
3
THE ATOMIC METHODOLOGY

This chapter dives deep into the atomic
purple teaming methodology, which allows

us to focus exclusively on the activities we
can detect. We’ll begin by considering the scope

of an atomic exercise and the inputs that could influ-
ence the test cases we choose to perform. From there,
we’ll generate an example test suite for the enumera-
tion of an Active Directory group.

Taking the defensive perspective, we’ll consider the data points we should
collect for each attack we execute. Each test case produces many metrics and
other supporting metadata we could capture, many of which depend on the
purpose of your exercise, so we’ll explore these too.

Finally, we’ll consider the practicalities of running a successful atomic
purple team, including the necessary prerequisites and the responsibilities
of the offensive, defensive, and administrative teams. We’ll also touch upon
micro-emulation, an adversary emulation methodology that seeks to address
some deficiencies of the atomic approach and provide a middle ground be-
tween it and a full scenario-based exercise.

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

Applications
In Chapter 11, we’ll spend some time considering the broader applications
of a purple team’s results and business outcomes across an organization’s
detection-and-response capability. For now, let’s consider atomic purple
teaming specifically, focusing on the questions we can answer with a well-
crafted exercise.

Performance Benchmarking
Atomic purple teaming is uniquely well suited to tracking how your detec-
tion capability changes from one exercise to the next. If you keep test cases
consistent across exercises, you can track progress over time to demonstrate
improvement or regression.

For example, atomic purple teaming can be a great means of showing
improvements in configurations; the hardening of endpoints, networks and
platforms; and investments made in new tools, log sources, or new rules.
You can also ticket test cases and directly reference them when making the
case for new log sources and rules (more on this in “Ticketing Systems” on
page 263).

While tracking progress in this way can be hugely valuable, also keep in
mind that adversary tradecraft is constantly evolving, and some test cases in
your exercises may become less relevant as time progresses.

Environmental Comparison
Because they’re self-contained, atomic purple teams are easy to repeat across
areas of an organization to provide insight into differences in each area’s
detection capability. This use is particularly relevant to larger, global organi-
zations that have less homogeneity across their systems and processes. For
example, atomic purple teams could highlight differences between regional
and headquarter offices, mergers and acquisitions, different system builds
(Windows 11 versus Windows Server, for instance), virtualized versus on-
premise builds, or different logging and monitoring arrangements.

As with performance benchmarking, ensure that the tests from one envi-
ronment remain relevant for another. If one testing area is a restricted desk-
top environment, you might want to understand the detection coverage for
attempted breakouts to the underlying server, which likely wouldn’t be rele-
vant in other locations.

Tooling Evaluation
Atomic purple teaming can also be used to evaluate existing or prospective
security tools. For example, a well-crafted test suite can highlight the relative
strengths and weaknesses of a various tools or particular configurations.

Your exercise may also reveal the number of tests for which a particular
security tool provided telemetry, alerting, and prevention. By focusing on
each specific tool in this dataset, you can quickly see the number of attack

60 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

techniques covered by a given tool, which can be particularly useful for iden-
tifying the most valuable elements of your detection toolset. If you procure a
new tool or ingest a new log source, rerunning an exercise can enable you to
quantify the impact of that investment.

Automation and Regression Testing
Atomic test cases often present prime candidates for automation, a topic
we’ll discuss in Part II. Automation makes it easy to repeat and scale your
purple teams across larger test suites and multiple environments, and en-
ables teams with less experience in offensive tradecraft to re-create attack
techniques for analysis.

Automation also presents a great opportunity to perform regression test-
ing, which involves regularly running test cases to ensure that capabilities
haven’t degraded because of unexpected changes or other external factors.
Applied to our detection capability, regular atomic purple team testing can
ensure that you’re still collecting logs where they should be collected, still
surfacing alerts, and continuing to block malicious activities.

In its most mature implementation, an automated solution could run
random or preselected atomic tests continuously; further automation could
validate that expected log entries and alerts are produced in the appropriate
systems.

Industry Comparison
For external vendors conducting atomic purple teams across various indus-
try sectors, the data produced by these exercises can provide interesting in-
sight into current trends. This broader view of multiple organizations’ log-
ging, alerting, and prevention can answer questions like the following:

• Which industry sectors perform best?

• How does a customer compare to its peers in the industry?

• Which Kill Chain phases are organizations most and least effective
at monitoring?

• Which security tools provide the best (and worst) coverage?

• Does security tool X produce an out-of-the-box (or custom) alert for
attack technique Y ?

This last point is likely of particular interest to the vendor’s red team but
can also be valuable to customers wanting to understand the coverage they
could reasonably expect from a current or future security solution based on
peers’ achievements.

Scoping and Dechaining
The Cyber Kill Chain covered in the preceding chapter conceives of an at-
tack as comprising several ordered steps an attacker must complete to meet

The Atomic Methodology 61

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

their objectives. An atomic purple team exercise breaks this end-to-end at-
tack chain into its individual techniques or procedures. This dechaining also
removes any dependency between one technique (or test case) and another.

Before you can dechain an attack, you must determine your exercise’s
scope. For example, you don’t necessarily have to consider the full chain
in your exercise. Take a look at Figure 3-1. In this attack chain, an adver-
sary sends an email attachment that uses HTML smuggling to deliver an ISO
disk image containing LNK and dynamic-link library (DLL) files. Many ran-
somware attackers have used variations of this attack chain.

TA0001
Initial access

TA0002
Execution

TA0007
Discovery

Figure 3-1: An example attack chain with initial access, execution, and discovery phases

Execution of the LNK file launches the DLL via Rundll32 (T1218.011),
which subsequently injects an implant into a Microsoft Word process. From
this point, an adversary can turn their attention to understanding the envi-
ronment they find themselves in through the enumeration of high-privileged
groups.

Your exercise could focus solely on one area of the attack chain, such
as one ATT&CK tactic, and enumerate the offensive activity at that stage.
For example, you might evaluate the various other means that an adver-
sary might use to conduct reconnaissance activities in the Discovery tactic
(TA0007). This might include evaluating the compromised system and its
installed applications, services, and user accounts, as well as its configured
system language (a commonly used guardrail to ensure that adversaries,
and their malware, don’t inadvertently target their own country of origin
or those of their allies; see T1614.001).

If you wanted to narrow the scope of your exercise even further, you
could focus on just one technique, then enumerate the procedures that
could be used to achieve it. Your exercise might simulate various means of
achieving process injection (T1055), consider other possible attachment for-
mats, or even just explore the numerous techniques for achieving HTML
smuggling that an adversary might use for phishing with an attachment
(T1566.001).

62 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

These exercises obviously have drastically different scopes, and you’ll
therefore draw different conclusions from their results. This flexible scoping
is a key benefit of the atomic purple teaming methodology, because it en-
ables you to tailor your exercise to the questions you want answered. For ex-
ample, which types of process injection does your EDR detect? Which forms
of HTML smuggling does your mail gateway prevent?

