
16
T H E I N F O V I S , S C I V I S , A N D

D A S H B O A R D I N G L I B R A R I E S

Visualizing data is an integral part of
science. Humans are visual creatures by

nature, and viewing data graphically is more
efficient and intuitive than reading through

lists of strings or numbers. Effective plots help you to
clean, prepare, and explore data. You can use them to
reveal outliers and spurious samples, identify patterns,
and compare datasets. Perhaps most important, they
help you to communicate clearly with others and con-
vey your ideas in an easily consumed manner. It’s little
wonder that graphics have been called the “pinnacle
of communication.”

Data visualization is a very broad category that includes everything
from simple charts used for data exploration and reporting, to complex
interactive web applications that operate in real time. With Python, you

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

420 Chapter 16

can easily cover this range. In fact, when it comes to creating graphics,
Python suffers from an embarrassment of riches. With more than 40 differ-
ent plotting libraries, there’s something for everyone. But that’s part of the
problem.

Wading through Python’s plotting APIs is exhausting. Users can be
overwhelmed by all the choices, which cover a wide range of functionality,
both unique and overlapping. As a result, they usually focus more on learn-
ing APIs than on their real job: exploring their data. In fact, this book was
inspired by conversations with other scientists who were frustrated by this
very problem.

Another issue with Python’s plotting libraries is that the vast majority
force you to write code to create even the simplest of visualizations. Com-
pare this to software like Tableau or Excel, in which sensible, attractive
graphs require just a few clicks of a mouse with little cognitive burden on
the user.

Fortunately, many users share similar needs, and with a little forethought
you can avoid going down suboptimal paths. In general, this involves select-
ing a high-level tool that covers the most common tasks succinctly and con-
veniently, typically by providing a simpler API on top of an existing tool.

In the sections that follow, we’ll take a broad look at some of Python’s
most popular and useful plotting and dashboarding libraries. Then, we’ll
review some logical questions that should help guide you to the best plot-
ting library, or libraries, for your needs.

N O T E The plotting examples in this chapter are intended to demonstrate the complexity of
the code and the types of plots produced. You’re not expected to run the code snippets,
as many of the libraries discussed do not come preinstalled with Anaconda. But if you
do want to test them for yourself, you can find installation instructions in the product
web pages. I recommend that you install them all in a dedicated conda environment
(see Chapter 2), rather than dump them in your base environment.

InfoVis and SciVis Libraries
We can divide visualizations into three main categories: InfoVis, SciVis,
and GeoVis (Figure 16-1). InfoVis, short for Information Visualization, refers
to 2D or simple 3D static or interactive representations of data. Common
examples are statistical plots such as pie charts and histograms. SciVis,
short for Scientific Visualization, refers to graphical representations of physi-
cally situated data. These visualizations are designed to provide insight into
the data, especially when it’s studied by novel and unconventional means.
Examples are magnetic resonance imaging (MRI) and simulations of tur-
bulent fluid flow. GeoVis, short for Geovisualization, refers to the analysis of
geospatial (geographically located) data through static and interactive visu-
alization. Examples include satellite imagery and map creation.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 421

InfoVis SciVis GeoVis

Figure 16-1: Three visualization categories with examples

Tables 16-1 lists some of Python’s more important InfoVis and SciVis plot-
ting libraries. We’ll take a closer look at some of these in the sections that
follow before turning to the dashboard libraries. Then, in Chapter 17, we’ll
repeat this exercise for the GeoVis libraries.

Table 16-1: Python’s Major InfoVis and SciVis Libraries

Type Library Description Website

InfoVis

Matplotlib Publication-quality 2D and
simple 3D plots

https://matplotlib.org/

seaborn Matplotlib wrapper for easier,
prettier plots

https://seaborn.pydata.org/

pandas Matplotlib wrapper for easy
DataFrame plotting

http://pandas.pydata.org/

Altair Easy and simple 2D plots for
small datasets

https://altair-viz.github.io/

ggplot Simple “grammar of graphics”
plots with pandas

https://yhat.github.io/ggpy/

Bokeh Web interactivity tool with large
or streaming datasets

https://bokeh.org/

Chartify Bokeh wrapper for easier
charting

https://github.com/spotify/
chartify/

Plotly Dynamic, interactive graphics
for web apps

https://plotly.com/python/

HoloViews Viz data structures usable by
many libraries

http://holoviews.org/

hvPlot Easy interactive plotting library
built on HoloViews/Bokeh

https://hvplot.holoviz.org/

Datashader Tools for rasterizing giant data-
sets for easy visualization

https://datashader.org/

SciVis

VTK Visualization toolkit for 3D com-
puter graphics

https://vtk.org/

Mayavi 3D scientific visualization tool
with interactivity

https://docs.enthought.com/
mayavi/

ParaView 3D scientific visualization tool
with interactivity

https://www.paraview.org/

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

422 Chapter 16

N O T E If you’re curious about how we got into this mess, take a few minutes to look at James
Bednar’s blog post “Python Data Visualization 2018: Why So Many Libraries?”
(https://www.anaconda.com/blog/python-data-visualization-2018-why
-so-many-libraries/). You should also check out his ebook, Python Data Visual-
ization, and PyViz site (https://pyviz.org/), which are designed to help users
decide on the best open source Python data visualization tools for their purposes,
with links, overviews, comparisons, examples, and exhaustive tool lists.

Matplotlib
The Matplotlib library is an open source, comprehensive library for creat-
ing manuscript-quality static, animated, and interactive visualizations in
Python. These are mainly 2D plots, such as bar charts, pie charts, scatter-
plots, and so on, though some 3D plotting is possible (Figure 16-2). Mat-
plotlib is almost 20 years old and was designed to provide early versions of
Python with a familiar MATLAB-type interface. MATLAB is a proprietary
scientific programming language that has been displaced in popularity by
Python.

Figure 16-2: A small sampling of Matplotlib plot types (courtesy of https://matplotlib .org/)

Matplotlib’s focus is on creating static images for use in publications
and interactive figures for data exploration and analysis. These interactive
figures use GUI toolkits like Qt, rather than web applications. The library
comes preinstalled with Anaconda.

Matplotlib is the King, Grandaddy, and Big Kahuna of Python visualiza-
tion. It’s a massive, exhaustive library, and many alternative products are
built on top of it, just as others are built on NumPy (including Matplotlib).
Likewise, the internal visualization tools of libraries like pandas leverage
Matplotlib methods.

The Matplotlib motto is that it “makes easy things easy and hard things
possible.” It works on all operating systems and handles all the common
image formats. It has broad functionality, allowing you to build just about
any kind of chart you can imagine, and it’s very compatible with other
popular science libraries like pandas, NumPy, and scikit-learn, thanks to
collaborations between the Matplotlib and IPython communities.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 423

Matplotlib is a powerful but low-level plotting engine. This means that
you have lots of flexibility and options for precisely controlling plots by
assembling them component by component. But this freedom comes with
complexity. When creating anything beyond a simple plot, your code can
become ugly, dense, and tedious.

The unfriendliness of Matplotlib’s API is offset somewhat by its popu-
larity and maturity. A simple online search will yield example code for just
about any plot that you want to make. Its greatest resource is undoubtably
the Matplotlib gallery (https://matplotlib.org/gallery/index.html/), a “cookbook”
of code recipes for making a huge variety of plots.

Other issues with Matplotlib are the appearance and “explorable
nature” of its plots. Although Matplotlib plots come with interactive fea-
tures like zooming, panning, saving, and posting the cursor’s location
(Figure 16-3), they are somewhat antiquated compared to what’s directly
available in more modern libraries.

