin.readline() or input() to make a mini-program
that prompts for the values. In this case, you call the function without
any parameters at all:

>>> moon_weight()

The function will display a message asking for the starting weight, a sec-
ond message asking for the amount the weight will increase each year,
and a final message asking for the number of years.

We can use the stdin object in the sys module to allow someone to
enter values (using the readline function). Because sys.stdin.readline re-
turns a string, we need to convert these strings into numbers so that we
can perform the calculations.

import sys
def moon_weight():

print('Please enter your current Earth weight')
¶ weight = float(input())

print('Please enter the amount your weight might increase each year')
· increase = float(input())

print('Please enter the number of years')
¸ years = int(input())

years = years + 1
for year in range(1, years):

weight = weight + increase
moon_weight = weight * 0.165
print(f'Year {year} is {moon_weight}')

We read the input using input, and then convert the string into a
float using the float function ¶. This value is stored as the weight vari-
able. We do the same for the increase variable ·, but use the int func-
tion ¸ because we should enter only whole numbers for a number of
years (not fractional numbers). The rest of the code after this line is ex-
actly the same as in the previous solution.

If we call the function now, we should see something like the following:

>>> moon_weight()

Please enter your current Earth weight
45
Please enter the amount your weight might increase each year
0.4

RECYCLING YOUR CODE WITH FUNCTIONS AND MODULES 23

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Please enter the number of years
12
Year 1 is 7.491
Year 2 is 7.557
Year 3 is 7.623
Year 4 is 7.689
Year 5 is 7.755
Year 6 is 7.821
Year 7 is 7.887
Year 8 is 7.953
Year 9 is 8.019
Year 10 is 8.085
Year 11 is 8.151
Year 12 is 8.217

#4: Mars Weight Program
Let’s change our moon weight program to calculate weights on Mars—
only this time, for your entire family. The function should ask for each
family member’s weight, calculate how much they would weigh on Mars
(by multiplying the number by 0.3782), and then add up and display the
total weight at the end.

We could write this program a few different ways. For example, we
could have a function that takes the number of family members as a
parameter, loops to get the weight of that number of people, and calcu-
lates the total weight on Mars:

import sys
def mars_weight(number_in_family):
¶ total_mars_weight = 0
· for x in range(0, number_in_family):

print("Please enter a family member's Earth weight")
¸ weight = float(input())
¹ total_mars_weight = total_mars_weight + (weight * 0.3782)

º print(f'The total weight of your family on Mars is {total_mars_weight}')

mars_weight(3)

We create a variable total_mars_weight and set the initial value as
0 ¶ (we’ll add each weight we calculate to this). We loop using the range
function · and then read the weight using input() ¸. We calculate the
Mars weight and add it to the total ¹. Finally, we print out our total
weight value º.

If your code doesn’t look exactly like this, that’s fine—what’s impor-
tant is that it works the way you want it to!

24 CHAPTER 7

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

8
HOW TO USE CLASSES AND

OBJECTS

#1: The Giraffe Shuffle
Add functions to the Giraffe class to move the giraffe’s left and right feet
forward and backward. Then create a function called dance to teach our
giraffes to dance (the function will call the four foot functions you’ve just
created).

Before adding the functions to make Harriet dance a jig, let’s take
another look at the Giraffes class:

class Giraffes(Mammals):
def eat_leaves_from_trees(self):

print('eating leaves')

We can add the functions for moving each foot like so:

class Giraffes(Mammals):
def eat_leaves_from_trees(self):

print('eating leaves')
def left_foot_forward(self):

print('left foot forward')

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

def right_foot_forward(self):
print('right foot forward')

def left_foot_backward(self):
print('left foot back')

def right_foot_backward(self):
print('right foot back')

The dance function needs to call each of the foot functions in the right
order:

def dance(self):
self.left_foot_forward()
self.left_foot_backward()
self.right_foot_forward()
self.right_foot_backward()
self.left_foot_backward()
self.right_foot_backward()
self.right_foot_forward()
self.left_foot_forward()

To make Harriet dance, we create an object and call the function:

>>> harriet = Giraffes()
>>> harriet.dance()

left foot forward
left foot back
right foot forward
right foot back
left foot back
right foot back
right foot forward
left foot forward

#2: Turtle Pitchfork
Create the following picture of a sideways pitchfork using four Turtle ob-
jects (the exact length of the lines isn’t important).

26 CHAPTER 8

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Pen is a class defined in the turtle module, so we can create more
than one object of the Pen class for each of the four turtles. If we as-
sign each object to a different variable, we can control them separately,
which makes it easier to reproduce the arrowed lines in this puzzle. Re-
member that even though the class is the same, when you create a new
instance of the class (in this case, using turtle.Pen()), you get a new ob-
ject each time.

import turtle
t1 = turtle.Pen()
t2 = turtle.Pen()
t3 = turtle.Pen()
t4 = turtle.Pen()
t1.forward(100)
t1.left(90)
t1.forward(50)
t1.right(90)
t1.forward(50)
t2.forward(110)
t2.left(90)
t2.forward(25)
t2.right(90)
t2.forward(25)
t3.forward(110)
t3.right(90)
t3.forward(25)
t3.left(90)
t3.forward(25)
t4.forward(100)
t4.right(90)
t4.forward(50)
t4.left(90)
t4.forward(50)

There are a number of ways to draw this, so your code may not look
exactly like mine.

#3: Two Small Spirals
Create the following picture of two small spirals using Turtle objects
(again, the exact size of the spirals isn’t important).

HOW TO USE CLASSES AND OBJECTS 27

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Similar to the previous puzzle, we create two Pen objects and then
move them independently. Each spiral is a move forward, then a turn,
then move forward again—but we gradually reduce the amount we
move forward to produce the pattern:

import turtle

t1 = turtle.Pen()
t2 = turtle.Pen()

t1.forward(100)
t1.left(90)
t1.forward(100)
t1.left(90)
t1.forward(100)
t1.left(90)
t1.forward(80)
t1.left(90)
t1.forward(80)
t1.left(90)
t1.forward(60)
t1.left(90)
t1.forward(60)
t1.left(90)
t1.forward(40)
t1.left(90)
t1.forward(40)

¶ t2.right(180)
t2.forward(100)
t2.right(90)
t2.forward(100)
t2.right(90)
t2.forward(100)
t2.right(90)
t2.forward(80)
t2.right(90)
t2.forward(80)

28 CHAPTER 8

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

t2.right(90)
t2.forward(60)
t2.right(90)
t2.forward(60)
t2.right(90)
t2.forward(40)
t2.right(90)
t2.forward(40)

We make one spiral mirror the other by turning the turtle the oppo-
site direction using t2.right(180) ¶.

#4: Four Small Spirals
Let’s take the two spirals we created in the previous code and make a
mirror image to create four spirals, which should look like the follow-
ing image.

The code for four spirals is similar to the previous puzzle, except we
create four Pen objects and turn each turtle different directions:

import time
import turtle

t1 = turtle.Pen()
t2 = turtle.Pen()
t3 = turtle.Pen()
t4 = turtle.Pen()

t1.forward(100)
t1.left(90)
t1.forward(100)
t1.left(90)
t1.forward(100)
t1.left(90)
t1.forward(80)
t1.left(90)
t1.forward(80)

HOW TO USE CLASSES AND OBJECTS 29

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

t1.left(90)
t1.forward(60)
t1.left(90)
t1.forward(60)
t1.left(90)
t1.forward(40)
t1.left(90)
t1.forward(40)

t2.right(180)
t2.forward(100)
t2.right(90)
t2.forward(100)
t2.right(90)
t2.forward(100)
t2.right(90)
t2.forward(80)
t2.right(90)
t2.forward(80)
t2.right(90)
t2.forward(60)
t2.right(90)
t2.forward(60)
t2.right(90)
t2.forward(40)
t2.right(90)
t2.forward(40)

t3.forward(100)
t3.right(90)
t3.forward(100)
t3.right(90)
t3.forward(100)
t3.right(90)
t3.forward(80)
t3.right(90)
t3.forward(80)
t3.right(90)
t3.forward(60)
t3.right(90)
t3.forward(60)
t3.right(90)
t3.forward(40)
t3.right(90)
t3.forward(40)

30 CHAPTER 8

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

t4.left(180)
t4.forward(100)
t4.left(90)
t4.forward(100)
t4.left(90)
t4.forward(100)
t4.left(90)
t4.forward(80)
t4.left(90)
t4.forward(80)
t4.left(90)
t4.forward(60)
t4.left(90)
t4.forward(60)
t4.left(90)
t4.forward(40)
t4.left(90)
t4.forward(40)

HOW TO USE CLASSES AND OBJECTS 31

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

9
MORE TURTLE GRAPHICS

#1: Drawing an Octagon
We’ve drawn stars, squares, and rectangles in this chapter. How about
creating a function to draw an eight-sided shape like an octagon? Your
shape should look similar to the image below.

