Symbols

- (addition operator) methods, 231
;; ;; ;; ;;, etc. (array concatenation operators), 143
(begin multiline comment), 59
& (bitwise AND), 31
(comment line), 59
~ (distribution assertion), 414
÷ (division operator), 28
;; (double semicolon), 191
.. (ellipsis operator), 453
#= (end multiline comment), 59
± (error operator), 281
: (expression quotation), 168
== (generic equality operator), 31
> (greater-than operator), 31
>= (greater-than-or-equal-to operator), 31
=== (identity operator), 31
∞ (infinity), 393
⊆ (issubset operator), 136
⊇ (issuperset operator), 136
\ (left division operator), 398
< (less-than operator), 31
<= (less-than-or-equal-to operator), 31
&& (logical AND), 31
|| (logical OR), 31
∈ (membership operator), 43
%(modular arithmetic operator), 29
∉ (not-a-member operator), 43
π (pi, mathematical constant), 218–219, 245
--> (plot recipe assignment), 256
:= (plot recipe assignment), 256
: (range operator), 35
// (rational operator), 28
; (semicolon), 29
-p (startup flag), 480
-t (startup flag), 469
<: (subtype operator), 233–234
:: (type assertion or declaration), 225–229
A
abmpplot() function, 374
abmvideo() function, 375–376
AbstractFloat type, 234
abstract types, 223, 229
creating, 234
Action() Javis function, 205
act!() Javis function, 204
Adams, Ansel, 83
add_edge!() Luxor function, 193, 196
addition operator (+) methods, 231
adjacency matrix, 196
adjoint() function, 145
agent-based modeling, 362–379
@agent macro, 364
Agents package, 363
multiverse agent types, 367
spaces, 363
allagents() function, 368
all() function, 166
allowmissing() function, 331
animation, 198–208
with Reel, 206
anim_rotate_around()
Javis function, 204
anim_rotate() Javis function, 205
ANSI color codes, 23
any() function, 166
Any type, 221–224
APL, 10
Aquinas, Thomas, 153
arbitrary precision arithmetic, 216–218
args property, 264
arguments
keyword, 96–97
optional, 96–97
Arizona, 430
array comprehensions, 125–127
array concatenation operators
(;; ;; ;;, etc.), 143
arrays, 33–35
adjoints and transposes, 144–146
concatenation, 142–143
using a newline, 142
using semicolons, 143
Hermitian adjoint, 145
indexing, 34
initialization, 139–142
logical indexing, 143–144
multidimensional, 36
mutability with fill() and repeat(), 140–141
planes, 143
reshaping, 141–142
sparse, 196
artificial life, 380
as import keyword, 65
atomic variables, 472–474
automatic differentiation, 406–413
Avengers, The, 189
AxisArrays package, 452–454
Axis() function, 453

B
Background() Javis function, 204
baseball, 312
Base module, 62, 232
batch_size keyword argument for pmap(), 485
begin...end block, 30–31
begin multiline comment (#=), 59
@belapsed macro, 470, 474
BenchmarkTools package, 470, 474
Bessel function, 207, 384–388, 393–395
series representation, 384
symbolic derivatives, 386–388
Bessel’s equation, 393–395
Between() function, 339
BigInt type, 217–218
big() function, 217
BigInt type, 217–218
bimodal distribution, 320
binary operators, 159
defining custom, 159–161
@bind macro, 208–209
binomial coefficient, 313, 317
binomial() function, 313
bioinformatics, 361
BioJulia, 361
biology, Julia ecosystem, 361
BitArray type, 144
bitwise AND (\&), 31
BLAS, 404, 468
blood, counting cells, 442–449
blue() function, 443
Bool type, 31
break keyword, 124–125
broadcasting, 51
BSD, 4, 5
bugs, 357
byte array literal, 130–131

C
C, xxi, 25
C++, xxii, 20
cactus ferruginous pygmy owl, 430
CairoMakie package, 376
California, 213
call stack, 179–181
canny() function, 447
cartesian indices, 459–464
cdf() function, 417
central limit theorem, 417
Chain package, 174–175
characters, 44–46
Chesapeake Bay, 193–195
Chocolately, 9
closure, 199–200
coalesce() function, 330
@code_warntype macro, 243–245
coding environments, 23
coin, fairness, 413
collect() function, 36, 128
collection
defined, 123
flattening, 369
and loops, 123
as parametric type, 248
type of elements, 221
Cols() function, 340
cols() function, 345
combinations, 313
combinatorics, 312
combine() function, 346–347, 350
renamecols() function, 347
comment line (#), 59
comments, 59
complex numbers, 27
plotting, 264
composite types
creating, 234–236
immutable, 236
mutable, 236
properties of, 235
comprehensions, array, 125–127
computer algebra, 382–395
computer languages, 26
concatenation, 41–43
concrete types, 222
concurrency, 467–486
conj() function, 146
const keyword, 52
constructors, 235
inner, 240
methods, 235–236
outer, 240
continue statement, 125
ContinuousAgent notation, 364
contour plots, 110–112, 116
converting units, 272–274
cooperative multitasking, 477
core, CPU, 468
Core module, 62
correlation, 357
and crime, 354, 357
Pearson, 354
corrplot() plotting function, 357
counting, 312
COVID-19, 334
models, 359
crime, 352–353
cryptography, 307
CSV files, 332
CSV package, 332, 334