Figure 16-3: Matplotlib plot in an external Qt window (left) versus inline in a Jupyter
notebook (right)

By default, Matplotlib’s interactivity is designed to work in external
windows rather than inline on the same screen as your code. You can force
inline interactivity in Jupyter Notebook and JupyterLab, but the results can
be buggy. For example, the Save button might simply open a blank web page
rather than downloading the plot. Other libraries also provide more intelli-
gent cursor hovering capabilities that can display custom information about
posted data.

As a testament to Matplotlib’s dominance and usefulness, a number of
external packages extend or build on Matplotlib functionality (see https://
matplotlib.org/3.2.1/thirdpartypackages/). Two of these, mpldatacursor and
mplcursors, let you add some interactive data cursor functionality to plots
using only a few lines of code.

Likewise, there are add-on visualization toolkits that rely on Matplotlib
under the hood. One of the most important is seaborn, which is designed
to simplify plotting and to generate more attractive plots than those pro-
duced by Matplotlib’s defaults. Both seaborn and pandas are wrappers
over Matplotlib, which lets you access some of Matplotlib’s methods with
less code.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

424 Chapter 16

 seaborn
The seaborn library is a free, open source visualization library built on
Matplotlib. It provides a higher-level (that is, easier-to-use) interface for
drawing attractive and informative statistical graphics such as bar charts,
scatterplots, histograms, and so on. It also comes with built-in functions
for density estimators, confi dence bounds, and regression functions. Not
surprisingly, it’s well integrated with data structures in pandas and NumPy.
Seaborn comes preinstalled with Anaconda.

A goal of seaborn is to make visualization a central part of exploring
and understanding data through the use of dataset-oriented plotting func-
tions. It makes default plots more attractive and supports the building of
complex visualizations. It helps reveal data patterns through the use of
high-level multiplot grids and different color pallets (visit https://seaborn
.pydata.org/examples/index.html for some examples).

Seaborn is designed to work well with the popular DataFrame objects
in pandas, and you can easily assign column names to the plot axes. It’s also
considered preferrable to Matplotlib for making multidimensional plots.

In the example that follows, the last line of code generated an attractive
scatterplot including a linear regression line with 95 percent confi dence
interval, marginal histograms, and distributions:

import seaborn as sns
tips = sns.load_dataset('tips')
sns.jointplot(data=tips, x='total_bill', y='tip', kind='reg');

One of the best features of seaborn is the pairplot. This built-in plot type
lets you explore the pairwise relationships in an entire dataset in one fi gure,
with the option of viewing histograms, layered kernel density estimates,
scatterplots, and more. Following is an example of a pairplot created using

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 425

the Palmer Archipelago dataset for identifying penguin species. The data is
loaded as a pandas DataFrame (see the pandas section in Chapter 15 for an
overview of the pandas library).

import seaborn as sns
penguins = sns.load_dataset('penguins')
sns.pairplot(data=penguins, hue='species', markers=['o', 'X', 's']);

Another built-in plot type, stripplot, is a scatterplot in which one variable
is categorical. It’s perfect for comparing the lengths of bills among penguin
species:

sns.set_theme(style='whitegrid')
strip = sns.stripplot(x='bill_length_mm', y='species', data=penguins);

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

426 Chapter 16

Unlike Matplotlib, seaborn lets you manipulate data during the plot-
ting operation. For example, you can calculate the number of body mass
samples in the penguins dataset by calling the built-in length function (len)
from within the barplot() method:

bar = sns.barplot(data=penguins, x='species', y='body_mass_g', estimator=len)
bar.set(xlabel='Penguin Species', ylabel='Number of Samples');

Let’s take a look at how easy it is to customize a plot using seaborn.
Table 16-2 lists the top 10 countries most affected by COVID-19 (based on
number of cases) in roughly the first year of the virus’s spread. The Fatality
Rate column lists the number of deaths per 100 confirmed cases. The
Deaths per 100,000 column calculates deaths based on a country’s general
population.

Table 16-2: COVID-19 Statistics

Country Region Cases Deaths Deaths/100K popl Fatality rate

United States North America 31,197,873 562,066 171 .80 0 .018

India Asia 13,527,717 170,179 12 .58 0 .013

Brazil Latin America 13,482,023 353,137 168 .59 0 .026

France Europe 5,119,585 98,909 147 .65 0 .019

Russia Asia 4,589,209 101,282 70 .10 0 .022

UK Europe 4,384,610 127,331 191 .51 0 .029

Turkey Middle East 3,849,011 33,939 41 .23 0 .009

Italy Europe 3,769,814 114,254 189 .06 0 .030

Spain Europe 3,347,512 76,328 163 .36 0 .023

Germany Europe 3,012,158 78,500 94 .66 0 .026
Source: https://coronavirus.jhu.edu/data/mortality

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 427

Let’s save Table 16-2 as a comma-separated value (.csv) file and use it
with seaborn to look at the relationship among deaths, the death rate per
100,000 people, and the fatality rate:

import pandas as pd
import seaborn as sns

sns.set_style('whitegrid')
df = pd.read_csv('johns_hopkins_covid_stats_apr_2021.csv')
scatter = sns.scatterplot(data=df,
 x='Deaths',
 y='Deaths/100K Popl',
 hue='Country',
 style='Country',
 size='Fatality Rate',
 sizes=(50, 200))
scatter.legend(loc='center right', bbox_to_anchor=(1.4, 0.5), ncol=1);

After importing pandas and seaborn, you set the style of the plot to
give it a white background with gridlines. The data, in .csv format, is then
loaded as a pandas DataFrame named df. Creating a scatterplot (scatter)
takes a single command. The marker color (hue) and shape (style) are
based on the country and their size reflects the fatality rate, with a size
range of 50 to 200. You finish by creating a legend and calling the plot.
Note how, by using the DataFrame column names from Table 16-2, the
code is easy to read and understand.

Despite being an abstraction layer on top of Matplotlib, seaborn pro-
vides access to underlying Matplotlib objects, so you can still achieve precise
control over your plots. Of course, you’ll need to know Matplotlib to some
degree to tweak the seaborn defaults in this manner.

Seaborn plots are considered more attractive, and thus better for pub-
lications and presentations, than those produced by Matplotlib. It’s a good
choice if all you want are static images made with simpler code and better
defaults.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

428 Chapter 16

N O T E Even if you choose to use Matplotlib instead of the seaborn wrapper, you can still
import seaborn and use its themes to improve the visual appearance of your plots.
For examples, see https://www.python-graph-gallery.com/106-seaborn-style
-on-matplotlib-plot and https://seaborn.pydata.org/generated/seaborn
.set_theme.html?highlight=themes.

The pandas Plotting API
The pandas library discussed in the previous chapter has its own plotting
API, Pandas.plot() (https://pandas.pydata.org/pandas-docs/stable/user_guide/
visualization.html). This API has emerged as a de facto standard for creating
2D charts because it can use Matplotlib and many other libraries as its plot-
ting backend. This makes it possible to learn one set of plotting commands
using pandas and then apply them with a wide range of libraries for static
or interactive plots.

Plotting in pandas is arguably the easiest way to create visualizations
using Python. It’s especially good at quick “throwaway” plots for data explo-
ration. Let’s take a look:

import pandas as pd

female_ht_vs_wt = {'height': [137, 152, 168, 183, 198, 213],
 'weight': [31.2, 45.2, 58.8, 72.3, 85.5, 108.3]}
df = pd.DataFrame(female_ht_vs_wt)
df.plot(kind='scatter', x='weight', y='height')
df.plot.bar('weight');

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 429

After importing pandas and making a Python dictionary of some mea-
surements of female height verses weight, we turn the dictionary into a pan-
das DataFrame. The last two lines of code can then immediately build two
plots! What could be easier?