At the narrowest scopes, your exercises might involve just a handful of
test cases. Organizations still familiarizing themselves with this methodol-
ogy or looking for a quick turnaround to validate their exposure to a given
threat might find these smaller exercises more manageable.

Inputs
It’s important that you execute the right offensive activities to validate your
defenses. Let’s consider the sources you could use to devise your atomic
purple team test cases. While not exhaustive or prescriptive, your sources
could include threat intelligence and incident reports, offensive testing out-
puts, security tooling capabilities, and research.

Atomic test cases should help answer specific questions about the cur-
rent state of your organization’s detection capability, and it’s worth keeping
these goals in mind as you conceive of a test case. We’ll discuss these sources
in more detail in Part III, where we’ll consider planning purple teams more
broadly.

Threat Intelligence and Incident Reports
Digesting threat intelligence and understanding its relevance to the organi-
zation you’re defending is an entire discipline in itself. Threat intelligence
comes in many forms, but it largely falls into one of four high-level cate-
gories: strategic, operational, technical, and tactical.

Strategic intelligence provides a broader view of the current and future ac-
tivities of adversaries. It could include geopolitical or environmental trends,
as well as any predicted adversarial reaction to an organization’s business ac-
tivities. This helps inform executive stakeholders and is largely nontechnical
in nature.

Operational intelligence focuses on the nature of threat actors, including
their motivations and resultant objectives. This helps organizations identify
how, why, and by whom they might be targeted, as well as how they might
defend themselves, whether as victims of interest or victims of opportunity.

As we explored in “The Pyramid of Pain” on page 51, a detection stack
can ingest indicators of compromise (IoCs) to detect and prevent hashes,
domain names, IP addresses, sender email addresses, and more. While cru-
cial for detection and response, this technical intelligence is less useful from an
emulation perspective.

This leaves the last category, tactical intelligence, which focuses on the
top levels of the pyramid, such as file and network artifacts, tools, and TTPs.
You’ll find it most useful to acquire details of adversaries’ procedural-level

The Atomic Methodology 63

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

activity, which will allow you to plan and execute a faithful re-creation of ad-
versary tradecraft and gain the most accurate understanding of your defen-
sive resilience to it.

Based on your organization’s maturity and the resources available, you
might be privy to both public and privileged sources of threat intelligence.
You may also be a member of an Information Sharing and Analysis Center
(ISAC), which can provide great sources of threat intelligence relevant to
your industry.

If you must rely on only public sources, you should still find them more
than sufficient for emulation material. One notable provider of threat in-
telligence is the DFIR Report, an organization that publishes high-quality
write-ups of adversary activity, including detailed procedures perfect for em-
ulation.

One thing to bear in mind as you’re devising atomic test cases is the tem-
porality of threat intelligence. Tradecraft evolves, and what occurs in one
documented intrusion might not always reflect an adversary’s arsenal at a
later date.

Offensive Testing Outputs
Many organizations conduct offensive testing as a key part of their security
strategy, whether that includes covert red team exercises, assumed breaches,
or purple team engagements. No matter the format, these exercises always
highlight defensive deficiencies. Rather than waiting for the next regularly
scheduled engagement to check whether you’ve remediated these deficien-
cies, you could feed them directly into atomic purple team exercises to vali-
date your new detections or preventative measures.

Further, if your organization’s ability to digest threat intelligence and
keep tabs on general trends in offensive tradecraft isn’t very mature, lever-
aging the insight of external offensive practitioners and the techniques they
use could be invaluable.

Security Tooling Capabilities
Developing an exercise based on the capabilities of your security tooling
is an approach uniquely applicable to atomic purple teaming. Using this
method, you’ll digest the attack coverage that one or more security tools
should provide and develop test cases to independently validate these in
your environment.

The point isn’t just to confirm you’re getting what you paid for; all man-
ner of deployment and implementation issues could present themselves,
many of which would go unnoticed unless tested for. As an example, say you
use a solution that detects identity-based Active Directory attacks. You might
include test cases for Kerberos abuse through permutations of techniques
like Kerberoasting (T1558.003), Overpass-the-Hash (T1550.002), Golden
Tickets (T1558.001), and so on.

Such engagements could produce all kinds of interesting outcomes, in-
cluding any undocumented edge cases the tools may have and any configura-

64 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

tion issues that you could remediate to improve performance. Notably, how-
ever, these tests rely on knowledge of your environment or domain to under-
stand the problem space and the possible or relevant attack techniques. If
your organization doesn’t possess this knowledge internally, you may require
a third party to conduct this test for you.

Research
Talented members of the information security community publish an in-
credible amount of research that advances the field’s offensive and defensive
disciplines. For example, research could highlight new methods to evade
existing Windows endpoint defenses through techniques like Event Trac-
ing for Windows (ETW) tampering, direct or indirect syscalls, and call-stack
spoofing. Or the research could detail how specific platforms and technolo-
gies used in your organization could hypothetically be attacked and sub-
sequently defended. For examples, take a look at Will Schroeder and Lee
Chagolla-Christensen’s Active Directory Certificate Services research or
Adam Chester’s research into the identity provider Okta, included in this
chapter’s resources.

You could distill this research content into a series of test cases that vali-
date your defensive posture against the attacks outlined. If you’re fortunate
enough to have an internal research capability, you could use it as the input
for your purple team exercises, though this may require a relatively high de-
gree of offensive proficiency to carry out (and an even greater proficiency to
produce the research in the first place).

Generating Test Cases
Now that you’ve considered the scope of your exercise and chosen an input
source, you can turn your attention to test-case generation. In this section,
we’ll walk through an example that focuses on the last stage of the attack
chain shown previously in Figure 3-1, and consider how adversaries might
discover members of the privileged Active Directory group Domain Admins
(T1069.002).

Domain Admins is a common target for adversaries, who could uncover
its members in several ways. A nonexhaustive list might include net.exe binary
usage, PowerShell scripting, a third-party application (such as AdFind), and
in-memory tooling. Let’s consider each of these tools, including how and why
we might include them in a purple team exercise. We won’t go into too much
depth on detection methods here, as we’ll save this topic for Part II.

net.exe
The net command is a built-in utility in Windows that, among other features,
enables the enumeration of local and domain users and groups. Because it
is present on the operating system by default (at C:\Windows\System32\net.exe),
it doesn’t require an adversary to install or download any additional files. It’s

The Atomic Methodology 65

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

also regularly used in legitimate administrative activity and automation. Re-
viewing the technique in ATT&CK, you can see procedure permutations
drawn from an array of threat actors, including Turla and FIN7. net is also
included in the Conti playbook mentioned in the previous chapter.

An attacker might run the tool with the following command line argu-
ments to enumerate members of the Domain Admins group:

net group "domain admins" /domain

net group "domain admins" /dom

net group /domain "domain admins"

The first example uses the basic command syntax, while the second
shortens the /domain flag and the third reorders the command line argu-
ments. When run, these commands ultimately produce the same result.