D

data noisy, 421
out of core, 358
dataframe, 333–337
Between() function, 339
columns
mutating, 341
references and copies, 341
display, 335
filtering, 337, 339
grouping, 349–350
indexing, 336–337
Cols() function, 340
using regular expressions, 340
missing values, 337
names function, 342
Not() function, 339
plotting, 338–339
show() function, 335
summary statistics, 348
transposing, 342–343
DataFrames package, 333–337
Dawkins, Richard, 361
DefaultSymbols submodule, 271
dependency hell, 11
describe() function, 348, 355
destructuring, 96, 157–159
struct keyword arguments, 158–159
determinant, 399
det() function, 399
@df macro, 335, 353
Dict() function, 134–135
dictionaries, 134–135
indexing, 134–135
differential equations with SymPy, 393–395
differential equations with SymPy, 294–303, 362, 408–413
combining with Measurements, 302–303
controlling error, 301, 412
plotting solutions, 297–298
time-dependent parameters, 299–301
differential equations with SymPy, 393–395
differential() function, 387
Dijkstra, Edsger, 213
dimensions, 270
directed graph, 193
disallowmissing() function, 331
@distributed macro, 484–485
Distributed package, 480
distribution, 321–322
bimodal, 320
empirical, 322
Gaussian, 324–326
normal, 324–326
theoretical, 322

Index 489
distribution assertion (~), 414
Distributions package, 324–326
DivideError, 179
division, 27
division operator (÷), 28
DNA, 361
do blocks, 166–167
docstrings, 67
documentation
 with docstrings, 67–68
 and Markdown, 68–69
doit() function, 393
double semicolon (;;), 191
drugs, 362
drum, modes of vibration, 206–207
dsolve() SymPy function, 394
DSP package, 435–437
duration() function, 432
E
 e (Euler’s number), 219
eccentricity in the Ptolemaic system, 201
editors, 5, 14–15
eigenvalues, 399
eigenvectors, 399
eigvals() function, 399–400
 of symmetric matrix, 401
 of triangular matrix, 402
eigvecs() function, 399
Einstein, Albert, 381
Elixir, 169
ellipsis operator (…), 453
eltype() function, 221
Emacs, 15
 REPL interaction, 15
end multiline comment (=#), 59
entropy sources, 307
enumerate() function, 147–148
epicycles, 201–205
Eq() SymPy function, 394
erf() (error function), 393
error operator (±), 281
error propagation, 280–284
errors, 178–186
 combining with units, 283
Euler’s number, 219
@everywhere macro, 480
evolution, simulated, 362–379
EvolutionaryModelingTools package, 362
exceptions, 178–186
 types of, 178–179
executive process, 480
expand_derivatives() function, 387
expint() function, 264
exponential integral, 264
expression, 26
 from string, 168
expression objects, 168–170
 interpolation of values, 169–170
expression quotation (:), 168
Expr type, 168
:extra_kwargs entry, 257
F
 f0 numerical suffix, 281
factorial, 216
factorial() function, 217, 313
factorization, matrix, 402–403
factorize() function, 402–403
factor trees, 197–198
@fastmath performance macro, 176–177
FedEx, 61
fetch() function, 476
fill() function, 139
fillrange plotting attribute, 257
filter() function, 163–164
finally keyword, 186
findfirst() function, 131–132
findlast() function, 131–132
findnext() function, 132
fir() function, 435–437
fish, 193
flattening a collection, 369
Float16 type, 215
Float32 type, 215, 281
Float64 type, 27, 214
floatmax() function, 216
floatmin() function, 216
fluid dynamics, 284–294
foldl() function, 164
foldr() function, 164
Folds package, 469–470
football fields, 270
force from potential energy, 408–413
Fortran, xxi–xxii, 404, 454
ForwardDiff package, 406–413
Fourier transform, 433
Fox, Professor L., 395
framerate() function, 432
France, 350
FreeUnits Unitful type, 272
frequency analysis, 433–441
frequency filtering, 435–441
function, 48–51
 anonymous, 51
 composing, 50
 difference from macros, 172
 extending, 232
 higher-order, 161
 keyword arguments
 concise syntax, 154
 return value, 50
functional languages, 229
fundraising, 269
gas, 306
Gaston plotting backend, 116, 278
Gaussian distribution, 109, 324–326, 392–393
generator expression, 127–128
genetic equality operator (==), 31
gingerbread man, 95–96
Glaucidium brasilianum cactorum, 430
GLMakie package, 376
global keyword, 226–227
global variables, 52
gnuplot, 116, 278
goats, 310
gradient, 406
graphplot() Luxor function, 195–198
GraphRecipes package, 193
graphs (node-edge diagrams), 192–199
Graphs package, 193–198
 layout methods
 :buchheim, 198
 :tree, 198
 layout quality, 195
Gray() function, 443
greater-than operator (>), 31
greater-than-or-equal-to operator (>=), 31
Greek letters, 13
green() function, 443
grid() function, 118
GroupedDataFrame type, 349–350
GR plotting backend, 115, 277–278
gui() function, 86