The plots are very plain and lack any kind of interactivity, but never
fear, pandas plays well with the other plotting libraries. With little effort,
you can switch to an alternative plotting tool for additional functionality.
By changing the plotting backend for pandas to HoloViews, a library we’ll
discuss shortly, you can produce an interactive plot that lets you zoom, pan,
save, and hover the cursor over points to see their values. Here’s an example
of the code and its results:

import pandas as pd

pd.options.plotting.backend = 'holoviews'
female_ht_vs_wt = {'height': [137, 152, 168, 183, 196, 213],
 'weight': [31.2, 45.2, 58.8, 72.3, 84.5, 108.3]}
df = pd.DataFrame(female_ht_vs_wt)
df.plot(kind='scatter', x='weight', y='height')

Note that, despite changing the plotting library, you didn’t need to
change a single line of the original plotting code. To see some other drop-
in replacements for the Pandas .plot() API, see https://pyviz.org/high-level/
index.html#pandas-plot-api/.

Altair
Altair is an open source statistical visualization library in Python that’s
closely aligned with pandas DataFrames. It’s popular with people looking
for a quick way to visualize small datasets.

Altair handles a lot of plotting details automatically, letting you focus
on what you want to do rather than the button-pushing “how to do it” part.
Much like the female height-verses-weight example in the previous section,
you only need to link your data columns to encoding channels, such as the

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

430 Chapter 16

x- and y-axes, to make a plot. But this ease of use comes with a few down-
sides. The plots are not as customizable as those made in Matplotlib, and
there’s no 3D plotting capability.

On the other hand, all Altair plots can be made interactive, meaning
that you can zoom, pan, highlight plot regions, update linked charts with
the selected data, enable tooltips that let you hover the cursor over points for
detailed information, and so on. Altair visualizations require a JavaScript
frontend to display charts and so should be used with Jupyter notebooks
or an integrated development environment (IDE) with notebook support.

Unlike Matplotlib and other imperative plotting libraries that build plots
step by step with no intermediate stages, Altair is declarative by nature, and
generates a plot object, in JSON format, from which the plot can be recon-
stituted. JSON, short for JavaScript Object Notation, is a file and data inter-
change format that uses human-readable text to store and transmit data
objects. Thus, Altair does not produce plots consisting of pixels, but plots
consisting of data plus a visualization specification.

Because declarative plotting objects store your data and associated
metadata, it’s easy to manipulate the data during the plot render command
or visualize it alongside or overlaid with other data. It can also result in very
large visualization file sizes or entire datasets stored in your Jupyter note-
book. Although there are some workarounds to help you manage memory
and performance issues, the library’s documentation recommends plotting
no more than 5,000 rows of data (see https://altair-viz.github.io/user_guide/faq
.html#altair-faq-large-notebook/).

Another drawback of using JSON is that it can be hacked if used with
untrusted services or untrusted browsers. This can make the hosting web
application vulnerable to a variety of attacks.

Bokeh
Bokeh is an open source visualization library that supports the creation of
interactive, web-ready plots from very large or streaming datasets. Bokeh
(pronounced “BO-kay”) takes plots defined using Python and automatically
renders them in a web browser using HTML and JavaScript, the dominant
programming languages used for interactive web pages. It’s one of the
better-maintained and supported libraries and comes preinstalled with
Anaconda.

Bokeh can output JSON objects, HTML documents, or interactive
web applications. It has a three-level interface that provides increasing
control over plots, from the simple and quick to the painstakingly detailed.
However, unlike Matplotlib, Bokeh does not have high-level methods for
some common diagrams such as pie charts, donut charts, or histograms.
This requires extra work and the use of additional libraries such as NumPy.
Support for 3D plotting is also limited. Thus, from a practical standpoint,

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 431

Bokeh’s native API is mainly useful for publishing plots as part of a web app
or HTML/JavaScript-based report, or for when you need to generate highly
interactive plots or dashboards.

Bokeh works well in Jupyter notebooks and lets you use themes, for which
you stipulate up front how you want your plots to look, such as font sizes,
axis ticks, legends, and so on. Plots also come with a toolbar (Figure 16-4)
for interactivity, including zooming, panning, and saving.

Figure 16-4: The Bokeh plot toolbar (courtesy of https://bokeh .org/)

Finally, if you keep your data in pandas, you can use a library called
Pandas-Bokeh (https://github.com/PatrikHlobil/Pandas-Bokeh/), which con-
sumes pandas data objects directly and renders them using Bokeh. This
results in a higher-level, easier-to-use interface than Bokeh alone. Other
high-level APIs built on Bokeh include HoloViews, hvPlot, and Chartify
for plotting, and Panel for creating dashboards. We’ll look at most of
these later in the chapter.

Plotly
Plotly is an open source web-based toolkit for making interactive, publi-
cation-quality graphics. It’s similar to Bokeh in that it builds interactive
plots, generating the required JavaScript from Python. And like Bokeh and
Matplotlib, Plotly is a core Python library on which multiple higher-level
libraries are built.

Plotly graphs are stored in the JSON data format. This makes them por-
table and readable using scripts of other programming languages such as
R, Julia, MATLAB, and more. Its web-based visualizations can be displayed
in Jupyter notebooks, saved as standalone HTML files, or incorporated into
web applications. Because Plotly uses JSON, it suffers similar memory and
security issues as Altair (see “Altair” on page 429).

Unlike Matplotlib and seaborn, Plotly is focused on creating dynamic,
interactive graphics in Python for embedding in web apps. You can cre-
ate basic plots as well as more unique contour plots, dendrograms, and 3D
charts (Figure 16-5).

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

432 Chapter 16

Figure 16-5: A 3D scatterplot made with Plotly Express

Figure 16-6 shows an example of a 3D mesh. You can even display
LaTeX equations in legends and titles.

Figure 16-6: A sandal plotted as a 3D mesh in Plotly/Dash

Plotly also recognizes sliders, filters, and mouseover and cursor-click
events. With only a few lines of code, you can create attractive interactive
plots that save you time when exploring datasets and can be easily modified
and exported. The toolkit also permits complex visualizations of multiple
sources, in contrast to products like Tableau, which accept only one data
table as input per chart.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 433

Plotly is written in JavaScript and powers Dash (https://dash.plotly.com/
introduction), an open source Python framework for building web analytic
applications (called dashboards). Dash is written on top of Plotly.js and
greatly simplifies the building of highly customized dashboards in Python.
These apps are rendered in a web browser and can be deployed to servers
and shared through URLs. Dash is cross-platform and mobile ready. We’ll
look at Dash a little more in “Dashboards” on page 445.

Plotly also comes with a high-level, more intuitive API called Plotly Express
(https://plotly.com/python/plotly-express/) that provides shorthand syntax for
creating entire figures at once. It has more than 30 functions for creating
different types of graphics, each carefully designed to be as consistent and
easy to learn as possible, allowing you to effortlessly switch from a scatter-
plot to a bar chart to a sunburst chart, and so on throughout a data explora-
tion session. As such, Plotly Express is the recommended starting point for
creating common figures with Plotly.

Plotly Express charts are easy to style so that they do really useful
things. Suppose that you want to look at monthly rainfall totals over a two-
decade period and see how the months of August and October compare
to the rest. With Plotly Express, you can easily highlight the lines for these
months so that they stand out. And with the interactive toolbar, you can
toggle spike lines and the hover feature to query values (Figure 16-7).