An octagon has eight sides, so we’ll need a for loop to complete this
drawing. To draw an octagon, the arrow of the turtle will turn com-
pletely around, like the hand of a clock, by the time it finishes draw-
ing. This means it has turned a full 360 degrees. If we divide 360 by
the number of sides of an octagon, we get the number of degrees for the

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

angle that the turtle needs to turn after each step of the loop (45 degrees,
as mentioned in the hint).

>>> import turtle
>>> t = turtle.Pen()
>>> def octagon(size):

for x in range(1,9):
t.forward(size)
t.right(45)

We can call the function to test it using 100 as the size of one of the
sides:

>>> octagon(100)

#2: Drawing a Filled Octagon
Now that you have a function to draw an octagon, modify it to draw a
filled octagon. Try drawing an octagon with an outline, as we did with
the star. It should look similar to the image below.

If we change the previous function so that it draws a filled octagon,
we won’t be able to draw the outline (unless we create a copy of the
function—one for the outline and one for filling it in—which isn’t good
programming practice). Instead, we should pass in a parameter to con-
trol whether the octagon should be filled.

>>> import turtle
>>> t = turtle.Pen()
>>> def octagon(size, filled):

¶ if filled == True:
· t.begin_fill()

for x in range(1,9):
t.forward(size)
t.right(45)

¸ if filled == True:
¹ t.end_fill()

34 CHAPTER 9

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

First, we check if the filled parameter is set to True ¶. If it is, we tell
the turtle to start filling using the begin_fill function ·. We then draw
the octagon on the next two lines, in the same way as Puzzle #1: Draw-
ing an Octagon, and then check to see if the filled parameter is True ¸.
If it is, we call the end_fill function ¹, which fills our shape.

We can test this function by setting the color to yellow and calling
the function with the parameter set to True (so it will fill the shape). We
can then set the color back to black, and call the function again with the
parameter set to False to create the outline.

>>> t.color(1, 0.85, 0)
>>> octagon(40, True)
>>> t.color(0, 0, 0)
>>> octagon(40, False)

#3: Another Star-Drawing Function
Create a function to draw a star that will take two parameters: the size
and number of points.

To create this star function, we’ll divide 360 degrees by the num-
ber of points, which provides the interior angle for each point of the
star (see ¶ in the following code). To determine the exterior angle, we
subtract that number from 180 to get the number of degrees the turtle
must turn left ¹.

import turtle
t = turtle.Pen()
def draw_star(size, points):
¶ angle = 360 / points
· for x in range(0, points):

¸ t.forward(size)
¹ t.left(180 - angle)
º t.forward(size)
» t.right(180 - (angle * 2))

We loop from 0 up to the number of points ·, and then move the
turtle forward the number of pixels specified in the size parameter ¸.
We turn the turtle the number of degrees we’ve previously calculated ¹,
and then move forward again º, which draws the first “spine” of the
star. In order to move around in a circular pattern, drawing the spines,
we need to increase the angle, so we multiply the calculated angle by
two and turn the turtle right ».

For example, you can call this function with 80 pixels and 70 points:

>>> draw_star(80, 70)

MORE TURTLE GRAPHICS 35

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

This should result in the following:

#4: Four Spirals Revisited
Take the code you created to create four spirals and draw the same spi-
rals again—only this time, try using for loops and if statements to sim-
plify your code.

The trick to “simplifying” the code in Chapter 8, Project #4: Four
Small Spirals, is recognizing that each spiral is roughly the same. Turn,
move forward, turn again, move forward, then repeat; but, with each
repetition we reduce the amount we move forward. Here’s one attempt
at simplification—although you might look at this code and say to your-
self, “This doesn’t look simpler to me!”:

import time
import turtle

t1 = turtle.Pen()
t2 = turtle.Pen()
t3 = turtle.Pen()
t4 = turtle.Pen()

t1.forward(100)
t2.right(180)
t2.forward(100)
t3.forward(100)
t4.left(180)
t4.forward(100)

f = 100
for x in range(0, 8):

t1.left(90)
t1.forward(f)

36 CHAPTER 9

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

if x == 1 or x == 3 or x == 5 or x == 7:
f = f - 20

f = 100
for x in range(0, 8):

t2.right(90)
t2.forward(f)
if x == 1 or x == 3 or x == 5 or x == 7:

f = f - 20

f = 100
for x in range(0, 8):

t3.right(90)
t3.forward(f)
if x == 1 or x == 3 or x == 5 or x == 7:

f = f - 20

f = 100
for x in range(0, 8):

t4.left(90)
t4.forward(f)
if x == 1 or x == 3 or x == 5 or x == 7:

f = f - 20

We can rework this code even more by using a function to get some-
thing simpler. The first part of the code is the same as the previous ex-
ample, creating the four turtle objects and then getting them into the
correct starting position (and direction):

import time
import turtle

t1 = turtle.Pen()
t2 = turtle.Pen()
t3 = turtle.Pen()
t4 = turtle.Pen()

t1.forward(100)
t2.right(180)
t2.forward(100)
t3.forward(100)
t4.left(180)
t4.forward(100)

Then we create our function for drawing the spiral:

¶ def spiral(t, left):
· f = 100
¸ for x in range(0, 8):

MORE TURTLE GRAPHICS 37

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

¹ if left == True:
º t.left(90)

else:
» t.right(90)

¼ t.forward(f)
½ if x % 2 != 0:

¾ f = f - 20

spiral(t1, True)
spiral(t2, False)
spiral(t3, False)
spiral(t4, True)

The definition of our function ¶ takes a turtle parameter called t
and a second parameter left. We set the variable we use for how far the
turtle should move (f) to 100 to start with ·. Then we create a for loop
to repeat eight times (using the range function) ¸, and we check if value
of the left variable is True ¹. If it is, we turn left º, otherwise we turn
right ». We move the turtle forward the distance in the variable f ¼.

Line ½ needs a little more explanation. In the previous version of
the code, we checked if the loop variable x is equal to 1, 3, 5, or 7:

if x == 1 or x == 3 or x == 5 or x == 7:

If the variable contains an odd number, we want to reduce the amount
we move forward. In the new version of the code, we check if the num-
ber can be divided into 2 with no remainder using the modulo function:

if x % 2 != 0:

If a number can’t be divided by 2 evenly, then it’s an odd number.
Every time this is true, we subtract 20 from the f variable ¾.

The final bit of the code calls the spiral function for each of our tur-
tle objects, passing either True or False for the left parameter depending
on which way we want the turtle to turn.

38 CHAPTER 9

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

10
USING TKINTER FOR BETTER

GRAPHICS

#1: Fill the Screen with Triangles
Create a program using tkinter to fill the screen with triangles. Then
change the code to fill the screen with different-colored (filled) triangles
instead.

To fill the screen with triangles, we’ll first set up the canvas. Let’s
give it a width and height of 400 pixels:

>>> from tkinter import *
>>> import random
>>> w = 400
>>> h = 400
>>> tk = Tk()
>>> canvas = Canvas(tk, width=w, height=h)
>>> canvas.pack()

A triangle has three points, which means three sets of x and y co-
ordinates. We can use the randrange function in the random module (as in
the random rectangle example in Chapter 10), to randomly generate the

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

coordinates for the three points (six numbers in total). We can then use
the random_triangle function to draw the triangle.