An attacker could also take advantage of endless obfuscation opportu-
nities. (You might even want to evaluate these in a separate exercise specific
to obfuscation techniques.) The following obfuscated version of this com-
mand uses an environment variable to save the Domain Admins group name
before referencing it in a net command padded with caret (^) symbols:

Set GROUP= "Domain Admins"

n^e^t g^r^o^u^p %GROUP% /d^o

In terms of detection, here is an excerpt from a Sigma rule for general
domain group reconnaissance (a link to this rule is provided in this chapter’s
resources):

title: Suspicious Group And Account Reconnaissance Activity Using Net.EXE

id: d95de845-b83c-4a9a-8a6a-4fc802ebf6c0

status: experimental

description: Detects suspicious reconnaissance command line activity on

Windows systems using Net.EXE

author: Florian Roth (Nextron Systems), omkar72, @svch0st, Nasreddine

Bencherchali (Nextron Systems)

--snip--

logsource:

category: process_creation

product: windows

detection:

¶ selection_img:

- Image|endswith:

- '\net.exe'

- '\net1.exe'

- OriginalFileName:

- 'net.exe'

- 'net1.exe'

selection_group_root:

CommandLine|contains:

· - ' group '

66 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

- ' localgroup '

selection_group_flags:

CommandLine|contains:

¸ - 'domain admins'

- ' administrator'

- ' administrateur'

- 'enterprise admins'

- 'Exchange Trusted Subsystem'

- 'Remote Desktop Users'

- 'Utilisateurs du Bureau à distance'

- 'Usuarios de escritorio remoto'

¹ - ' /do'

filter_group_add:

CommandLine|contains: ' /add'

selection_accounts_root:

CommandLine|contains: ' accounts '

selection_accounts_flags:

CommandLine|contains: ' /do'

condition: selection_img and ((all of selection_group_* and not

filter_group_add) or all of selection_accounts_*)

--snip--

This detection checks for processes being created from certain executa-
bles (namely, net.exe and net1.exe ¶), as well as the use of specific command
line arguments, at ·, ¸, and ¹. Recalling the pseudocode representation
of detection logic in MITRE’s Cyber Analytics Repository in the preceding
chapter, this content will likely be familiar. You’ll learn more about Sigma in
Chapter 7.

While iterating through these procedure permutations might seem like
making menial variations of the same command, certain versions might
evade detection rules that the others do not.

PowerShell
Offensive uses of PowerShell became incredibly popular in the mid-2010s,
in part because of a lack of defensive technologies available to inspect such
activity. PowerShell offers many advantages to attackers, including the ability
to operate in-memory with “fileless” malware and leverage a wide array of
.NET framework APIs to interact with the Windows operating system.

Too many excellent PowerShell tools and frameworks exist to list here,
but some notable ones include the following:

PowerShell Empire A fully featured command-and-control frame-
work that includes encrypted communications and numerous post-
exploitation features, such as keylogging and screenshot capture

PowerSploit A collection of PowerShell modules for implementing
attack techniques across the Cyber Kill Chain, including reconnaissance,
persistence, privilege escalation, and more

The Atomic Methodology 67

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

Nishang A collection of offensive PowerShell modules that includes
techniques for payload creation in a variety of formats, lateral move-
ment, and credential access

To enumerate members of the Domain Admins group, you could exe-
cute the following PowerShell commands:

¶ $Group = [ADSI]"LDAP://CN=Domain Admins,CN=Users,DC=Contoso,DC=com"

· $Group.member | ForEach-Object {

$Searcher = [adsisearcher]"(distinguishedname=$_)"

¸ $Searcher.FindOne().Properties.cn

}

This short script creates an Active Directory Service Interfaces (ADSI)
object that targets the Domain Admins group based on its distinguishedName
attribute, CN=Domain Admins,CN=Users,DC=Contoso,DC=com ¶. Then, it iterates over
the group’s members · and prints out their common name attributes ¸.

If you install the Active Directory PowerShell module, you might also
run the following cmdlet:

Get-ADGroupMember -Identity "Domain Admins"

Finally, by leveraging the PowerSploit framework mentioned earlier, you
could use its PowerView script, as threat actors have done in the past:

Get-DomainGroupMember "Domain Admins"

In recent years, Windows has implemented the Antimalware Scan Inter-
face (AMSI) and logging mechanisms like script block logging to detect and
prevent PowerShell-based malware.

AdFind
As an alternative to using native software like net commands or PowerShell,
adversaries could download additional tools to get the job done. As we saw
in ATT&CK’s software category, this could include malware developed ex-
plicitly for nefarious use, or a legitimate tool the threat actor has repur-
posed.

A prime example of the latter is the free Active Directory query utility
AdFind. A myriad of threat actors have used the command line tool (see
S0552), to the extent that some antivirus products now flag it as malicious.

We could use AdFind to perform Domain Admin reconnaissance with
the following command:

AdFind.exe -b "CN=Domain Admins, CN=Users, DC=Contoso, DC=com" member

Note the use of the same distinguishedName value from the PowerShell
ADSI example.

68 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

In-Memory Tools
Finally, we could explore procedures that use the feature sets of command-
and-control frameworks to execute domain reconnaissance. As defensive
improvements reduced the viability and popularity of PowerShell tradecraft,
alternative means of executing post-exploitation tradecraft have risen to the
fore. Here are three of the most notable alternatives: reflective DLL injec-
tion, in-memory .NET execution (often simply referred to by its command
alias in Cobalt Strike, execute-assembly), and Beacon Object Files (BOFs).

While Cobalt Strike arguably popularized the latter two initially, today
the features exist in numerous command-and-control frameworks, which
allow you to use all manner of tools and scripts on a compromised host. In
relation to the Domain Admins reconnaissance, examples might include the
following:

• The use of the Outflank Recon-AD tool as a reflective DLL

• The in-memory execution of Ruben Boonen’s .NET tool StandIn

• The execution of the ldapsearch BOF from the TrustedSec Situa-
tional Awareness BOFs collection

Yet another alternative might be the deployment of a SOCKS proxy
through an existing command-and-control channel, through which network
traffic from a local tool, like the Impacket net.py script, may be tunneled.

Evaluating Test Suites
Once you’ve captured your test cases, you can aggregate these into a test
suite, such as the one shown in Table 3-1. This test suite highlights several
ways that you could perform the relatively simple task of retrieving the mem-
bers of the Domain Admins group (and shows you how wildly different these
procedures can be). This variation should demonstrate why creating a detec-
tion to cover one procedure doesn’t mitigate the entire ATT&CK technique.