Figure 16-7: A Plotly Express line chart with highlighted lines, spike lines, and hover box

Another useful feature of Plotly Express is that legends are “alive.” Click
a category in a legend once and you temporarily remove it from the plot.
Click it twice and all other lines will vanish, leaving that category isolated.
This was done for the August (Aug) category in Figure 16-8. You can even
animate the plot to see how things change over time. What a great way to
untangle confusing “spaghetti” plots!

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

434 Chapter 16

Figure 16-8: Double-clicking a legend category isolates that category by removing
the other data.

Let’s revisit the COVID-19 dataset that captures fatality statistics from
the first year of the virus’s spread. You’ll want to compare the code and
results that follow to the seaborn example on page 427.

import pandas as pd
import plotly.express as px

df = pd.read_csv('johns_hopkins_covid_stats_apr_2021.csv')
fig = px.scatter(data_frame=df,
 x='Deaths',
 y='Deaths/100K Popl',
 color='Country',
 size='Fatality Rate',
 text='Country')
fig.update_layout(showlegend=False)
fig.show()

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 435

Like the previous seaborn code, it’s very readable and easy to under-
stand. Also note that Plotly Express has a specific parameter called data
_frame that lets you know without a doubt that it’s built for working with
pandas.

A nice feature here is that you can easily post the country name over
the markers, letting you use a consistent marker shape for easy size compar-
isons. You don’t get the automatic “size” legend that you get with seaborn,
but Plotly Express makes up for this by automatically permitting mouseover
events, as shown in the plot for the United Kingdom.

Another useful Plotly Express feature is the facet plot, which lets you
view the previous scatterplot by geographical region:

--snip--
fig = px.scatter(data_frame=df,
 x='Deaths',
 y='Deaths/100K Popl',
 color='Country',
 size='Fatality Rate',
 text='Country',
 1 facet_col='Region')
fig.update_layout(showlegend=False)
fig.show()

We did this by adding a single argument 1 to the px.scatter() method.
Plotly Express is designed mainly for exploratory data analysis. Your

data must be in very specific formats (it’s targeted at pandas DataFrames),
your overall ability to customize plots is limited, and you might have trouble
putting the visualizations into a presentation. To be able to do everything
you’ll probably want to do, you’ll need to occasionally drop down into the
full Plotly API or use Plotly Express in conjunction with other libraries like
Matplotlib or seaborn.

There also exists an independent third-party wrapper library around
Plotly called cufflinks (https://github.com/santosjorge/cufflinks/) that provides
bindings between Plotly and pandas. This helps you create plots from pan-
das DataFrames using the Pandas.plot() interface but with Plotly output.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

436 Chapter 16

Both Plotly and Plotly Express facilitate building charts for the web
directly from pandas DataFrames. And plots you create in Jupyter note-
books can essentially be copied and pasted into a Dash app for quick imple-
mentation of a dashboard. You can see an example of some scientific charts
built with Plotly at https://plotly.com/python/scientific-charts/.

HoloViews
HoloViews is an open source library (note that I didn’t say plotting library)
designed to make visualization simple by abstracting away the process of
plotting. HoloViews makes it easier to visualize data interactively by provid-
ing a set of declarative plotting objects that store your data with associated
metadata. The goal is to support the entire life cycle of scientific research,
from initial exploration to publication to reproduction of the work and new
extensions.

HoloViews lets you combine various container types into data structures
for visually exploring data. Some example container types are Layout, for
displaying elements side by side as separate subplots; Overlay, for displaying
elements on top of one another; and DynamicMap, for dynamic plots that
automatically update and respond to user interactions. To appreciate the
DynamicMap container, check out https://holoviews.org/user_guide/Streaming
_Data.html and https://holoviews.org/user_guide/Responding_to_Events.html to
view animated examples.

HoloViews generates final plots using a proper plotting library such as
Matplotlib, Plotly, or Bokeh, as a backend. This lets you focus on your data
rather than waste time writing plotting code. And as a plotting “middleman,”
HoloViews integrates well with libraries like seaborn and pandas and is par-
ticularly useful for visualizing large datasets—up to billions—using librar-
ies like Dask and Datashader (such as https://holoviz.org/tutorial/Plotting.html).

One vision of Python’s plotting future is to use a set of libraries to
streamline the process of working with small and large datasets in a web
browser (Figure 16-9). This would include doing exploratory analysis, mak-
ing simple widget-based tools, or building full-featured dashboards.

Figure 16-9: The HoloViz-maintained libraries (courtesy of holoviz .org)

In this coordinated effort, HoloViews and GeoViews provide a single,
concise, and high-level API for libraries like Matplotlib, Bokeh, Datashader,
Cartopy, and Plotly. Panel provides a unified approach to dashboarding,
and Datashader allows for the plotting of very large datasets. Param sup-
ports declaring user-relevant parameters for working with widgets inside
or outside of a notebook context. This arrangement permits you to easily
switch between backends without having to learn commands for each new
plotting library.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 437

Recognizing that a typical figure is an object composed of many visual
representations combined together, HoloViews makes it trivial to compose
elements in the two most common ways: concatenating multiple representa-
tions into a single figure or overlaying visual elements within the same set
of axes. When making multiplot figures, HoloViews helps by automatically
linking axes and selections across each figure. It’s also useful for creating
charts that update dynamically, especially those using sliders. With the
Bokeh backend, you can combine various widgets with zooming and pan-
ning tools to aid data exploration.

Let’s take a look at a Jupyter Notebook example, adapted from the Holo-
Views gallery (https://holoviews.org/gallery/index.html), that uses both HoloViews
and Panel to generate a plot. For data, we’ll again use the Palmer Archipel-
ago dataset that quantifies the morphologic variations among three pen-
guin species. Thanks to Panel, you’ll be able to use drop-down menus to
switch out and decorate the displayed data inside the single plot.

import seaborn as sns # For access to penguins dataset.
import holoviews as hv
import panel as pn, panel.widgets as pnw
hv.extension('bokeh')

1 hv.opts.defaults(hv.opts.Points(height=400, width=500,
 legend_position='right',
 show_grid=True))

penguins = sns.load_dataset('penguins')
columns = penguins.columns
discrete = [x for x in columns if penguins[x].dtype == object]
continuous = [x for x in columns if x not in discrete]

2 x = pnw.Select(name='X-Axis', value='bill_length_mm', options=continuous)
y = pnw.Select(name='Y-Axis', value='bill_depth_mm', options=continuous)
size = pnw.Select(name='Size', value='None', options=['None'] + continuous)
color = pnw.Select(name='Color', value='None',
 options=['None'] + ['species'] + ['island'] + ['sex'])
@pn.depends(x.param.value, y.param.value,
 color.param.value, size.param.value)

3 def create_figure(x, y, color, size):
 opts = dict(cmap='Category10', line_color='black')
 if color != 'None':
 opts['color'] = color
 if size != 'None':
 opts['size'] = hv.dim(size).norm() * 20
 return hv.Points(penguins, [x, y], label="{} vs {}".
 format(x.title(), y.title())).opts(**opts)

widgets = pn.WidgetBox(x, y, color, size, width=200)
pn.Row(widgets, create_figure).servable('Cross-selector')

After importing seaborn (for the data), HoloViews, and Panel, you tell
HoloViews which plotting library to use. Bokeh is the default, but you can

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

438 Chapter 16

easily change this to Matplotlib or Plotly by changing the line to hv.extension
('matplotlib') or hv.extension('plotly'). Most of the time, changing the
backend doesn’t require any change to the rest of the code.

The next line 1 is optional but demonstrates a nice feature of Holo-
Views: the ability to set your own defaults for how you want your plots to
look. In this case, you set the size of the figure, position of the legend, and
background grid to be used for all scatterplots.