>>> def random_triangle():
p1 = random.randrange(w)
p2 = random.randrange(h)
p3 = random.randrange(w)
p4 = random.randrange(h)
p5 = random.randrange(w)
p6 = random.randrange(h)
canvas.create_polygon(p1, p2, p3, p4, p5, p6, \

fill='', outline='black')

Finally, we create a loop to draw a whole bunch of random triangles:

>>> for x in range(0, 100):
random_triangle()

This results in something like the following:

To fill the window with random colored triangles, first create a list
of colors. We can add this to the setup code at the beginning of the
program.

>>> from tkinter import *
>>> import random
>>> w = 400
>>> h = 400
>>> tk = Tk()
>>> canvas = Canvas(tk, width=w, height=h)
>>> canvas.pack()

40 CHAPTER 10

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

>>> colors = ['red', 'green', 'blue', 'yellow', 'orange',
'white','purple']

We can then use the choice function of the random module to randomly
pick an item from this list of colors, and use it in the call to create_polygon:

def random_triangle():
p1 = random.randrange(w)
p2 = random.randrange(h)
p3 = random.randrange(w)
p4 = random.randrange(h)
p5 = random.randrange(w)
p6 = random.randrange(h)
color = random.choice(colors)
canvas.create_polygon(p1, p2, p3, p4, p5, p6, \

fill=color, outline='')

If we loop 100 times again:

>>> for x in range(0, 100):
random_triangle()

The result will be something like these triangles:

#2: The Moving Triangle
Modify the code for the moving triangle in the “Creating Basic Anima-
tion” section of Chapter 10 to make it move across the screen to the right,
then down, then back to the left, and then back to its starting position.

USING TKINTER FOR BETTER GRAPHICS 41

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

To create a moving triangle, we’ll set up the canvas and then draw
the triangle using the create_polygon function:

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=200)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)

To move the triangle horizontally across the screen, the x value
should be a positive number and the y value should be 0. We can create
a for loop for this using 1 as the ID of the triangle, 10 as the x parame-
ter, and 0 as the y parameter:

for x in range(0, 35):
canvas.move(1, 10, 0)
tk.update()
time.sleep(0.05)

Moving down the screen is similar, with a 0 value for the x parame-
ter and a positive value for the y parameter:

for x in range(0, 14):
canvas.move(1, 0, 10)
tk.update()
time.sleep(0.05)

To move back across the screen, we need a negative value for the x
parameter (and 0 for the y parameter). To move up, we need a negative
value for the y parameter.

for x in range(0, 35):
canvas.move(1, -10, 0)
tk.update()
time.sleep(0.05)

for x in range(0, 14):
canvas.move(1, 0, -10)
tk.update()
time.sleep(0.05)

#3: The Moving Photo
Try displaying a photo of yourself on the canvas. Make sure it’s a GIF
image! Can you make it move across the screen?

42 CHAPTER 10

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

The code for this solution depends on the size of your image. If you’ve
named your image face.gif and saved it to your C: drive, you can display
it and then move it just like any other drawn shape.

The following code will move the image diagonally down the screen:

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
myimage = PhotoImage(file='c:\\face.gif')
canvas.create_image(0, 0, anchor=NW, image=myimage)
for x in range(0, 35):

canvas.move(1, 10, 10)
tk.update()
time.sleep(0.05)

If you’re using Ubuntu, Raspberry Pi, or macOS, the filename of the
image will be different. If the file is in your home directory on Ubuntu
or Raspberry Pi, loading the image might look like this:

myimage = PhotoImage(file='/home/malcolm/face.gif')

On a Mac, loading the image might look like this:

myimage = PhotoImage(file='/Users/samantha/face.gif')

#4: Fill the Screen with Photos
Take the photo you used in the previous puzzle, and shrink it down small,
then fill the screen with lots of copies of your photo.

This is very similar code to filling the screen with random triangles,
but rather than creating a random triangle in a random position on the
screen, we want the image to stay the same size and then “stamp” it in
random positions around the screen.

First, create the canvas as in the other examples:

from tkinter import *
import time
import random

tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()

USING TKINTER FOR BETTER GRAPHICS 43

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Then we’ll load our image, loop 100 times, and generate a random
number between 0 and 400 for both x and y coordinates to place the
image:

img = PhotoImage(file='small-image.gif')

for x in range(0,100):
p1 = random.randrange(400)
p2 = random.randrange(400)
canvas.create_image(p1, p2, anchor=NW, image=img)
tk.update()
time.sleep(0.5)

Every time we place the image, we call tk.update() to redraw the
screen. For every loop, we sleep for half a second with time.sleep(0.5)
so it takes some time to fill the screen.

44 CHAPTER 10

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

11
BEGINNING YOUR FIRST

GAME: BOUNCE!

#1: Changing colors
Try changing the starting color of the ball and the background color of
the canvas—try a few different combinations of colors and see which
ones you like.

Our Ball class already takes a color parameter:

class Ball:
def __init__(self, canvas, color):

self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)

So we can just create our ball object passing a different color; let’s
try green:

ball = Ball(canvas, 'green')

Changing the background of the canvas is a little more difficult, but
with a bit of guesswork, we can figure it out. The create_oval function
has a fill parameter, so let’s try using the same parameter when creat-
ing the canvas:

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

from tkinter import *

tk = Tk()
tk.title('Game')
tk.resizable(0, 0)
tk.wm_attributes('-topmost', 1)
canvas = Canvas(tk, width=500, height=400, bd=0,

highlightthickness=0, fill='blue')
canvas.pack()
tk.update()

Traceback (most recent call last):
File "/usr/lib/python3.10/idlelib/run.py", line 573,
in runcode

exec(code, self.locals)
File "/home/jasonrbriggs/test.py", line 7, in <module>

canvas = Canvas(tk, width=500, height=400, bd=0,
highlightthickness=0, fill='blue')

File "/usr/lib/python3.10/tkinter/__init__.py",
line 2717, in __init__

Widget.__init__(self, master, 'canvas', cnf, kw)
File "/usr/lib/python3.10/tkinter/__init__.py",
line 2601, in __init__

self.tk.call(
_tkinter.TclError: unknown option "-fill"

Well, that didn’t work. Let’s try something else. We want to set the
background color of the canvas, so let’s try using the background parame-
ter instead:

from tkinter import *

tk = Tk()
tk.title('Game')
tk.resizable(0, 0)
tk.wm_attributes('-topmost', 1)
canvas = Canvas(tk, width=500, height=400, bd=0,

highlightthickness=0, background='blue')
canvas.pack()
tk.update()

That works fine! Sometimes experimenting with a small amount of
code is the easiest way to figure out how to do something.

46 CHAPTER 11

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

#2: Flashing colors
Because there’s a loop at the bottom of our code, it should be quite easy
to change the color of the ball as it moves across the screen. We can add
some code to the loop that picks different colors (think about the choice
function we used earlier in the chapter), and then updates the color of
the ball (perhaps by calling a new function on our Ball class).

To get a random color, we’ll use the random module and the choice
function. We can test this with a list of colors:

>>> random.choice(['yellow', 'red', 'blue', 'green', 'orange', 'black', 'white'])
'green'
>>> random.choice(['yellow', 'red', 'blue', 'green', 'orange', 'black', 'white'])
'red'

We can then use the itemconfig function in the draw function of our
Ball class to change the color. We use the id of the oval we created in
the __init__ function, and use random.choice to pick a random color for the
fill parameter:

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 3
if pos[3] >= self.canvas_height:

self.y = -3
if pos[0] <= 0:

self.x = 3
if pos[2] >= self.canvas_width:

self.x = -3
self.canvas.itemconfig(ball.id, fill=random.choice(['yellow', 'red',

'blue','green', 'orange', 'black', 'white']))

#3: Take your positions!
Try to change the code so the ball starts in a different position on the
screen. You could make the position random by using the random mod-
ule. But you’ll have to ensure the ball doesn’t start too close, or below, the
paddle, which will make the game impossible to play.