The Atomic Methodology 69

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

Table 3-1: A Test Suite to Enumerate Members of the Domain Admins Group

Test name Command Type
A basic net
command

net group "Domain Admins" /domain net

A net com-
mand with a
shortened do-
main flag

net group "domain admins" /dom net

A net com-
mand with a
reordered flag

net group /domain "domain admins" net

An obfuscated
net command

set GROUP="Domain Admins"

n^e^t g^r^o^u^p %GROUP% /d^o
net

An ADSI
searcher script

$Group = [ADSI]"LDAP://CN=Domain Admins, CN=Users,

DC=Contoso,DC=com"

$Group.member | ForEach-Object {

$Searcher = [adsisearcher]"(distinguishedname=$_)"

$Searcher.FindOne().Properties.cn

}

PowerShell

An RSAT Ac-
tive Directory
cmdlet

Get-ADGroupMember -Identity "Domain Admins" PowerShell

A PowerView
command

Get-DomainGroupMember "Domain Admins" PowerShell

An AdFind
command

AdFind.exe -b "CN=Domain Admins, CN=Users,

DC=Contoso, DC=com" member
AdFind

The use of
StandIn

execute-assembly /tools/StandIn.exe --group

"Domain Admins"
In-memory
.NET exe-
cution

The use of
ldapsearch

ldapsearch "CN=Domain Admins" member BOF

The use of
Recon-AD

Recon-AD-Groups Domain Admins Reflective
DLL

The use of
SOCKS with
Impacket
net.py

socks 8080 (on Cobalt Strike beacon)
proxychains python net.py user:pass@dc group -name

“Domain Admins” (on attacker host command line)

SOCKS
and Im-
packet

While you’ve collected a pretty varied list of procedures at this stage,
you’ve no doubt left out a multitude of other tools and scripts. So, you might
now want to evaluate your coverage by considering tool and command per-
mutations used by relevant threat actors or red teams, as well as procedures
presented by new offensive research.

70 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

Capability Abstraction
A great way to triage new tools and procedures for inclusion in your pur-
ple team exercises is by applying Jared Atkinson’s capability abstraction. This
concept highlights that although the numerous offensive tools that could be
used for a task may use different coding languages and have different ways
of executing, they often overlap in the fundamental ways they achieve their
capabilities.

An example in our case study might be the use of net commands and
the SOCKS-tunnel Impacket net.py. While these attacks use completely dif-
ferent means of execution, both achieve Active Directory enumeration through
requests made to domain controllers by using the Security Account Manager
Remote protocol (SAMR). If you develop a detection capability at the net-
work level or via agents deployed on domain controllers, the attacker’s man-
ner of employing the technique on the endpoint makes little difference to
your ability to detect the requests being made.

A similar overlap exists with test cases like the ADSI searcher PowerShell
command and the use of StandIn, both of which use the .NET framework
as well as classes and functions in the System.DirectoryServices namespace to
send Lightweight Directory Access Protocol (LDAP) queries to a domain
controller.

This overlap between tools and techniques has both offensive and defen-
sive implications. From an offensive perspective, if you’re striving to com-
prehensively evaluate your detection coverage for the reconnaissance of do-
main group members, you should be aware that the use of a different tool
doesn’t necessarily correspond to a different action taking place, though
each may introduce tool-specific artifacts (like predictable files, hashes, and
user agents).

From a defensive perspective, capability abstraction might sound a lot
like the Pyramid of Pain. Depending upon where in the pyramid you’ve
developed your detections, attackers may be able to evade these by simply
changing their tool, while detections for the LDAP- or SAMR-based requests
might present a bottleneck that requires attackers to change their funda-
mental technique. Thus, it’s worth keeping capability abstraction in mind
when developing your test suites.

Similarly, the ever-present challenge remains of reducing false positives
and more accurately determining malicious intent. If our detection logic for
Domain Admins group enumeration operates at a network level, we might
lack the ability to discern actions performed as part of legitimate administra-
tive activity from commands spawned from an established implant.

Attack Sophistication
Another point to bear in mind is the relative sophistication of the offensive
procedures you’re evaluating. With the numerous ways that a given tech-
nique can materialize, some are undoubtedly simpler to execute than others.

As an exercise, try taking the four test-case focus areas we’ve considered
and plotting them onto a pyramid of sophistication, as shown in Figure 3-

The Atomic Methodology 71

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

2, where the prevalence of the procedure decreases as the sophistication
increases.

In-memory

AdFind

PowerShell

Net.exe commands

Procedure prevalence

Procedure
sophistication

Figure 3-2: Attack techniques arranged in a pyramid of sophistication and prevalence

Based on your experience, you might disagree with the ordering of the
pyramid. Still, it should allow you to take away a few key points.

First, the ability to detect a procedure at the top layer of the pyramid
doesn’t guarantee that you’ve adequately covered the procedures beneath it.
This is a basic tenet of layered detection, or detection in depth, and highlights
the necessity for detection across multiple layers of the Pyramid of Pain.

Second, you’re less likely to detect the higher sophistication attacks,
which might explain why they’re considered less prevalent. By contrast,
you’ll find countless threat actor examples of net commands used for recon-
naissance. A red teamer might scoff at using these latter procedures in an
exercise, but having validated coverage for all activities is essential for com-
prehensive coverage.

Data to Capture
Before you execute your suite of atomic tests, consider the key data points
you’ll want to gather about each attack you launch. There isn’t a prescriptive
way to do this, but in my experience, the three most important data points
are telemetry, alerting, and prevention.

Put simply, you should ask yourself the following: Are there logs for the
activity? Did it trigger an alert? And finally, was the activity blocked? Often
you’ll find it hard to answer these questions with a binary yes or no and may
instead require more nuance. Further, when you start considering the busi-

72 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

ness applications for the data you collect, you’ll likely come up with other
data points to take into account. For example, you may want to record which
security tools or event sources performed the logging, alerting, or block-
ing of a given test case so you can understand which parts of your detection
stack are most or least useful.

Either the offensive team or the defensive party can capture the results,
depending on the exercise’s structure and available expertise. Generally,
however, the ideal arrangement is for the defensive team to interrogate its
own data. This task offers a valuable experience for analysts, who many en-
counter alerts or hunt for data points they don’t see every day.

Nonetheless, I’ve been part of numerous purple team exercises that pro-
vision the offensive team with access to detection platforms and task them
with capturing the results themselves, particularly in the case of external
vendor exercises. This is most common when the SOC or monitoring team
lacks the knowledge or bandwidth to facilitate results capture.

While we won’t discuss it in detail here, the DeTT&CT framework men-
tioned in Chapter 2 offers one way of standardizing the scoring of data and
detection quality. In Chapter 11, we’ll use VECTR, a great way to capture
these results.

Telemetry
When determining whether telemetry exists for a given test case, you should
evaluate two key attributes: whether the log is of high fidelity and whether
the log is centralized.

In this context, fidelity refers to whether the telemetry provides an ac-
curate and complete representation of the attack that has taken place. De-
pending on the nature of the test case, this could be a log of network con-
nections made, commands executed, or resources accessed. Fidelity can vary
significantly depending on the log source and attack in question. Ultimately,
you’ll need to use your judgment (or that of the defensive team) to deter-
mine whether the logs available detail who did what and when.