Next, you load the penguins dataset, which conveniently ships with the
seaborn library as a pandas DataFrame. To provide the user with menu
choices, go through the columns in the penguins DataFrame and assign the
contents to either a list called discrete or a list called continuous. The discrete
list holds objects, such as species name, island name, or the penguin’s sex.
The continuous list is for numerical data, like the bill lengths and bill depths.

Starting at 2, you must specify what choices the Panel widget will show
for the x- and y-axes and the marker size and color, including the default
options for what’s initially shown. After this, you define a function to cre-
ate the figure 3 and return a HoloViews Points element. The final two lines
create the figure with the menu widgets.

The output from this program is shown in Figure 16-10. Note the pull-
down menus along the left side of the plot and the interactive toolbar along
the right. Because we set the size and color default values to 'None', the points
all look the same.

You can now use the menu widgets to color the points by species
(Figure 16-11), which generates a legend at the lower-right corner of the
plot. Setting the size option to body mass allows you to qualitatively incor-
porate a third measurement into the 2D scatterplot. Now you can see that
the Gentoo species is clearly larger than the other two.

Figure 16-10: Bill depth versus bill length for three different penguin species

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 439

Figure 16-11: Bill depth versus bill length, colored by species and sized by body mass

In Figure 16-12, we’ve used the drop-down menus to change out both
the data and size parameters. As you can see, this is a great way to interac-
tively explore and familiarize yourself with a dataset without generating lots
of plots.

Figure 16-12: Bill length versus body mass, colored by species and sized by flipper length

A key point here is that the code references the DataFrame to make a
HoloViews Points element. This object is basically the DataFrame plus knowl-
edge of what goes on the x- and y-axes. This makes the DataFrame plot-
table. But unlike plot objects in other libraries, the hv.Points element holds

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

440 Chapter 16

onto your raw data. This makes it usable later in a processing pipeline (for a
dynamic demonstration, see the HoloViews Showcase at http://holoviews.org/
Tutorials/Showcase.html).

Just as Plotly has Plotly Express, the HoloViz libraries have hvPlot, a
simpler plotting alternative built on top of HoloViews. This fully interac-
tive high-level API complements the primarily static plots available from
libraries built on Matplotlib, such as pandas and GeoPandas, that require
support from additional libraries for interactive web-based plotting. It’s
designed for the PyData ecosystem and its core data containers, which
allow users to work with a wide array of data types (Figure 16-13).

PyData
libraries .plot() API

Intermediate
representation Plotting output

Dask
Xarray
Intake
Rapids
pandas

GeoPandas
NetworkX

Figure 16-13: The hvPlot library provides a high-level plotting API for HoloViews.

The hvPlot library’s interactive Bokeh-based API supports panning,
zooming, hovering, and clickable/selectable legends. In the following exam-
ple, hvPlot is used in conjunction with pandas to produce an inter active plot:

import hvplot.pandas
from bokeh.sampledata.degrees import data as degrees

degrees.hvplot.line(x='Year', y=['Art and Performance',
 'Business', 'Biology',
 'Education', 'Computer Science'],
 value_label='% of Degrees Earned by Women',
 legend='top')

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 441

This is just as simple as plotting in pandas, but note the toolbar along
the right side of the chart with icons for panning, zooming, saving, and hov-
ering. The latter lets you query the graph details using the cursor, as shown
by the pop-up window for the computer science variable. These options
aren’t available when plotting from native pandas.

For more on these libraries, check out HoloViz (https://holoviz.org/), the
coordinated effort to make browser-based data visualization in Python
easier to use, easier to learn, and more powerful.

Datashader
Datashader is an open source library designed for visualizing very large
datasets. Rather than passing the entire dataset from the Python server to a
browser for rendering, Datashader rasterizes (pixelates) it to a much smaller
heatmap or image, which is then transferred for rendering. Whereas popu-
lar libraries like Matplotlib can suffer from performance issues with only
100,000 points, Datashader can handle hundreds of millions, even billions,
of them. For example, Figure 16-14 plots 300 million data points.

Figure 16-14: A Datashader-created plot of 300 million data points from the 2010 census
(courtesy of Datashader)

Datashader makes it possible to work with very large datasets on stan-
dard hardware such as your laptop. Although the computationally intensive
steps are written in Python, they’re transparently compiled to machine
code using a tool called Numba (https://numba.pydata.org/) and distributed
across multiple processors using Dask.

The Datashader documentation highlights the tool’s function in a pre-
processing stage for plotting. What this means is that Datashader is often
used with other plotting libraries to perform the heavy lifting associated
with large datasets. Thus, although it’s more focused on performance and
efficiency than on directly generating basic statistical plots, it can work with

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

442 Chapter 16

other tools to help you plot large datasets—say, in a scattergram—by han-
dling the common over-posting of points problem, where the density of the
distributed points is obscured (Figure 16-15).

Points Rasterized Datashaded

Figure 16-15: Datashader (right) handles over-posted points well (courtesy https://
holoviews .org/).

In another example, imagine that you’re using Bokeh to copy your
data directly into the browser so that a user can interact with the data even
without a live Python process running. If the dataset contains millions or
billions of samples, you’ll run up against the limitations of the web browser.
But with Datashader, you can prerender this huge dataset into a fi xed-size
raster image that captures the data’s distribution. Bokeh’s interactive plot
can then dynamically re-render these images when zooming and pan-
ning, making it easier to work with the huge dataset in the web browser
(Figure 16-16).

Small data

Browser

Small data

Big data

Im
ag

es
Big data Im

ag
es

Big data Im
ag

es
Big data Im

ag
es

Big data

Server

Figure 16-6: Generating interactive Datashader-based plots using HoloViews + Bokeh
(courtesy of https://datashader .org/)

You can see a fantastic instance of Datashader in action in the “gerry-
mandering” example at https://examples.pyviz.org/. Working in concert with
HoloViews and multiple plotting libraries, Datashader produces a map of

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 443

Houston’s population, color-coded by ethnicity, that turns plotting into fine
art, with a gorgeous watercolor-like rendering that has to be seen in color to
be appreciated.

For a nice example of using Datashader with statistical plots, see https://
holoviews.org/user_guide/Large_Data.html. Peter Wang, co-creator of Data-
shader, gives an easily digestible video overview of the library at https://www
.youtube.com/watch?v=fB3cUrwxMVY/.

In all of these examples, be aware that you’ll lose some interactivity with
Datashader. You’ll still be able to zoom and pan, but mouseover events and
the like will no longer work without special support, because the browser
doesn’t hold all of your datapoints ready for inspection. In return, you’ll be
able to visualize millions of datapoints without watching your computer
grind to a halt.

Mayavi and ParaView
A common scientific practice is to visualize point clouds, such as those
you might find in a Light Detection and Ranging (LIDAR) scan. General-
purpose workhorse libraries like Matplotlib are capable of performing this
task to a certain degree, but performance deteriorates quickly when interac-
tively visualizing point clouds and other 3D plots. Matplotlib, for example,
will be slow and might even crash your computer if you try to interact with
a large number of samples. Even if the 3D representations successfully ren-
der, they won’t look very nice, and you’ll probably have trouble understand-
ing what you see.

Datashader can help with this, but for graphics-intensive 3D and 4D
visualizations such as those used for physical processes, you need a dedi-
cated library like Mayavi (pronounced MA-ya-vee) that can handle physically
situated regular and irregularly gridded data. This discriminates Mayavi
from Datashader somewhat, as the latter is focused more on visualizations
of information in arbitrary spaces, not necessarily the three-dimensional
physical world.

Mayavi2 is an open source, general-purpose, cross-platform tool for 3D
scientific data visualization. It’s been designed with scripting and extensi-
bility in mind from the ground up. You can import Mayavi2 into a Python
script and use it as a simple plotting library like Matplotlib. It also provides
an application (Figure 16-17) that is usable by itself.