One way to create a random starting position for your ball would
be to only consider a random position in the top half of the screen. Cur-
rently, our ball starts at position (245, 100):

self.canvas.move(self.id, 245, 100)

BEGINNING YOUR FIRST GAME: BOUNCE! 47

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

That’s 245 pixels across the screen horizontally, and 100 pixels down
vertically. In Chapter 12, we’re going to position our paddle 200 pixels
across and 300 down, so we don’t want the ball to appear below 300 pix-
els. Perhaps down to 200 pixels is a good area to start with? Our ran-
dom range will include anything horizontally from 0 (the leftmost side
of the canvas) and 485 pixels (the canvas is 500 pixels wide, our ball is
15 pixels wide; 500 – 15 is 485 pixels). The random range for the verti-
cal position will include anything from 0 pixels (the topmost side of the
canvas) and 200. We don’t need to subtract anything from the height
because we’re not worried about the ball appearing off the bottom of the
screen in this case.

This code will provide random start positions as the variables random_x
and random_y:

random_x = random.randrange(0, 485)
random_y = random.randrange(0, 200)

The change to move is as follows:

self.canvas.move(self.id, random_x, random_y)

The __init__ function of our Ball class now looks like this:

def __init__(self, canvas, color):
self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25,

fill=color)
random_x = random.randrange(0, 485)
random_y = random.randrange(0, 200)
self.canvas.move(self.id, random_x, random_y)
starts = [-3, -2, -1, 1, 2, 3]
self.x = random.choice(starts)
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()
self.counter = 0

#4: Adding the Paddle . . . ?
Based on the code we’ve created so far, can you figure out how to add the
paddle before reaching the next chapter?

You can find the answer to this puzzle by reading Chapter 12 of
Python for Kids.

48 CHAPTER 11

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

12
FINISHING YOUR FIRST

GAME: BOUNCE!

#1: Delay the Game Start
Our game starts quickly, and you need to click the canvas before it will
recognize pressing the left and right arrow keys on your keyboard. Can
you add a delay to the start of the game in order to give the player enough
time to click the canvas? Or even better, can you add an event binding
for a mouse click, which starts the game only then?

To start the game when the player clicks the canvas, we need to
make a couple of small changes to the program. First, we’ll add a new
function to the Paddle class:

def turn_left(self, evt):
self.x = -2

def turn_right(self, evt):
self.x = 2

def start_game(self, evt):
self.started = True

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

This function will set the object variable started to True when it’s
called. We also need to include this object variable in the __init__ func-
tion of Paddle (and set it to False), and then add an event binding for the
start_game function that binds it to the mouse button.

def __init__(self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)
self.x = 0
self.canvas_width = self.canvas.winfo_width()

¶ self.started = False
self.canvas.bind_all('<KeyPress-Left>', self.turn_left)
self.canvas.bind_all('<KeyPress-Right>', self.turn_right)

· self.canvas.bind_all('<Button-1>', self.start_game)

You can see the addition of the new object variable started ¶, and
the binding for the mouse button ·.

The final change is to the last loop in the code. We need to check
that the object variable started is True before drawing the ball and pad-
dle, as shown in this if statement:

while 1:
if ball.hit_bottom == False and paddle.started == True:

ball.draw()
paddle.draw()

tk.update_idletasks()
tk.update()
time.sleep(0.01)

#2: A Proper “Game Over”
Everything freezes when the game ends, which isn’t very player-friendly.
Try adding the text “Game Over” when the ball hits the bottom of the
screen. As an additional challenge, add a delay so that the text doesn’t
appear right away.

We’ll use the create_text function to create the “Game Over” text.
Add the following directly after the code that creates the ball and
paddle.

paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, paddle, 'red')
game_over_text = canvas.create_text(250, 200, text='GAME OVER',

state='hidden')

The create_text function has a named parameter called state, which
we set to the string 'hidden'. This means that Python draws the text,

50 CHAPTER 12

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

but makes it invisible. To display the text once the game is over, we add
a new if statement to the loop at the bottom of the code:

while 1:
if ball.hit_bottom == False and paddle.started == True:

ball.draw()
paddle.draw()

¶ if ball.hit_bottom == True:
time.sleep(1)

· canvas.itemconfig(game_over_text, state='normal')
tk.update_idletasks()
tk.update()
time.sleep(0.01)

We see if the hit_bottom object variable is set to True ¶. If it is, we sleep
for 1 second (to give a short delay before displaying the text), and then
change the state parameter of the text to 'normal' rather than 'hidden' ·
by using the itemconfig function of the canvas. We pass two parameters to
this function: the identifier of the text drawn on the canvas (stored in
the variable game_over_text) and the named parameter state.

#3: Accelerate the Ball
In tennis, when a ball hits your racket, it sometimes flies away faster
than the speed at which it arrived, depending on how hard you swing.
The ball in our game goes at the same speed, whether or not the pad-
dle is moving. Try changing the program so that the paddle’s speed is
passed on to the speed of the ball.

It’s a bit difficult to figure out where in the code to make this change.
We want the ball to speed up if it’s traveling in the same horizontal di-
rection when it hits the paddle, and slow down if it’s going in the oppo-
site horizontal direction of the paddle. In order to do this, the left-right
(horizontal) speed of the paddle should be added to the horizontal speed
of the ball.

The best place to make this change is in the hit_paddle function of
the Ball class, because that’s where we can change the x variable that
represents the horizontal speed of our ball:

def hit_paddle(self, pos):
paddle_pos = self.canvas.coords(self.paddle.id)
if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]:
¶ if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]:

· self.x += self.paddle.x
return True

return False

Once we’ve determined that the ball has hit the paddle ¶, we add
the value of the x variable of the paddle object to the x variable of the

FINISHING YOUR FIRST GAME: BOUNCE! 51

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

ball ·. If the paddle is moving across the screen to the right (its x vari-
able might be set to 2, for example), and the ball strikes it, traveling to
the right with an x value of 3, the ball will bounce off the paddle with a
new (horizontal) speed of 5. Adding both x variables together means the
ball gets the new speed when it hits the paddle.

#4: Record the Player’s Score
How about recording the score? Every time the ball hits the paddle, the
score should increase. Try displaying the score at the top-right corner of
the canvas.

To add the score to our game, we can create a new class called Score:

class Score:
def __init__(self, canvas, color):
¶ self.score = 0
· self.canvas = canvas
¸ self.id = canvas.create_text(450, 10, text=self.score,

fill=color)

The __init__ function of the Score class takes three parameters: self,
canvas, and color. The first line of this function sets up an object variable
score with a value of 0 ¶. We also store the canvas parameter to use later
as the object variable canvas ·.

We use the canvas parameter to create our score text, displaying it
at position (450, 10), and setting the fill to the value of the color param-
eter ¸. The text to display is the current value of the score variable (in
other words, 0).

The Score class needs another function, which will be used to in-
crease the score and display the new value:

class Score:
def __init__(self, canvas, color):

self.score = 0
self.canvas = canvas
self.id = canvas.create_text(450, 10, text=self.score,

fill=color)

def hit(self):
¶ self.score += 1
· self.canvas.itemconfig(self.id, text=self.score)

The hit function takes no parameters (just self), and increases the
score by 1 ¶ before using the itemconfig function of the canvas object to
change the text displayed to the new score value ·.

We can create an object of the Score class right before we create the
paddle and ball objects:

52 CHAPTER 12

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

score = Score(canvas, 'green')
paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, paddle, score, 'red')
game_over_text = canvas.create_text(250, 200, text='GAME OVER',

state='hidden')

The final change to this code is in the Ball class. We need to store
the Score object (which we use when we create the Ball object), and then
trigger the hit function in the hit_paddle function of the ball.