Log centralization refers to the aggregation of security events such that
monitoring teams have access to them and could turn them into alerts (if
these don’t already exist). If attack activity took place on a corporate work-
station, for example, security tools like System Monitor (Sysmon) might cap-
ture rich telemetry about the commands being executed. However, if these
logs aren’t forwarded to a centralized location and queried by analysts, you’d
have no indication that an attack was taking place.

Log centralization doesn’t necessarily mean that every log gets ingested
into a single system, just that they’re all available to the monitoring team. Be-
cause EDR solutions generate significant amounts of data and typically have
their own log storage and querying capabilities, it’s common to see some or
all of this data kept separately from the other logs ingested into a SIEM plat-
form.

Another consideration is the timeliness of these logs. If a log arrives
several hours after the attack has taken place, you could argue that it’s too

The Atomic Methodology 73

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

late for that log to be actionable and that the answer to “Are there logs for
this activity?” is “No.”

Alerts
The attributes of fidelity and centralization apply to alerting too, whether
you’re evaluating an out-of-the-box security solution or custom detection
logic. In terms of fidelity, alerts firing as a result of a test-case execution and
alerts that correctly notify the SOC of the activity performed aren’t neces-
sarily the same thing. Be on the lookout for alerts that are ambiguous or
mislabeled.

Another element to consider is which aspect of the attack the alert is
detecting. Say you’re testing an executable that is uploaded to an endpoint
and used to perform password spraying (T1110.003). If an alert fires for a
suspicious file in the environment with no mention of password spraying or
other indication of its malicious use, does that constitute an actionable alert
for this test case?

To answer this question, consider the Pyramid of Pain and capability ab-
straction. If a relevant threat actor uses the same executable, this alert gives
us the valuable insight that we’d likely detect its use based on a hash or sig-
nature. But if we want to inflict the greatest pain on adversaries, we should
also develop detections that focus on the password-spraying technique itself,
regardless of the specific tool used to achieve it.

It’s worth bearing in mind that atomic purple teaming doesn’t cater well
to some methods of detection and alerting. Scheduled scans, such as those
performed by EDRs to look for suspicious memory artifacts, can be resource
intensive and may run only periodically. If your test cases include variations
of process injection that install a persistent agent in memory, they might
bypass point-in-time alerting but be picked up later by one of these scans.
Returning to the concept of timeliness, you’d have to decide how to account
for these alerts in your results.

Detection methods such as risk scoring, detection aggregation, and
user and entity behavior analytics (UEBA) also pose problems for this style
of purple teaming. You’ve intentionally sacrificed the realism and typical
chronology of an attack chain to execute atomic test cases, performing tech-
niques out of order or running through many permutations of a given tech-
nique when an adversary might perform only one. For detection systems
that aggregate alerts or analyze pattern-of-life, this high volume of rapid-fire
test cases could artificially light up the platforms like a Christmas tree. As a
result, the tools might scrutinize offensive techniques performed later in the
exercise far more closely than they otherwise would.

If this situation arises, you could ignore this aspect of the detection stack
and focus on the logs and alerts that fire from other systems. Otherwise, you
should abandon the atomic approach entirely and perform the exercise in a
scenario or micro-emulation-based format instead.

74 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

Prevention
Ideally, you’ll be able to prevent the attacks you emulate in your tests. Re-
stricting what an adversary can do at each stage of their attack chain reduces
your attack surface, not to mention playing a part in reducing the volume of
alerts for the SOC to investigate.

In this context, prevention can occur directly or indirectly. For example,
if you run test cases on an endpoint, an antivirus or EDR solution might di-
rectly prevent the offensive activity. A matched file hash, signature, or some
behavioral logic might lead the security solution to take direct action against
you—for example, blocking your activity or terminating the process that at-
tempted to perform it.

Indirect prevention could occur as a result of hardened endpoints, net-
works, or other platforms to preclude the possibility of carrying out the
offensive activity. Generally, this occurs as the result of a broader attack-
surface reduction strategy and not as a targeted response to the test-case
activity.

Good examples of this include the following:

• Network segmentation that restricts connectivity between neighbor-
ing hosts or network zones, inhibiting discovery activity or lateral
movement

• Endpoint solutions such as Windows Defender Application Control,
which dictate the applications and code that can run, and in which
scenarios

As when categorizing alerts, you can classify preventative measures ac-
cording to the levels of the Pyramid of Pain, with antivirus blocking a spe-
cific tool or file, and comprehensive network segmentation preventing lat-
eral movement techniques regardless of the tools chosen.

Execution
Having developed an atomic test suite that meets your needs, you can turn
your attention to the practicalities of planning and carrying out the exercise.
In this section, we’ll consider the activities that need to take place prior to
executing your attacks, and the metadata that could be captured for future
analysis.

We’ll consider the key elements to a well-planned purple team exercise
more broadly in Chapter 12.

Preparing Defenses
More than once, I’ve happily worked my way through a suite of test cases
only for the SOC to notify me that an incorrectly provisioned endpoint agent
sent no logs to the SIEM. For this reason, it’s always worth double-checking
that you’ve properly configured all relevant security solutions. Make sure
your EDR and antivirus agents are up-to-date with the latest rules, signa-

The Atomic Methodology 75

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

tures, and appropriate policies, and check that logs are being forwarded to
the proper locations.

A simple way to perform a preflight check is to drop an EICAR file to
disk. Developed by the European Institute for Computer Antivirus Research
(EICAR) and the Computer Antivirus Research Organization (CARO), an
EICAR file is a benign file intentionally signatured by antivirus vendors, pro-
viding a safe way to test that systems are operational without requiring an
end user to handle true malware. Some vendors also have their own, custom
behavioral or file-based signatures that you might want to leverage to con-
firm you’re all set. Naturally, any issues that arise from these checks could
be findings in their own right!

If you’ve provisioned some allowlisting to facilitate testing, you should
validate it at this stage too. This could include confirming that your command-
and-control channels were added to web proxies and that antivirus exclu-
sions were put in place for any tools you intend to use.

Ordering Test Cases
As we’ve already explored, the self-contained nature of atomic test cases
means you generally don’t have to execute them in any specific order. If
you’re performing a test suite that covers various ATT&CK tactics or Kill
Chain phases, you might want to group test cases in these ways. Alterna-
tively, if you’re executing a mix of test cases through one or more command-
and-control channels on a host, you might want to group by channel so you’re
not jumping between different systems.

External requirements might also influence your test-case ordering. For
instance, certain systems and platforms (or the teams that manage them)
may be available for specific periods only. The SOC might have preferences
too, and you could reduce the number of times defenders must switch se-
curity platforms if you group tests in a certain way. For example, you could
focus on initial access tests that traverse the same mail gateways or lateral
movement tests that a network monitoring solution should pick up.