Mayavi2 is written in Python, uses powerful Visualization Toolkit (VTK)
libraries, and provides a GUI via Tkinter. It’s cross-platform and runs on
any platform where both Python and VTK are available (almost any Unix,
macOS, or Windows systems). To a limited extent, you can use Mayavi in
Jupyter notebooks. To see some examples of Mayavi2 plots, visit the gallery
at https://docs.enthought.com/mayavi/mayavi/auto/examples.html.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

444 Chapter 16

Figure 16-7: Mayavi2 application for 3D visualization. Note the Python console in the
lower-right corner.

An alternative to Mayavi2 is ParaView (Figure 2-18). Although designed
for 3D, it does 2D as well, is very interactive, and has a Python scripting
interface.

Figure 16-8: ParaView application for 3D visualization. Note the Python console in the
lower-left corner.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 445

ParaView was developed by Sandia National Laboratories, whereas
Mayavi is a product of Enthought, whose Canopy distribution is a direct
competitor of Anaconda.

Dashboards
A dashboard is a type of easy-to-read interactive GUI, often presented in real
time. Dashboards are usually displayed on a single web page linked to a data-
base, which allows the displayed information to be constantly updated.
Example scientific dashboards include weather stations, earthquake moni-
toring, and spacecraft tracking (Figure 16-19).

Figure 16-9: NASA spacecraft tracking dashboard (courtesy of https://www .nasa .gov)

Dashboards can really open up the usability and interactivity of your
data, especially for nontechnical users. They also make the data accessible
from anywhere, as long as you have an internet connection. This can be
important when collaborating with external parties or providing results to
scattered stakeholders.

Dashboards need to perform multiple tasks like analyzing and visualiz-
ing data, listening for and accepting user requests, and returning web pages
via a web server. You can cobble together different libraries to handle these,
or you can just use a dedicated dashboarding library.

Python supports higher-level web-based dashboarding with five main
libraries: Dash, Streamlit, Voilà, Panel, and Bokeh (Table 16-4). These
libraries let you create dashboards with pure Python, so you don’t have to
learn the underlying enabling languages like JavaScript and HTML. We
looked at Bokeh earlier, so here we’ll focus on the other four.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

446 Chapter 16

Table 16-4: Python’s Most Important Dashboarding Libraries

Library Description Website

Plotly Dash Advanced production-grade/enterprise
dashboards

https://plotly.com/dash/

Streamlit Fast and easy web apps from multiple
plotting libraries

https://streamlit.io/

Voilà Jupyter notebook rendering as stand-
alone web apps

https://voila.readthedocs.io/

Panel Interactive web apps with nearly any
library

https://panel.holoviz.org/

Bokeh Web interactivity with large or streaming
datasets

https://bokeh.org/

Before we take a quick look at these four tools, note that it’s possible to
do some aspects of dashboarding in other libraries. The plotting stalwart
Matplotlib supports several GUI toolkit interfaces, such as Qt, that can
generate native applications you can use as an alternative to a web-based
dashboard. Whereas several libraries make use of JavaScript to help build
dashboards, Bowtie (https://bowtie-py.readthedocs.io/) lets you build them using
pure Python. You can use ipywidgets with Jupyter Notebook to build a dash-
board, but you need to use a separate deployable server, like Voilà, to share it.

For more insight, PyViz hosts a page on dashboarding that includes
blog posts, links to comparison articles, and lists of alternative or support-
ing tools. You can find it at https://pyviz.org/dashboarding/.

N O T E Bokeh, which we looked at previously, includes a widget and app library and a server
for both plots and dashboards. It also supports live streaming of large datasets.
However, if you intend to develop complex data visuals with Bokeh, you’ll need
some knowledge of JavaScript. Panel is built on Bokeh, just as seaborn is built on
Matplotlib, and in the same way provides a higher-level toolkit to make dashboarding
easier. It also supports multiple plotting libraries in addition to Bokeh.

Dash
Dash is an open source Python framework developed by Plotly as a complete
solution for deploying web analytic applications. Dash is built on Plotly.
js, React.js, and Flask (a lower-level framework for building web apps from
the ground up). Dash apps are rendered in a web browser deployed to serv-
ers and shared through a URL. This makes Dash platform agnostic and
mobile ready. In 2020, Plotly released JupyterDash (https://github.com/plotly/
jupyter-dash/), a new library designed for building Dash apps from Jupyter
environments.

With Dash, it’s possible to build a responsive, custom interface with
pure Python in just a few hours. Responsive, by the way, means that the web
page will render well on a variety of devices and screen sizes. Dash uses
simple patterns to abstract away much of the dashboard-building process,

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 447

such as generating the required JavaScript, React components, HTML, and
server API. In fact, you can basically copy and paste Plotly graphs straight
from a Jupyter notebook into a Dash app.

As far as how your dashboard looks, Dash provides an attractive out-of-
the-box default stylesheet but also allows you to easily add third-party styl-
ing. Dash-bootstrap-components (https://dash-bootstrap-components.opensource
.faculty.ai/) is an open source library that makes it easier to build con-
sistently styled apps with complex, responsive layouts. You can also use
any of the themes from Bootswatch themes (https://www.bootstrapcdn.com/
bootswatch/). These time-saving add-ons will let you build professional-look-
ing dashboards with little effort.

Because of its relative maturity, expanding user community, and adop-
tion by large enterprise organizations, Dash now has a large library of
specialized modules, a host of repositories, and great documentation and
tutorials to aid with the construction of customized dashboards. Whereas
most scientists might aim to produce simple single-page dashboards, Dash
can also build multipage, scalable, high-performance dashboards capable
of incorporating organization style guides in the final layouts. This is a dis-
tinguishing feature of Dash versus friendlier tools like Streamlit and Voilà.

On the flip side, Dash is primarily designed for Plotly, though it’s pos-
sible to use other third-party plotting libraries (see https://github.com/plotly/
dash-alternative-viz-demo/). Dash also requires you to work with HTML and
Cascading Style Sheets (CSS) syntax, which isn’t something Python users
generally want to do. This has led to the development of simpler tools, like
Streamlit, which we’ll look at next.

Streamlit
Streamlit is a relatively new open source library for quickly building attrac-
tive dashboard web applications. As an all-in-one tool, it addresses web serv-
ing as well as data analysis.

Streamlit’s simple API lets you concentrate on your data analysis and
visualization rather than on frontend and backend technology issues.
Sharing and deploying is fast and easy, and the learning curve is arguably
the shortest of any of Python’s dashboarding tools. As a result, Streamlit’s
popularity has risen rapidly, and new features are constantly being added.

Whereas Dash focuses on production and enterprise settings, Streamlit
is designed for rapid prototyping. It lets you do more with less code, and
unlike Dash, which is designed to work primarily with Plotly, Streamlit lets
you easily mix and match plots from multiple libraries, including Plotly,
Altair, Bokeh, seaborn, and Matplotlib. This gives you the option to choose
the best tool for the particular plotting job and allows contributing team
members to use their preferred plotting library.

For existing Python scripts, Streamlit is arguably the best way to quickly
and easily turn them into interactive dashboards. However, it provides no
support for Jupyter Notebook, and you’ll encounter some friction moving
your code into Streamlit. On the other hand, it’s very compatible with major
libraries like scikit-learn, TensorFlow/Keras, NumPy, OpenCV, PyTorch,

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

448 Chapter 16

pandas, and more. If you’re happy with Streamlit’s design defaults and don’t
need to do a lot of customization, it’s a great choice for getting a dashboard
up and running quickly.