The beginning of the Ball’s __init__ function now has a parameter
score, which we use to create an object variable, also called score:

def __init__(self, canvas, paddle, score, color):
self.canvas = canvas
self.paddle = paddle
self.score = score

The hit_paddle function should now look like this:

def hit_paddle(self, pos):
paddle_pos = self.canvas.coords(self.paddle.id)
if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]:

if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]:
self.x += self.paddle.x
self.score.hit()
return True

return False

Once all four puzzles are completed, the full game code should look
like this:

from tkinter import *
import random
import time

class Ball:
def __init__(self, canvas, paddle, score, color):

self.canvas = canvas
self.paddle = paddle
self.score = score
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()
self.hit_bottom = False

FINISHING YOUR FIRST GAME: BOUNCE! 53

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

def hit_paddle(self, pos):
paddle_pos = self.canvas.coords(self.paddle.id)
if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]:

if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]:
self.x += self.paddle.x
self.score.hit()
return True

return False

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 3
if pos[3] >= self.canvas_height:

self.hit_bottom = True
if self.hit_paddle(pos) == True:

self.y = -3
if pos[0] <= 0:

self.x = 3
if pos[2] >= self.canvas_width:

self.x = -3

class Paddle:
def __init__(self, canvas, color):

self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)
self.x = 0
self.canvas_width = self.canvas.winfo_width()
self.started = False
self.canvas.bind_all('<KeyPress-Left>', self.turn_left)
self.canvas.bind_all('<KeyPress-Right>', self.turn_right)
self.canvas.bind_all('<Button-1>', self.start_game)

def draw(self):
self.canvas.move(self.id, self.x, 0)
pos = self.canvas.coords(self.id)
if pos[0] <= 0:

self.x = 0
elif pos[2] >= self.canvas_width:

self.x = 0

def turn_left(self, evt):
self.x = -2

54 CHAPTER 12

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

def turn_right(self, evt):
self.x = 2

def start_game(self, evt):
self.started = True

class Score:
def __init__(self, canvas, color):

self.score = 0
self.canvas = canvas
self.id = canvas.create_text(450, 10, text=self.score,

fill=color)

def hit(self):
self.score += 1
self.canvas.itemconfig(self.id, text=self.score)

tk = Tk()
tk.title('Game')
tk.resizable(0, 0)
tk.wm_attributes('-topmost', 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

score = Score(canvas, 'green')
paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, paddle, score, 'red')
game_over_text = canvas.create_text(250, 200, text='GAME OVER',

state='hidden')

while 1:
if ball.hit_bottom == False and paddle.started == True:

ball.draw()
paddle.draw()

if ball.hit_bottom == True:
time.sleep(1)
canvas.itemconfig(game_over_text, state='normal')

tk.update_idletasks()
tk.update()
time.sleep(0.01)

FINISHING YOUR FIRST GAME: BOUNCE! 55

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

14
DEVELOPING THE MR. STICK

MAN GAME

#1: Checkerboard
Try changing the Game class so that the background image is drawn like a
checkerboard, as in the image below.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

In order to draw a checkerboard background, we need to change the
loops in the __init__ function of our game, as follows:

self.bg = PhotoImage(file='background.gif')
w = self.bg.width()
h = self.bg.height()

¶ draw_background = 0
for x in range(0, 5):

for y in range(0, 5):
· if draw_background == 1:

¸ self.canvas.create_image(x * w, y * h, image=self.bg,
anchor='nw')

¹ draw_background = 0
º else:

» draw_background = 1

We create a variable called draw_background and set its value to 0 ¶.
Then we check if the value of the variable is 1 ·. If it is, we draw the
background image ¸ and set the variable back to 0 ¹. If the value isn’t
1 º, we set its value to 1 ».

The first time we hit the if statement, it won’t draw the background
image, and draw_background will be set to 1. The next time we hit the if
statement, it will draw the image and set the variable value back to 0.
Each time we loop, we flip the value of the variable. One time we draw
the image, the next time we don’t.

#2: Two-Image Checkerboard
Once you’ve figured out how to create a checkerboard effect, try using
two alternating images. Come up with another wallpaper image (using
your graphics program), and then change the Game class so it displays a
checkerboard with two alternating images instead of one image and the
blank background.

Once you’ve figured out the checkerboard, you’ll be able to draw two
alternating images instead of an image and a blank. We need to load
the new background image as well as the original. In the following ex-
ample, we load our new image background2.gif (you’ll need to draw it in
GIMP first) and save it for use later, as the object variable bg2.

self.bg = PhotoImage(file='background.gif')
self.bg2 = PhotoImage(file='background2.gif')
w = self.bg.width()
h = self.bg.height()
draw_background = 0
for x in range(0, 5):

for y in range(0, 5):
if draw_background == 1:

58 CHAPTER 14

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

self.canvas.create_image(x * w, y * h, image=self.bg,
anchor='nw')

draw_background = 0
¶ else:

self.canvas.create_image(x * w, y * h, image=self.bg2,
anchor='nw')

draw_background = 1

In the second part of the if statement ¶, we use the create_image
function to draw the new image on the screen.

#3: Bookshelf and Lamp
You can create different wallpaper images to make the game’s back-
ground more interesting. Create a copy of the background image; then
draw a simple bookshelf, a table with a lamp, or a window. Dot these
images around the screen by changing the Game class so that it displays a
few different wallpaper images.

To draw different backgrounds, we’ll change our alternating checker-
board code to load a couple of new images, and then dot them around
the canvas. For this example, I first copied the image background2.gif
and drew a bookshelf on it, saving the new image as shelf.gif. I then
made another copy of background2.gif, drew a lamp, and called the new
image lamp.gif.

self.bg = PhotoImage(file='background.gif')
self.bg2 = PhotoImage(file='background2.gif')

¶ self.bg_shelf = PhotoImage(file='shelf.gif')
· self.bg_lamp = PhotoImage(file='lamp.gif')

w = self.bg.width()
h = self.bg.height()

¸ count = 0
draw_background = 0

We load the new images, saving them as variables bg_shelf ¶ and
bg_lamp ·, respectively, and then create a new variable called count ¸.
In the previous solution, the if statement drew one background im-
age or another based on the value in the variable draw_background. We
do the same thing here, except rather than just displaying the alter-
nate background image, we’ll increment the value in the variable count
by adding 1 (using count = count + 1). The value in count decides which
image to draw:

for x in range(0, 5):
for y in range(0, 5):
¶ if draw_background == 1:

· self.canvas.create_image(x * w, y * h, image=self.bg,
anchor='nw')

DEVELOPING THE MR. STICK MAN GAME 59

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

draw_background = 0
else:
¸ count = count + 1
¹ if count == 5:

º self.canvas.create_image(x * w, y * h,
image=self.bg_shelf, anchor='nw')

» elif count == 9:
¼ self.canvas.create_image(x * w, y * h,

image=self.bg_lamp, anchor='nw')
else:

self.canvas.create_image(x * w, y * h,
image=self.bg2, anchor='nw')

draw_background = 1

If the draw_background variable is 1 ¶ we draw the first background
image as normal ·. Otherwise we increment the count variable ¸. If
the value has reached 5 ¹, we draw the shelf image º. If the value has
reached 9 », we draw the lamp image ¼. Otherwise we draw the alter-
nate background as we did previously.

#4: Random Background
As an alternative to the two-image checkerboard, try creating five differ-
ent background images. You can either draw them as a repeating pat-
tern of background images (1, 2, 3, 4, 5, 1, 2, 3, 4, 5, and so on), or you
can draw them randomly.

Creating a random background is very similar code to Puzzle #2:
Two-Image Checkerboard; with that solution, we created two image
variables:

self.bg = PhotoImage(file='background.gif')
self.bg2 = PhotoImage(file='background2.gif')

For our random background with five different backgrounds, we can
instead create a list of background images:

self.bg = [
PhotoImage(file='background.gif'),
PhotoImage(file='background2.gif'),
PhotoImage(file='background3.gif'),
PhotoImage(file='background4.gif'),
PhotoImage(file='background5.gif')

]

Picking a random image to display is then as simple as using the
choice function in the random module:

random.choice(self.bg)

60 CHAPTER 14

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

The final code then looks like this:

¶ self.bg = [
PhotoImage(file='background.gif'),
PhotoImage(file='background2.gif'),
PhotoImage(file='background3.gif'),
PhotoImage(file='background4.gif'),
PhotoImage(file='background5.gif')

]
· w = self.bg[0].width()
¸ h = self.bg[0].height()

for x in range(0, 5):
for y in range(0, 5):
¹ self.canvas.create_image(x * w, y * h,

image=random.choice(self.bg),
anchor='nw')

We add our variable with the list of background images ¶. Then
we set the w and h variables to the width and height of the first image
in the list · ¸ (remember that the first element in a list is always 0, so
self.bg[0] is the first image 'background.gif'). Finally, we pick a random
image to display, from the list, using the choice function ¹.