If you’re performing your test cases on more than one host for compari-
son purposes, it might make sense to run each test on all relevant platforms
before moving onto the next.

Capturing Metadata
Once you’ve ordered your test cases, you can begin testing. As you progress
through your test suite, it’s important to accurately track your activities—
not just to capture the exercise’s results but also to easily resolve any queries
or issues. Someone might want to know who executed a given test case or
which tool you used at a given time. Let’s consider the metadata you might
want to capture in addition to the telemetry, alerting, and prevention statis-
tics we spoke about earlier:

• Who ran the test (the name of an individual, a username, or an-
other identity)

76 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

• The hostname from which the test was executed, or another iden-
tifying ID, such as the Amazon Resource Name (ARN) of an AWS
resource

• The targeted assets (for example, a neighboring host targeted for a
port scan)

• The specific commands or tools run, including command line argu-
ments, file hashes, and web API calls made

• The outcome of the test from the attacker’s perspective, which can
be useful for validating the SOC’s understanding of events

You could capture these results as you complete each test case or asyn-
chronously, to fit the availability of the SOC.

Plotting Results
By plotting telemetry, alerting, and prevention scores on a graph, as in Fig-
ure 3-3, you can understand your coverage and better fill any gaps. Depend-
ing on the scope of the exercise, you might want to create a graph for each
Kill Chain phase, ATT&CK tactic, or defensive control, or as an overall eval-
uation.

Telemetry

AlertingPrevention

Figure 3-3: Atomic purple team results plotted with a strong telemetry score

This graph shows strong telemetry coverage but little in the way of alert-
ing and prevention, suggesting that the building blocks to develop alerts
exist but haven’t yet been operationalized. Results like this are common
from an immature SOC. The organization might have invested heavily in
its logging infrastructure but not yet capitalized on the resultant data, or
else it lacks the necessary awareness of offensive tradecraft or detection en-

The Atomic Methodology 77

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

gineering. There could also be a deficiency in tooling that prevents custom
rules from being developed or a contractual arrangement with an MSSP that
leaves management of alerts to a third party.

Figure 3-4 shows an alternative outcome. It reveals a strong preventative
performance but deficiency in both telemetry and alerting.

Telemetry

AlertingPrevention

Figure 3-4: Atomic purple team with a strong prevention score

Such an environment may restrict the techniques an adversary can suc-
cessfully employ, but at the same time, little of their activity will alert the
SOC to their presence. I’ve typically come across results like these in purpose-
built environments, such as cloud workloads that have implemented princi-
ples of least privilege and good network design but few detections.

You could also plot the three values across each attack phase, as in Fig-
ure 3-5.

78 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

Pe
rc

en
ta

g
e

te
st

 c
a
se

 c
o
ve

ra
g
e

0

25

50

75

100

Telemetry

Alerting

Prevention

Initial
access

Execution Persistence Privilege
escalation

Credential
access

Discovery Lateral
movement

Figure 3-5: Atomic purple team results plotted on a graph across multiple ATT&CK tactics

Now you can see that the environment has good telemetry and preven-
tion coverage for initial access (potentially the result of well-configured web
and mail gateways) and strong alerting for execution and credential access,
but reduced scores for persistence and discovery. Telemetry remains gener-
ally strong throughout the attack chain.

When you evaluate results in this way, however, you might not be able
to easily see the places where you’re failing to detect and prevent test cases
for known adversary techniques. Comparing the percentage of coverage of
the telemetry and alerting allows you to determine the residual alerting po-
tential for a given attack-chain phase. Using the same exercise results as in
Figure 3-5, you could plot a subset of attack-chain phases in the alternative
way shown in Figure 3-6. Here, you can clearly see the difference between
telemetry and alerting at each stage.

The Atomic Methodology 79

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

Pe
rc

en
ta

g
e

te
st

 c
a
se

 c
o
ve

ra
g
e

0

25

50

75

100

Initial access Execution Persistence Discovery

Telemetry Alerting

90%
alerting
potential

20%
alerting
potential

30%
alerting
potential

50%
alerting
potential

Figure 3-6: Capturing the alerting potential

In some cases, these gaps represent opportunities to improve alerting
and get more from the high-fidelity telemetry you already have, though if
you have telemetry coverage for only 60 percent of test cases (as in the case
for the persistence phase in Figure 3-6), you’ll likely need to find additional
log sources to increase this percentage before you can substantially improve
your alerting potential.

Realizing alerting potential has two other challenges. First, you can’t
always translate telemetry into alerts. Consider the use of AdFind in the test-
case generation we discussed earlier. It’s relatively easy to develop rules for
the AdFind executable and its command line usage, but if AdFind is used
ubiquitously by IT admins across your environment, you might not have the
ability to discern malicious usage from legitimate ones.

The second and arguably most important challenge is the need to prior-
itize alerts. One of the most dangerous traps to get into when atomic purple
teaming is adopting a “Whac-a-Mole” mindset when it comes to remediation.
For example, Figure 3-6 shows that the most significant alerting potential
exists in the Initial Access phase, but it’s probably not feasible for the SOC
to receive and triage an alert for every inbound email, web download of a
blocked file type, or matched antivirus signature.

Similarly, compare an alert for the whoami command with the detection
of a DCSync attack (T1003.006). While the former has applications for de-
tecting privilege escalation or web-shell activity, detection of the latter (as
we’ll explore in Chapter 10) would likely be of the highest priority to a SOC
monitoring an Active Directory environment.

The key takeaway is that your test suites are rarely “completable” when
it comes to telemetry and alerting. The SOC’s mandate is to detect every at-
tack, not every technique, and setting objectives to maximize alert coverage
can be detrimental to the SOC’s overall performance (more on this in “Key
Performance Indicators” on page 300).

80 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

Micro-Emulation
We’ve highlighted a key shortcoming of the atomic purple teaming approach:
its inability to properly test some forms of alerting logic, including alerts
that result from multiple actions happening in a specific sequence and time
frame. To test these detections, we need to execute multistep attacks, though
we don’t necessarily need to proceed through an entire attack chain. In
other words, we need something between an atomic and a scenario-based
exercise.

In 2022, the Center for Thread-Informed Defense (CTID) and several
industry partners published the details of an alternative purple teaming
methodology called micro-emulation. This methodology aims to get the best
of both worlds by providing compound behaviors that test detections for
multistep activities while remaining easily automated and low effort for teams
to perform.

Upon release, CTID provided nine micro-emulation plans that orga-
nizations could immediately carry out in their own environments. These
plans targeted a range of notable adversary behaviors, including the follow-
ing (links can be found in this chapter’s resources):

• Web-shell usage

• Fork-and-run (a popular execution technique used by C2 frame-
works, such as Cobalt Strike)

• Active Directory enumeration

• Launch of a payload delivered via phishing

Considering the last entry here as an example, this emulation plan au-
tomates the mounting of an ISO disk image on an endpoint, which is then
followed by the execution of a script file stored within it.