Voilà
Voilà is an open source library that lets you quickly convert a Jupyter note-
book into a stand-alone interactive dashboard sharable with others. As a
thin layer built over Jupyter, it represents a very specific use case rather than
a complete dashboarding solution.

Voilà allows nontechnical people associated with your project to use
your Jupyter notebooks without having to know Python or Jupyter or have
them installed on their computer. And if you already have a notebook with
all the interactivity you need, it’s the shortest path to turning your work into
a dashboard.

Voilà is mostly about rendering. A common approach is to add inter-
activity (widgets) to a Jupyter notebook using a Python library like bqplot,
Plotly, or ipywidgets, all of which are supported by Voilà. (We looked at ipy-
widgets in Chapter 5 on Jupyter Notebook.) You might then need to format
the notebook to suppress and hide unused code and markdowns.

Voilà runs the code in the notebook, collects the outputs, and converts
them to HTML. By default, the notebook code cells are hidden from view.
The outputs are displayed vertically in the order in which they appear
in the notebook (Figure 16-20), but you can use widget layout templates to
change the position of the cell outputs, for example, by dragging them into
a horizontal configuration. The page is then saved as a web application
where the widgets on the page have access to the underlying Jupyter kernel.

At this point, the dashboard is only on your computer. For others to
have access, you need to deploy your dashboard on the cloud using a public
cloud computing platform such as Binder, Heroku, Amazon Web Services
(AWS), Google Cloud Platform (GCP), IBM Cloud, or Microsoft Azure.

Binder, a free open source web application for managing digital reposi-
tories, is one of the most accessible ways to deploy Voilà applications. Use
cases involve workshops, scientific workflows, and streamlined sharing
among teams. Heroku (https://www.heroku.com/) is also a good choice for
the less tech-savvy and those with limited budgets. It manages the support-
ing hardware and server infrastructure allowing you to focus on perfecting
your app. On the downside, the app might run slowly due to low network
performance. You can see more deployment options at https://voila
.readthedocs.io/en/stable/deploy.html.

Voilà produces dashboards broadly similar to Streamlit and can be sim-
pler to use, assuming that you already have a Jupyter notebook ready to go.
Jupyter aficionados will also appreciate that Voilà shares Jupyter’s widget
library, whereas Streamlit requires you to learn its own set of custom wid-
gets. You can see some example dashboards at https://voila-gallery.org/.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 449

Figure 16-20: Dashboard elements retain Jupyter Notebook
arrangement (courtesy of https://voila-gallery .org).

Panel
Panel is an open source Python library that lets you create custom interac-
tive web apps and dashboards by connecting user-defined widgets to plots,
images, tables, or text. Created and supported by Anaconda, Panel is part
of the HoloViz family of unified plotting tools (see Figure 16-9) and uses
the Bokeh server.

Panel helps support your entire workflow so that you never need to
commit to only one way of using your data and your analyses, and you don’t
need to rewrite your code just to make it usable in a different way. You can
move seamlessly from exploring data, creating reproducible steps, and tell-
ing a story in a notebook to creating a dashboard for a target audience, or
even creating a notebook from a dashboard.

Panel automatically creates frontends based on Python syntax with-
out requiring you to write in HTML or create style sheets with CSS. It

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

450 Chapter 16

integrates better with Jupyter Notebook than Dash or Streamlit. It’s argu-
ably the next choice if you’re already using Jupyter Notebook, and Voilà is
not flexible enough for your needs.

Like Streamlit, Panel works with visualizations from multiple libraries,
including Bokeh, Matplotlib, HoloViews, and more, making them instantly
viewable either individually or when combined with interactive widgets
that control them. Being integrated with the HoloViz family, including
GeoViews, Panel is especially good for handling geospatial data.

Panel objects are reactive, immediately updating to reflect changes to
their state. This makes it easy to compose viewable objects and link them
into simple one-off apps to do a specific exploratory task. You then can
reuse the same objects in more complex combinations to build more ambi-
tious apps. You can also share information between multiple pages so that
you can build full-featured multipage apps. To see some example dash-
boards and how Panel works with multiple plotting libraries, visit https://
panel.holoviz.org/gallery/index.html.

Choosing a Plotting Library
Even the simplest plotting libraries in Python require a bit of time and
effort to learn, so you can’t realistically learn them all. But with so many
plotting choices available, how do you choose among them?

The throwaway answer is that it depends on what you’re trying to do.
But there’s more to it than that. You need to look beyond your immediate
needs. What will you be doing next year? What are your teammates and
clients using? How do you position yourself for the long term, to reduce the
number of libraries you need to learn?

The following sections are designed to help you choose the best library,
or combination of libraries, for you. They include the libraries we’ve dis-
cussed so far and address the following criteria:

Size of dataset The number of data points you need to plot

Types of plots The types of plots you plan to make, from statistical
charts to complex 3D visualizations

Format The way you plan to present the data, such as static plots,
Jupyter notebooks, interactive dashboards, and so on

Versatility A library’s range of capabilities, such as ease of use, the
ability to make sophisticated plots, and dashboarding support

Maturity The age of the library

For the first four criteria, we’ll look at native, out-of-the-box functionality.
Although it’s always possible to extend the capabilities of a given library by
using another library (for example, to enable interactivity), the assumption
here is that the average user will want to avoid these types of complications.

And remember, we’re only discussing a subset of the most popular plot-
ting libraries. If you have highly specialized requirements, you’ll need to
perform an online search to find the most appropriate tool available.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 451

Size of Dataset
The most important starting consideration for choosing a plotting library
is the size of the datasets that you plan to use. In today’s world of big data,
you can’t afford poor performance or memory issues during visualization.
Although there are ways to decimate and otherwise manipulate large data-
sets so that they behave as smaller sets, you generally want to avoid this if
possible.

Figure 16-21 presents a rough range of data sizes that you can practi-
cally plot with different libraries. These are more relative than absolute,
as maximum limits can depend on the type of plot you’re making, the
hardware you’re using, browser performance, whether you’re working in
a Jupyter notebook, and so on.

103 104

*Including libraries based on Matplotlib (seaborn, pandas, and so on)

105 106 ≥109

Data size (points)

Altair

Bokeh

Matplotlib*

Plotly

HoloViews

Mayavi, ParaView

Datashader

Figure 16-21: InfoVis and SciVis libraries versus size of dataset (in number of samples)

Most of the InfoVis libraries we’ve discussed can plot somewhere
between a hundred thousand and a million data points. Bokeh supports
both Canvas- and WebGL-based plotting, and the default Canvas plotting
limit may be in the hundreds of thousands. But if the WebGL JavaScript
API (https://get.webgl.org/) is used for Bokeh, assuming it’s supported for
the particular type of plot involved, the limit should be similar to that for
Matplotlib and Plotly.

Larger datasets require Datashader, which renders plots as images.
The SciVis libraries Mayavi and ParaView can handle billions of samples
using compiled data libraries and native GUI apps. Because HoloViews
can use Matplotlib, Bokeh, or Plotly as its plotting backend, as well as use
Datashader, it can theoretically cover the whole range shown in Figure 16-21.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

452 Chapter 16

Types of Plots
Knowing the types of plots that you plan to make, along with their degree
of interactivity, will help you in selecting the most user-friendly tool for your
needs. Figure 16-22 shows the capabilities of plotting libraries, with simple
statistical plots on the left and complex 3D visualizations on the right.