DEVELOPING THE MR. STICK MAN GAME 61

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

16
COMPLETING THE MR. STICK

MAN GAME

#1: “You Win!”
Like the “Game Over” text in the Bounce! game, add “You Win!” text
when the stick figure reaches the door.

We can add the “You Win!” text as a variable of the Game class in its
__init__ function:

for x in range(0, 5):
for y in range(0, 5):

self.canvas.create_image(x * w, y * h, image=self.bg,
anchor='nw')

self.sprites = []
self.running = True
self.game_over_text = self.canvas.create_text(250, 250,

text='YOU WIN!', state='hidden')

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

To display the text when the game ends, we need to add an else
statement to the mainloop function:

def mainloop(self):
while 1:

if self.running == True:
for sprite in self.sprites:

sprite.move()
¶ else:

· time.sleep(1)
¸ self.canvas.itemconfig(self.game_over_text, state='normal')

self.tk.update_idletasks()
self.tk.update()
time.sleep(0.01)

We add an else clause to the if statement ¶, and Python runs this
block of code if the running variable is no longer set to True. We sleep for
a second so that the “You Win!” text doesn’t immediately appear ·, and
then change the state of the text to 'normal' ¸ so that it appears on the
canvas.

#2: Animating the Door
We created two images for the door: one open and one closed. When Mr.
Stick Man reaches the door, the door image should change to the open
door, Mr. Stick Man should vanish, and the door image should revert
to the closed door. This will give the illusion that Mr. Stick Man is ex-
iting and closing the door as he leaves. You can do this by changing the
DoorSprite class and the StickFigureSprite class.

To animate the door so that it opens and closes when the stick fig-
ure reaches it, we’ll first change the DoorSprite class. Rather than pass-
ing the image as a parameter, the sprite will now load the two door im-
ages itself, in the __init__ function:

class DoorSprite(Sprite):
def __init__(self, game, x, y, width, height):

Sprite.__init__(self, game)
¶ self.closed_door = PhotoImage(file='door1.gif')
· self.open_door = PhotoImage(file='door2.gif')

self.image = game.canvas.create_image(x, y,
image=self.closed_door, anchor='nw')

self.coordinates = Coords(x, y, x + (width / 2),
y + height)

self.endgame = True

The two images are loaded into object variables ¶ ·. We’ll now
need to change the code at the bottom of the game where we create the
door object so that it no longer tries to use an image parameter:

64 CHAPTER 16

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

door = DoorSprite(g, 45, 30, 40, 35)

DoorSprite needs two new functions: one to display the open door im-
age and one to display the closed door image.

def opendoor(self):
¶ self.game.canvas.itemconfig(self.image, image=self.open_door)
· self.game.tk.update_idletasks()

def closedoor(self):
¸ self.game.canvas.itemconfig(self.image,

image=self.closed_door)
self.game.tk.update_idletasks()

Using the itemconfig function of the canvas, we change the displayed
image to the image stored in the open_door object variable ¶. We call the
update_idletasks function of the tk object to force the new image to be dis-
played ·. (If we don’t do this, the image won’t change immediately.)
The closedoor function is similar, but displays the image stored in the
closed_door variable ¸.

The next new function is added to the StickFigureSprite class:

def end(self, sprite):
¶ self.game.running = False
· sprite.opendoor()
¸ time.sleep(1)
¹ self.game.canvas.itemconfig(self.image, state='hidden')
º sprite.closedoor()

We set the running object variable of the game to False ¶, and then
call the opendoor function of the sprite parameter ·. This is actually a
DoorSprite object, which we’ll see in the next section of code. We sleep for
1 second ¸ before hiding the stick figure ¹ and then calling the closedoor
function º. This makes it look as though the stick figure has gone through
the door and closed it behind him.

The final change is to the move function of the StickFigureSprite. In
the earlier version of the code, when the stick figure collided with the
door, we set the running variable to False, but since this has been moved
to the end function, we need to call that function instead:

if left and self.x < 0 and collided_left(co, sprite_co):
self.x = 0
left = False

¶ if sprite.endgame:
· self.end(sprite)

if right and self.x > 0 and collided_right(co, sprite_co):
self.x = 0
right = False

COMPLETING THE MR. STICK MAN GAME 65

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

¸ if sprite.endgame:
¹ self.end(sprite)

In the section of code where we check whether the stick figure is
moving left or has collided with a sprite to the left, we check if the endgame
variable is True ¶. If it is, we know that this is a DoorSprite object, and we
call the end function using the sprite variable as the parameter ·. We
make the same change in the section of code where we see if the stick
figure is moving right and has collided with a sprite to the right ¸ ¹.

#3: Moving Platforms
Try adding a new class called MovingPlatformSprite. This platform should
move from side to side, making it more difficult for Mr. Stick Man to
reach the door at the top. You can pick some platforms to be moving, and
leave some platforms to be static, depending on how hard you want your
game to be.

A moving platform class will be similar to the class for the stick
figure. We’ll need to recalculate the position of the platform, rather
than having a fixed set of coordinates. We can create a subclass of the
PlatformSprite class, so the __init__ function becomes as follows:

class MovingPlatformSprite(PlatformSprite):
¶ def __init__(self, game, photo_image, x, y, width, height):

· PlatformSprite.__init__(self, game, photo_image, x, y,
width, height)

¸ self.x = 2
¹ self.counter = 0
º self.last_time = time.time()
» self.width = width
¼ self.height = height

We pass in the same parameters as the PlatformSprite class ¶, and
then call the __init__ function of the parent class with those same
parameters ·.

This means that any object of the MovingPlatformSprite class will be
set up exactly the same as an object of the PlatformSprite class. We then
create an x variable with the value of 2 (the platform will start moving
right) ¸, followed by a counter variable ¹. We’ll use this counter to sig-
nal when the platform should change direction. Because we don’t want
the platform to move back and forth as fast as possible, in the same way
that our StickFigureSprite shouldn’t, we’ll record the time in the last_time
variable º; this variable will be used to slow down the movement of the
platform. The final additions to this function are to save the width and
height » ¼.

The next addition to our new class is the coords function:

66 CHAPTER 16

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

self.last_time = time.time()
self.width = width
self.height = height

def coords(self):
xy = self.game.canvas.coords(self.image)
self.coordinates.x1 = xy[0]
self.coordinates.y1 = xy[1]

¶ self.coordinates.x2 = xy[0] + self.width
· self.coordinates.y2 = xy[1] + self.height

return self.coordinates

The coords function is almost exactly the same as the one we used
for the stick figure, except that rather than using a fixed width and
height, we use the values stored in the __init__ function. (You can see
the difference ¶ ·.)

Since this is a moving sprite, we also need to add a move function:

self.coordinates.x2 = xy[0] + self.width
self.coordinates.y2 = xy[1] + self.height
return self.coordinates

def move(self):
¶ if time.time() - self.last_time > 0.03:

· self.last_time = time.time()
¸ self.game.canvas.move(self.image, self.x, 0)
¹ self.counter = self.counter + 1
º if self.counter > 20:

» self.x = self.x * -1
¼ self.counter = 0

The move function checks to see if the time is greater than three-
tenths of a second ¶. If it is, we set the last_time variable to the current
time ·. Then we move the platform image ¸ and increment the counter
variable ¹. If the counter is greater than 20 (the if statement º), we re-
verse the direction of movement by multiplying the x variable by –1 (so
if it’s positive it becomes negative, and if it’s negative it becomes pos-
itive) », and reset the counter to 0 ¼. Now the platform will move in
one direction for a count of 20, and then back the other way for a count
of 20.