Use of container formats like ISOs has historically been a popular choice
for several malware strains, including IcedID, QakBot, and Bumblebee (more
info can be found in the links in this chapter’s resources).

Historically, disk image files were of particular interest for malware de-
livery because the Mark of the Web (MotW, T1553.005) was being improp-
erly applied to their contents. This bypassed several built-in Windows pro-
tections that would have otherwise impeded malware infection—something
that Microsoft patched in late 2022.

From a detection perspective, this emulation plan enables the evaluation
of alerting that triggers upon script content being launched from a mounted
disk image.

Wrapping Up
This chapter introduced the first of the test methodologies covered in this
book: atomic purple teaming. You explored how to deconstruct end-to-end
attack chains to develop, validate, and maintain detection coverage at each
stage.

The Atomic Methodology 81

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

The versatility of atomic purple teaming means you don’t have to stop
there, though. A broad range of sources could serve as inputs to help shape
your exercises, enabling you to develop test suites that focus on specific secu-
rity tools, research, or the outputs of other offensive testing.

To demonstrate this, we developed an example test suite focusing exclu-
sively on the enumeration of the Active Directory Domain Admins group
(T1069.002), including tests using native commands, PowerShell, third-party
tools, and command-and-control frameworks. Throughout this process, we
saw how concepts like capability abstraction and the Pyramid of Pain inter-
act to inform the way we think about test cases.

Atomic purple teaming can provide a host of useful data points, the
most important being which attacks were logged, alerted upon, and pre-
vented. In this chapter, we also considered other metadata, like who exe-
cuted the test case and the specific commands run—all useful information
for the SOC when trying to find evidence of the activity.

We then stepped through some of the practicalities of organizing and
conducting atomic purple teams, including the relevant approvals, collabora-
tion between teams, and checks for ensuring that exercises run as smoothly
as possible. Finally, we looked at analyzing results data to highlight certain
elements of detective capability, like alerting potential, and apply our find-
ings to performance benchmarking, tracking return on investment, and
comparing security tools.

Resources
Abrams, Lawrence. “Microsoft Fixes Windows Zero-Day Bug Exploited
to Push Malware.” BleepingComputer, November 22, 2022. https://www
.bleepingcomputer.com/news/microsoft/microsoft-fixes-windows-zero-day-bug
-exploited-to-push-malware/. An article covering Microsoft’s patch of the
Mark of the Web bypass for ISO disk images.

Atkinson, Jared. “Capability Abstraction.” SpecterOps, Feb 6, 2020.
https://posts.specterops.io/capability-abstraction-fbeaeeb26384. Introducing
the concept of capability abstraction.

Australian Signals Directorate. “Detect and Prevent Web Shell Malware.”
June 9, 2020. https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/
CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF.
Guidance on the detection and prevention of web shell malware.

Bohannon, Daniel. “DOSfuscation: Exploring the Depths of cmd.exe
Obfuscation and Detection Techniques.” Mandiant, 2018. https://cloud
.google.com/blog/topics/threat-intelligence/dosfuscation-exploring-obfuscation
-and-detection-techniques/. Examples of command line obfuscation tech-
niques.

Center for Internet Security. “Surge of QakBot Activity Using Malspam,
Malicious XLSB Files.” Accessed January 12, 2025. https://www.cisecurity
.org/insights/blog/surge-of-qakbot-activity-using-malspam-malicious-xlsb-files.

82 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

https://www.bleepingcomputer.com/news/microsoft/microsoft-fixes-windows-zero-day-bug-exploited-to-push-malware/
https://www.bleepingcomputer.com/news/microsoft/microsoft-fixes-windows-zero-day-bug-exploited-to-push-malware/
https://www.bleepingcomputer.com/news/microsoft/microsoft-fixes-windows-zero-day-bug-exploited-to-push-malware/
https://posts.specterops.io/capability-abstraction-fbeaeeb26384
https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF
https://media.defense.gov/2020/Jun/09/2002313081/-1/-1/0/CSI-DETECT-AND-PREVENT-WEB-SHELL-MALWARE-20200422.PDF
https://cloud.google.com/blog/topics/threat-intelligence/dosfuscation-exploring-obfuscation-and-detection-techniques/
https://cloud.google.com/blog/topics/threat-intelligence/dosfuscation-exploring-obfuscation-and-detection-techniques/
https://cloud.google.com/blog/topics/threat-intelligence/dosfuscation-exploring-obfuscation-and-detection-techniques/
https://www.cisecurity.org/insights/blog/surge-of-qakbot-activity-using-malspam-malicious-xlsb-files
https://www.cisecurity.org/insights/blog/surge-of-qakbot-activity-using-malspam-malicious-xlsb-files

Another example of a disk-image-based initial compromise to deliver
QakBot malware.

Center for Threat-Informed Defense. “Micro Emulation Plan: Active
Directory Enumeration.” GitHub. Accessed January 12, 2025. https://
github.com/center-for-threat-informed-defense/adversary_emulation_library/
tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/
src/ad_enum. A micro-emulation plan replicating Active Directory enu-
meration through LDAP queries, Windows APIs, and built-in executa-
bles.

Center for Threat-Informed Defense. “Micro Emulation Plan: Named
Pipes.” GitHub. Accessed January 12, 2025. https://github.com/center-for-
threat-informed-defense/adversary_emulation_library/tree/9786a3297c855
ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/named_pipes. A
micro-emulation plan replicating the popular C2 framework technique
fork-and-run.

Center for Threat-Informed Defense. “Micro Emulation Plan: User Ex-
ecution.” GitHub. Accessed January 12, 2025. https://github.com/center-
for-threat-informed-defense/adversary_emulation_library/blob/9786a3297c855
ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/user_execution/
README_user_execution.md.A micro-emulation plan replicating user-
driven execution of an initial access payload that could be delivered via
phishing.

Center for Threat-Informed Defense. “Micro Emulation Plan: Web
Shells.” GitHub. Accessed January 12, 2025, https://github.com/center-for-
threat-informed-defense/adversary_emulation_library/tree/9786a3297c855
ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/webshell. A
micro-emulation plan replicating web shell activity.

Champion, Alfie. “HTML Smuggling: Recent Observations of Threat
Actor Techniques.” delivr.to, January 6, 2023. https://blog.delivr.to/html
-smuggling-recent-observations-of-threat-actor-techniques-74501d5c8a06. Exam-
ples of the many techniques for performing HTML smuggling.

Chester, Adam. “Okta for Red Teamers.” TrustedSec, September 18,
2023. https://trustedsec.com/blog/okta-for-red-teamers. A collection of post-
exploitation techniques targeting components of the identify provider
Okta.

Cunningham, Mike, and Jamie Williams. “Ahhh, This Emulation is Just
Right: Introducing Micro Emulation Plans.” September 15, 2022. https://
medium.com/mitre-engenuity/ahhh-this-emulation-is-just-right-introducing
-micro-emulation-plans-7bf4c26451d3. Release of the micro-emulation
framework from the CITD.