*Some support for 3D surfaces and scatterplots

3D plots and meshesImages, 2D grids, and meshesStatistical plots

pandas

Altair

seaborn

Bokeh

HoloViews HoloViews*

Plotly Plotly*

Matplotlib Matplotlib*

Mayavi, ParaView

Datashader

Figure 16-22: InfoVis and SciVis libraries versus type of plot

All of the InfoVis libraries can handle statistical plotting. Even the
SciVis tools Mayavi and ParaView have this capability to some extent,
though they’re hardly the best choice. Likewise, although several InfoVis
libraries can generate 3D scatterplots (Figure 16-5) and meshes (Figures
16-2 and 16-6), you still need Mayavi or ParaView for high-performance
visualization of large and complex 3D plots (such as Figures 16-17 and
16-18). Of the three major plotting libraries, only Bokeh has no built-in
3D capability, though it can be extended by installing other libraries.

Format
Knowing how you will present your visualizations will help you choose a
library while keeping things as simple as possible. With the exception of the
specialty products like Mayavi, ParaView, and the dashboarding tools, you
can use most libraries to generate static plots and images to print or use in
a report. You’ll want to verify that you can output the smooth SVG format
if you need it, though most support this option. Figure 16-23 shows more
sophisticated options, ranging from Jupyter notebooks to highly interactive
web applications viewed in a browser.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 453

Native GUI app,
OS-specific/locally run

Stand-alone
dashboard/web app

Export
to HTML

Jupyter
Notebook

Matplotlib* Matplotlib*

Mayavi** Mayavi, ParaView

Altair

Plotly Dash

Streamlit

HoloViews Panel

Voilà

Bokeh Bokeh

*Including libraries based on Matplotlib (seaborn, pandas, and so on) **with limitations

Figure 16-23: The InfoVis and SciVis libraries versus publishing format

The dashboarding libraries are displayed so that the simplest, least flex-
ible ones are shifted to the left and the more powerful and customizable are
shifted to the right. Voilà, for example, works only with Jupyter Notebook,
whereas Dash can produce enterprise-level visualizations. Bokeh operates
over WebSockets, a library for maintaining a persistent connection between
a client and server, allowing for constantly connected sessions that you can
easily use for multiple back-and-forth interactions.

Versatility
Sometimes organically and sometimes by design, plotting libraries grow
into “families” of a sort (Figure 16-24). The Plotly family, for example, has
Plotly Express for quick and simple plotting, and Dash for dashboarding. In
similar fashion, HoloViews has hvPlot and Panel, and pandas and seaborn
make plotting with Matplotlib as easy as possible. With a truly versatile fam-
ily, you can quickly produce plots using simple syntax, drop down into the
core library to add sophisticated elements, and seamlessly share the result
as a dashboard on the web.

Even though it’s possible to mix and match these to a point, having to
learn the syntax for multiple libraries is not very appealing. Both Plotly and
HoloViews give you full built-in soup-to-nuts functionality, but that doesn’t
mean you’re limited to just two options. The Matplotlib family can “adopt”
a dashboarding library, such as Streamlit, Panel, or Voilà, whereas Chartify,
Pandas-Bokeh, and hvPlot can serve as an “easy” option for Bokeh.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

454 Chapter 16

Simplicity Sophistication Dashboarding

Altair

pandas/seaborn Matplotlib

Plotly Express Plotly Dash

hvPlot HoloViews

Mayavi, ParaView

Chartify Bokeh

Panel

Bokeh

Figure 16-24: Versatility of the InfoVis and SciVis libraries

Maturity
Figure 16-25 captures the relative age of the plotting libraries. The longer
a library has been around, the more likely it is to be reliable, well docu-
mented, and have an established user base that produces helpful tutorials,
example galleries, and extensions. Over time, users encounter bugs, learn
usage patterns, and share their experiences. As a result, you’ll be able to
find answers to most questions at help sites like Stack Overflow (https://
stackoverflow.com/).

Paraview, Matplotlib, and pandas have been around for a long time,
whereas libraries like Voilà and Panel are more recent. Keep in mind that
maturity is a somewhat scalable criterion. Wildly popular libraries will
mature quickly. A good example of this is the newer dashboarding libraries
Dash and Streamlit, with rapidly growing user bases constantly adding new
features and supplementing the documentation.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

The InfoVis, SciVis, and Dashboarding Libraries 455

Age

ParaView

Matplotlib

pandas

Mayavi

Panel

Voilà

Streamlit

Datashader

Altair

Dash

HoloViews

Plotly

Bokeh

seaborn

Figure 16-25: Relative age of the InfoVis and SciVis libraries

Making the Final Choice
Although it’s true that the best plotting library might be dependent on
your use case as well as your background and skill level, no one wants to
jump from tool to tool with each new project. Still, there’s a good chance
you won’t be able to get by with a single visualization library, especially if
you need to do a range of things, including visualizing complicated 3D
simulations.

If you expect to use Python a lot, you should look for a library, such as
Matplotlib, Plotly, or the HoloViz family, that covers as much area as pos-
sible in Figures 16-21 through 16-25. These libraries may be more difficult
to learn, but it will be worth it in the long run.

The case for learning Matplotlib is always strong due to its maturity,
versatility, good integration with the ecosystem, and the fact that so many
other libraries are built upon it. As a default plotting tool, it’s a safe choice,
but if you strongly favor a simpler library, all is not lost. As mentioned pre-
viously, Figures 16-21 through 16-24 assume that you’re using the native
capability of the posted libraries. They further assume that you want func-
tionality, like zooming and panning, to work out of the box. But many

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

456 Chapter 16

other libraries exist that, with little effort, can extend their native capabili-
ties. Earlier, you saw how, with one extra line of code, HoloViews could add
interactivity to the static plots generated by the pandas plotting API.

With Anaconda, it’s easy to install plotting libraries and play with them
in Jupyter Notebook. You should take the time to experiment a little using
online tutorials. If you find that you prefer a fairly simple library or one not
discussed here, search for libraries that can add any missing capability. You
may be able to cobble together a Frankenstein product that perfectly fits
your needs.

As a final comment: the HoloViz concept is intriguing. Its goal is to pro-
vide a unified, consistent, and forward-looking plotting solution for Python.
It’s worth serious consideration, especially if you have a long career ahead
of you.

N O T E After you choose a plotting library, you’ll still need to pick a type of plot to use with
your data. A great place to start is the From Data to Viz website at https://www
.data-to-viz.com/. Here you’ll find a decision tree that will help you determine the
most appropriate chart based on the format of your dataset. You’ll also find a Caveats
page that will help you understand and avoid some of the most common data presen-
tation mistakes.

Summary
In this chapter, we reviewed the InfoVis libraries, used for 2D or simple 3D
static or interactive representations of data, as well as the more sophisti-
cated SciVis libraries, used for graphical representations of physically situ-
ated data. Because the InfoVis libraries address common displays such as
bar charts and scattergrams, there are many libraries from which to choose.

The most popular InfoVis library is Matplotlib. Due to its maturity and
flexibility, other plotting libraries, like seaborn, “wrap” Matplotlib to make
it easier to use and to provide additional themes and styles. Newer plotting
libraries such as Bokeh, Plotly, and Holoviews, provide much of the func-
tionality of Matplotlib but also focus on web apps and the building of
interactive dashboards. Other tools, like Datashader, address the need to
efficiently plot large volumes of data.

The choice of a go-to plotting library is a personal one influenced by
the tasks that you need to complete and the effort you’re willing to apply.
Because most users will want to focus on learning as few packages as pos-
sible, the best solution is to choose a plotting “family” that provides broad
coverage of plot types, formats, dataset sizes, and so on. This will need to be
weighed against the value of a mature (but possibly disjointed) solution that
comes with lots of support versus newer, less well-documented libraries that
try to provide a seamless, holistic approach that will stand the test of time.

Python Tools for Scientists (Sample Chapter) © 9/20/22 by Lee Vaughan