To test the moving platforms, we can change a couple of the existing
platform objects from PlatformSprite to MovingPlatformSprite:

platform5 = MovingPlatformSprite(g, PhotoImage(file='platform2.gif'),
175, 350, 66, 10)

platform6 = PlatformSprite(g, PhotoImage(file='platform2.gif'),
50, 300, 66, 10)

COMPLETING THE MR. STICK MAN GAME 67

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

platform7 = PlatformSprite(g, PhotoImage(file='platform2.gif'),
170, 120, 66, 10)

platform8 = PlatformSprite(g, PhotoImage(file='platform2.gif'),
45, 60, 66, 10)

platform9 = MovingPlatformSprite(g, PhotoImage(file='platform3.gif'),
170, 250, 32, 10)

platform10 = PlatformSprite(g, PhotoImage(file='platform3.gif'),
230, 200, 32, 10)

#4: Lamp as a sprite
Instead of the bookshelf and lamp we added as background images pre-
viously, try adding a lamp that the stick man has to jump over. Rather
than being a part of the game’s background, it will be a sprite similar to
the platforms or the door.

For this puzzle, we’ll need the artwork for our lamp. The most diffi-
cult part will be figuring out where to put it on the screen.

We’ll start by renaming the PlatformSprite class to something more
sensible like NonMovingSprite—then we can use it for both the platforms
and the lamp (as well as anything else we want to add to our game). In
IDLE, navigate to the Edit menu (next to File in the menu bar), and
select Replace. From here, enter PlatformSprite in the Find box, enter
NonMovingSprite in the Replace With box, and then hit the Replace
All button. All of the PlatformSprite instances have now been replaced
with NonMovingSprite, as shown below:

g = Game()
platform1 = NonMovingSprite(g, PhotoImage(file='platform1.gif'),

0, 480, 100, 10)
platform2 = NonMovingSprite(g, PhotoImage(file='platform1.gif'),

150, 440, 100, 10)
platform3 = NonMovingSprite(g, PhotoImage(file='platform1.gif'),

300, 400, 100, 10)
platform4 = NonMovingSprite(g, PhotoImage(file='platform1.gif'),

300, 160, 100, 10)
platform5 = MovingPlatformSprite(g, PhotoImage(file='platform2.gif'),

175, 350, 66, 10)
platform6 = NonMovingSprite(g, PhotoImage(file='platform2.gif'),

50, 300, 66, 10)
platform7 = NonMovingSprite(g, PhotoImage(file='platform2.gif'),

170, 120, 66, 10)
platform8 = NonMovingSprite(g, PhotoImage(file='platform2.gif'),

45, 60, 66, 10)
platform9 = MovingPlatformSprite(g, PhotoImage(file='platform3.gif'),

170, 250, 32, 10)

68 CHAPTER 16

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

platform10 = NonMovingSprite(g, PhotoImage(file='platform3.gif'),
230, 200, 32, 10)

We’ll add our lamp sprite to the bottom:

lamp = NonMovingSprite(g, PhotoImage(file='lamp.gif'), 240, 175, 21, 35)
g.sprites.append(platform1)
g.sprites.append(platform2)
g.sprites.append(platform3)
g.sprites.append(platform4)
g.sprites.append(platform5)
g.sprites.append(platform6)
g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
g.sprites.append(lamp)

The following shows the full code with all the changes.

from tkinter import *
import random
import time

class Game:
def __init__(self):

self.tk = Tk()
self.tk.title('Mr Stick Man Races for the Exit')
self.tk.resizable(0, 0)
self.tk.wm_attributes('-topmost', 1)
self.canvas = Canvas(self.tk, width=500, height=500,

highlightthickness=0)
self.canvas.pack()
self.tk.update()
self.canvas_height = 500
self.canvas_width = 500
self.bg = PhotoImage(file='background.gif')
w = self.bg.width()
h = self.bg.height()
for x in range(0, 5):

for y in range(0, 5):
self.canvas.create_image(x * w, y * h,

image=self.bg, anchor='nw')
self.sprites = []
self.running = True
self.game_over_text = self.canvas.create_text(250, 250,

text='YOU WIN!', state='hidden')

COMPLETING THE MR. STICK MAN GAME 69

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

def mainloop(self):
while 1:

if self.running:
for sprite in self.sprites:

sprite.move()
else:

time.sleep(1)
self.canvas.itemconfig(self.game_over_text,

state='normal')
self.tk.update_idletasks()
self.tk.update()
time.sleep(0.01)

class Coords:
def __init__(self, x1=0, y1=0, x2=0, y2=0):

self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2

def within_x(co1, co2):
if (co1.x1 > co2.x1 and co1.x1 < co2.x2)

or (co1.x2 > co2.x1 and co1.x2 < co2.x2)
or (co2.x1 > co1.x1 and co2.x1 < co1.x2)
or (co2.x2 > co1.x1 and co2.x2 < co1.x1):

return True
else:

return False

def within_y(co1, co2):
if (co1.y1 > co2.y1 and co1.y1 < co2.y2)

or (co1.y2 > co2.y1 and co1.y2 < co2.y2)
or (co2.y1 > co1.y1 and co2.y1 < co1.y2)
or (co2.y2 > co1.y1 and co2.y2 < co1.y1):

return True
else:

return False

def collided_left(co1, co2):
if within_y(co1, co2):

if co1.x1 <= co2.x2 and co1.x1 >= co2.x1:
return True

return False

70 CHAPTER 16

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

def collided_right(co1, co2):
if within_y(co1, co2):

if co1.x2 >= co2.x1 and co1.x2 <= co2.x2:
return True

return False

def collided_top(co1, co2):
if within_x(co1, co2):

if co1.y1 <= co2.y2 and co1.y1 >= co2.y1:
return True

return False

def collided_bottom(y, co1, co2):
if within_x(co1, co2):

y_calc = co1.y2 + y
if y_calc >= co2.y1 and y_calc <= co2.y2:

return True
return False

class Sprite:
def __init__(self, game):

self.game = game
self.endgame = False
self.coordinates = None

def move(self):
pass

def coords(self):
return self.coordinates

class NonMovingSprite(Sprite):
def __init__(self, game, photo_image, x, y, width, height):

Sprite.__init__(self, game)
self.photo_image = photo_image
self.image = game.canvas.create_image(x, y,

image=self.photo_image, anchor='nw')
self.coordinates = Coords(x, y, x + width, y + height)

class MovingPlatformSprite(NonMovingSprite):
def __init__(self, game, photo_image, x, y, width, height):

NonMovingSprite.__init__(self, game, photo_image, x, y,
width, height)

self.x = 2
self.counter = 0
self.last_time = time.time()
self.width = width
self.height = height

COMPLETING THE MR. STICK MAN GAME 71

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

def coords(self):
xy = self.game.canvas.coords(self.image)
self.coordinates.x1 = xy[0]
self.coordinates.y1 = xy[1]
self.coordinates.x2 = xy[0] + self.width
self.coordinates.y2 = xy[1] + self.height
return self.coordinates

def move(self):
if time.time() - self.last_time > 0.03:

self.last_time = time.time()
self.game.canvas.move(self.image, self.x, 0)
self.counter += 1
if self.counter > 20:

self.x *= -1
self.counter = 0

class DoorSprite(Sprite):
def __init__(self, game, x, y, width, height):

Sprite.__init__(self, game)
self.closed_door = PhotoImage(file='door1.gif')
self.open_door = PhotoImage(file='door2.gif')
self.image = game.canvas.create_image(x, y,

image=self.closed_door, anchor='nw')
self.coordinates = Coords(x, y, x + (width / 2), y + height)
self.endgame = True

def opendoor(self):
self.game.canvas.itemconfig(self.image, image=self.open_door)
self.game.tk.update_idletasks()

def closedoor(self):
self.game.canvas.itemconfig(self.image,

image=self.closed_door)
self.game.tk.update_idletasks()

class StickFigureSprite(Sprite):
def __init__(self, game):

Sprite.__init__(self, game)
self.images_left = [

PhotoImage(file='figure-L1.gif'),
PhotoImage(file='figure-L2.gif'),
PhotoImage(file='figure-L3.gif')