DFIR Report. “Bumblebee: Round Two.” September 26, 2022. https://
thedfirreport.com/2022/09/26/bumblebee-round-two. Bumblebee malware
infection achieved via LNK and DLL files contained in an ISO disk image.

The Atomic Methodology 83

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/ad_enum
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/ad_enum
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/ad_enum
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/ad_enum
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/named_pipes
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/named_pipes
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/named_pipes
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/blob/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/user_execution/README_user_execution.md
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/blob/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/user_execution/README_user_execution.md
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/blob/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/user_execution/README_user_execution.md
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/blob/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/user_execution/README_user_execution.md
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/webshell
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/webshell
https://github.com/center-for-threat-informed-defense/adversary_emulation_library/tree/9786a3297c855ea8dfa6c321befa397473b32f41/micro_emulation_plans/src/webshell
https://blog.delivr.to/html-smuggling-recent-observations-of-threat-actor-techniques-74501d5c8a06
https://blog.delivr.to/html-smuggling-recent-observations-of-threat-actor-techniques-74501d5c8a06
https://trustedsec.com/blog/okta-for-red-teamers
https://medium.com/mitre-engenuity/ahhh-this-emulation-is-just-right-introducing-micro-emulation-plans-7bf4c26451d3
https://medium.com/mitre-engenuity/ahhh-this-emulation-is-just-right-introducing-micro-emulation-plans-7bf4c26451d3
https://medium.com/mitre-engenuity/ahhh-this-emulation-is-just-right-introducing-micro-emulation-plans-7bf4c26451d3
https://thedfirreport.com/2022/09/26/bumblebee-round-two
https://thedfirreport.com/2022/09/26/bumblebee-round-two

DFIR Report. “Malicious ISO File Leads to Domain Wide Ransomware.”
April 3, 2023. https://thedfirreport.com/2023/04/03/malicious-iso-file-leads
-to-domain-wide-ransomware/. Demonstration of IcedID malware delivery
via an ISO disk image file, designed to bypass Mark of the Web.

EICAR. “What Is the EICAR Test File?” Accessed February 29, 2024.
https://www.eicar.org/download-anti-malware-testfile/. An EICAR test file.

McGrath, Brandon. “Execution Guardrails: No One Likes Uninten-
tional Exposure.” TrustedSec, August 6, 2024. https://trustedsec.com/blog/
execution-guardrails-no-one-likes-unintentional-exposure. Operational consid-
erations and technical implementation details of environmental keying
and execution guardrails

Microsoft. “How the Antimalware Scan Interface (AMSI) Helps You De-
fend Against Malware.” August 23, 2019. https://learn.microsoft.com/en
-us/windows/win32/amsi/how-amsi-helps. An overview of the architecture
and impact of the Antimalware Scan Interface.

Microsoft. “PowerShell Loves the Blue Team.” June 9, 2015. https://
devblogs.microsoft.com/powershell/powershell-the-blue-team/. An overview of
detection-and-prevention mechanisms introduced by Microsoft in Win-
dows PowerShell version 5 and onward.

Mudge, Raphael. “Cobalt Strike 3.11—The Snake That Eats Its Tail.”
Cobalt Strike, April 9, 2018. https://www.cobaltstrike.com/blog/cobalt-strike
-3-11-the-snake-that-eats-its-tail. Introducing execute-assembly to Cobalt
Strike.

Mudge, Raphael. “Cobalt Strike 4.1—The Mark of Injection.” Cobalt
Strike, June 25, 2020. https://www.cobaltstrike.com/blog/cobalt-strike-4-1-the
-mark-of-injection. Introducing BOFs to Cobalt Strike version 4.1.

Roth, Florian, and omkar72, @svch0st, and Nasreddine Bencherchali.
“proc_creation_win_net_groups_and_accounts_recon.yml.” GitHub.
Accessed January 12, 2025. https://github.com/SigmaHQ/sigma/blob/
fad4742996c55d8d4663e611f84877a2b741dc46/rules/windows/process
_creation/proc_creation_win_net_groups_and_accounts_recon.yml. A Sigma
rule to detect the enumeration of high-value groups like enterprise and
domain administrators via the built-in net.exe executable.

Schroeder, Will, and Lee Chagolla-Christensen. “Certified Pre-Owned.”
SpecterOps, June 22, 2022. https://specterops.io/wp-content/uploads/sites/
3/2022/06/Certified_Pre-Owned.pdf. A whitepaper covering the extensive
abuse potential of misconfigured ADCS.

Yardley, Michael. “Breaking Out of Citrix and Other Restricted Desktop
Environments.” Pen Test Partners. June 6, 2014. https://www.pentestpartners
.com/security-blog/breaking-out-of-citrix-and-other-restricted-desktop-environments/
. Techniques for breaking out of Citrix environments.

84 Chapter 3

Practical Purple Teaming (Sample Chapter) © 5/8/25 by Alfie Champion

https://thedfirreport.com/2023/04/03/malicious-iso-file-leads-to-domain-wide-ransomware/
https://thedfirreport.com/2023/04/03/malicious-iso-file-leads-to-domain-wide-ransomware/
https://www.eicar.org/download-anti-malware-testfile/
https://trustedsec.com/blog/execution-guardrails-no-one-likes-unintentional-exposure
https://trustedsec.com/blog/execution-guardrails-no-one-likes-unintentional-exposure
https://learn.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps
https://learn.microsoft.com/en-us/windows/win32/amsi/how-amsi-helps
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://devblogs.microsoft.com/powershell/powershell-the-blue-team/
https://www.cobaltstrike.com/blog/cobalt-strike-3-11-the-snake-that-eats-its-tail
https://www.cobaltstrike.com/blog/cobalt-strike-3-11-the-snake-that-eats-its-tail
https://www.cobaltstrike.com/blog/cobalt-strike-4-1-the-mark-of-injection
https://www.cobaltstrike.com/blog/cobalt-strike-4-1-the-mark-of-injection
https://github.com/SigmaHQ/sigma/blob/fad4742996c55d8d4663e611f84877a2b741dc46/rules/windows/process_creation/proc_creation_win_net_groups_and_accounts_recon.yml
https://github.com/SigmaHQ/sigma/blob/fad4742996c55d8d4663e611f84877a2b741dc46/rules/windows/process_creation/proc_creation_win_net_groups_and_accounts_recon.yml
https://github.com/SigmaHQ/sigma/blob/fad4742996c55d8d4663e611f84877a2b741dc46/rules/windows/process_creation/proc_creation_win_net_groups_and_accounts_recon.yml
https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf
https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf
https://www.pentestpartners.com/security-blog/breaking-out-of-citrix-and-other-restricted-desktop-environments/
https://www.pentestpartners.com/security-blog/breaking-out-of-citrix-and-other-restricted-desktop-environments/