]
self.images_right = [

PhotoImage(file='figure-R1.gif'),
PhotoImage(file='figure-R2.gif'),

72 CHAPTER 16

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

PhotoImage(file='figure-R3.gif')
]
self.image = game.canvas.create_image(200, 470,

image=self.images_left[0], anchor='nw')
self.x = -2
self.y = 0
self.current_image = 0
self.current_image_add = 1
self.jump_count = 0
self.last_time = time.time()
self.coordinates = Coords()
game.canvas.bind_all('<KeyPress-Left>', self.turn_left)
game.canvas.bind_all('<KeyPress-Right>', self.turn_right)
game.canvas.bind_all('<space>', self.jump)

def turn_left(self, evt):
if self.y == 0:

self.x = -2

def turn_right(self, evt):
if self.y == 0:

self.x = 2

def jump(self, evt):
if self.y == 0:

self.y = -4
self.jump_count = 0

def animate(self):
if self.x != 0 and self.y == 0:

if time.time() - self.last_time > 0.1:
self.last_time = time.time()
self.current_image += self.current_image_add
if self.current_image >= 2:

self.current_image_add = -1
if self.current_image <= 0:

self.current_image_add = 1
if self.x < 0:

if self.y != 0:
self.game.canvas.itemconfig(self.image,

image=self.images_left[2])
else:

self.game.canvas.itemconfig(self.image,
image=self.images_left[self.current_image])

elif self.x > 0:
if self.y != 0:

COMPLETING THE MR. STICK MAN GAME 73

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

self.game.canvas.itemconfig(self.image,
image=self.images_right[2])

else:
self.game.canvas.itemconfig(self.image,

image=self.images_right[self.current_image])

def coords(self):
xy = self.game.canvas.coords(self.image)
self.coordinates.x1 = xy[0]
self.coordinates.y1 = xy[1]
self.coordinates.x2 = xy[0] + 27
self.coordinates.y2 = xy[1] + 30
return self.coordinates

def move(self):
self.animate()
if self.y < 0:

self.jump_count += 1
if self.jump_count > 20:

self.y = 4
if self.y > 0:

self.jump_count -= 1
co = self.coords()
left = True
right = True
top = True
bottom = True
falling = True
if self.y > 0 and co.y2 >= self.game.canvas_height:

self.y = 0
bottom = False

elif self.y < 0 and co.y1 <= 0:
self.y = 0
top = False

if self.x > 0 and co.x2 >= self.game.canvas_width:
self.x = 0
right = False

elif self.x < 0 and co.x1 <= 0:
self.x = 0
left = False

for sprite in self.game.sprites:
if sprite == self:

continue
sprite_co = sprite.coords()
if top and self.y < 0 and collided_top(co, sprite_co):

self.y = -self.y
top = False

74 CHAPTER 16

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

if bottom and self.y > 0 and collided_bottom(self.y,
co, sprite_co):

self.y = sprite_co.y1 - co.y2
if self.y < 0:

self.y = 0
bottom = False
top = False

if bottom and falling and self.y == 0 \
and co.y2 < self.game.canvas_height \
and collided_bottom(1, co, sprite_co):

falling = False
if left and self.x < 0 and collided_left(co, sprite_co):

self.x = 0
left = False
if sprite.endgame:

self.end(sprite)
if right and self.x > 0 \

and collided_right(co, sprite_co):
self.x = 0
right = False
if sprite.endgame:

self.end(sprite)
if falling and bottom and self.y == 0 \

and co.y2 < self.game.canvas_height:
self.y = 4

self.game.canvas.move(self.image, self.x, self.y)

def end(self, sprite):
self.game.running = False
sprite.opendoor()
time.sleep(1)
self.game.canvas.itemconfig(self.image, state='hidden')
sprite.closedoor()

g = Game()
platform1 = NonMovingSprite(g, PhotoImage(file='platform1.gif'),

0, 480, 100, 10)
platform2 = NonMovingSprite(g, PhotoImage(file='platform1.gif'),

150, 440, 100, 10)
platform3 = NonMovingSprite(g, PhotoImage(file='platform1.gif'),

300, 400, 100, 10)
platform4 = NonMovingSprite(g, PhotoImage(file='platform1.gif'),

300, 160, 100, 10)
platform5 = MovingPlatformSprite(g, PhotoImage(file='platform2.gif'),

175, 350, 66, 10)
platform6 = NonMovingSprite(g, PhotoImage(file='platform2.gif'),

50, 300, 66, 10)

COMPLETING THE MR. STICK MAN GAME 75

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

platform7 = NonMovingSprite(g, PhotoImage(file='platform2.gif'),
170, 120, 66, 10)

platform8 = NonMovingSprite(g, PhotoImage(file='platform2.gif'),
45, 60, 66, 10)

platform9 = MovingPlatformSprite(g, PhotoImage(file='platform3.gif'),
170, 250, 32, 10)

platform10 = NonMovingSprite(g, PhotoImage(file='platform3.gif'),
230, 200, 32, 10)

lamp = NonMovingSprite(g, PhotoImage(file='lamp.gif'), 240, 175, 21, 35)
g.sprites.append(platform1)
g.sprites.append(platform2)
g.sprites.append(platform3)
g.sprites.append(platform4)
g.sprites.append(platform5)
g.sprites.append(platform6)
g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
g.sprites.append(lamp)
door = DoorSprite(g, 45, 30, 40, 35)
g.sprites.append(door)
sf = StickFigureSprite(g)
g.sprites.append(sf)
g.mainloop()

76 CHAPTER 16

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

UPDATES

Visit https://nostarch.com/python-kids-2nd-edition for updates, er-
rata, and other information.

COLOPHON

The fonts used in Python for Kids, Second Edition are New Baskerville,
Futura, The Sans Mono Condensed and Dogma. The book was type-
set with LATEX2ε package nostarch by Boris Veytsman (2008/06/06 v1.3
Typesetting books for No Starch Press).

The book was produced as an example of the package nostarch.

Python for Kids, 2nd Edition. Solutions to Programming Puzzles. © 2023 by Jason R. Briggs.

https://nostarch.com/python-kids-2nd-edition

	Introduction
	3: Strings, Lists, Tuples, and Dictionaries
	#1: Favorites
	#2: Counting Combatants
	#3: Greetings!
	#4: Multiline Letter

	4: Drawing with Turtles
	#1: A Rectangle
	#2: A Triangle
	#3: A Box Without Corners
	#4: A Tilted Box Without Corners

	5: Asking Questions with if and else
	#1: Are You Rich?
	#2: Twinkies!
	#3: Just the Right Number
	#4: I Can Fight Those Ninjas

	6: Going Loopy
	#1: The Hello Loop
	#2: Even Numbers
	#3: My Five Favorite Ingredients
	#4: Your Weight on the Moon

	7: Recycling Your Code with Functions and Modules
	#1: Basic Moon Weight Function
	#2: Moon Weight Function and Years
	#3: Moon Weight Program
	#4: Mars Weight Program

	8: How to Use Classes and Objects
	#1: The Giraffe Shuffle
	#2: Turtle Pitchfork
	#3: Two Small Spirals
	#4: Four Small Spirals

	9: More Turtle Graphics
	#1: Drawing an Octagon
	#2: Drawing a Filled Octagon
	#3: Another Star-Drawing Function
	#4: Four Spirals Revisited

	10: Using tkinter for Better Graphics
	#1: Fill the Screen with Triangles
	#2: The Moving Triangle
	#3: The Moving Photo
	#4: Fill the Screen with Photos

	11: Beginning Your First Game: Bounce!
	#1: Changing colors
	#2: Flashing colors
	#3: Take your positions!
	#4: Adding the Paddle . . . ?

	12: Finishing Your First Game: Bounce!
	#1: Delay the Game Start
	#2: A Proper ``Game Over"
	#3: Accelerate the Ball
	#4: Record the Player's Score

	14: Developing the Mr. Stick Man Game
	#1: Checkerboard
	#2: Two-Image Checkerboard
	#3: Bookshelf and Lamp
	#4: Random Background

	16: Completing the Mr. Stick Man Game
	#1: ``You Win!"
	#2: Animating the Door
	#3: Moving Platforms
	#4: Lamp as a sprite