H
hardware requirements, 4
HDF5 plotting back end, 116
heatmaps, 110
Hermitian adjoint, 145
higher-order functions, 161
high-performance computing, 485–486
high school, bad memories, 197
histogram2d() function, 355
histograms, 322, 353
 bins, 323
 2D, 355
 using :scatterhist, 325
Hopper, Grace, 467
hough_circle_gradient() function, 446
Hough transform, 446–449
hyperthreading, 469
hypothesis testing, 358
HypothesisTests package, 358

I
identity matrix, 399
identity operator (==), 31
IDEs, 20–22
idxs plotting keyword, 297
if blocks, 33
ImageBinarization package, 444
image blurring, 463
ImageFeatures package, 446–449
image processing, 442–464
image reduction, 463
Images package, 442–449
 RGB type, 442
ImageView package, 442
import statement, 63–64
imshow() function, 442
@inbounds performance macro, 176
indexing of arrays, 34, 38–39
 with arrays, 39–41
InexactError, 179
Inf type, 215
Inf16 type, 215
Inf64 type, 215
infinity, 28, 215
infinity (oo), 393
infix operators, 159
defining custom, 159–161
in membership operator, 43
inner constructors, 240
instability, 288
installation, 3–5
on BSD, 6–7
on Docker, 9
on Linux, 6–7
on macOS, 7–8
on Windows, 8–9
Int16 type, 226
Int32 type, 27, 247
Int64 type, 27, 215, 247
Int128 type, 216
Integral() SymPy function, 393
InteractiveDynamics package, 373
interprocess communication, 483
Int type, 247
inverse, matrix, 398
inv() function, 398
irrational numbers, 218–219
Irrational type, 218–219, 233
isa() function, 216
isascii() function, 163
ishermitian() function, 400
issubset() function, 136
issubset operator (⊆), 136
issuperset operator (⊇), 136
issymmetric() function, 400
iterated map, 95–96

J
Java, 20
JavaScript, 25, 211
Javis package, 198–205
motions, 205
Johns Hopkins, 334
join() function, 58
optional delimiter, 132
Julia, features of
big, 151
composability, 303, 383–385, 388
introduction, xxi
no classes, 241
not functional, 229
not object oriented, 229
unusual, 213
JuliaDB package, 358
julia-emacs, 15
julia-repl, 15
Julia versions, 5
julia-vim, 14–15
Jupyter, 16, 17
plotting with, 17

K
keyword arguments, 96–97
kill_agent() function, 372
@kwdef macro, 241–242

L
LAPACK, 404
LaTeX, 13, 274
strings, 129
latexify() function, 274
Latexify package, 274–276, 385
LaTeXStrings package, 104–105
lava lamps, 307
Lederman, Leon M., 269
left division operator (\), 398
Leibniz, 245
lens() function, 106–107
less-than operator (<), 31
less-than-or-equal-to operator (<=), 31
Let’s Make a Deal, 310
libblastrampoline package, 404
linear algebra, 233, 395–403
LinearAlgebra package, 399–400
linear equations, system, 397–399
linear regression, 105
LinearSolve package, 404
line plot, 86
Linux, 5, 404
Lisp, 25, 169
load balancing, 479
local keyword, 226–227
logic, 31
three-valued, 331
logical AND (&&), 31
logical indexing, 143–144
logical OR (||), 31
looping, 46–47
over strings, 48
lowered form, 243
\texttt{lscpu} command, 469
LuaLaTeX, 274, 279
\texttt{Luxor} package, 190–192, 239, 251, 285, 294
coordinate system, 192
defaults, 191
fonts, 192
scale factor, 191

M
machine file, 481
macOS, 4–5
@\texttt{macroexpand} macro, 177
macros, 170–177
 adding syntax to Julia, 171–173
 for broadcasting, 173–174
 for chaining functions, 174–175
collision avoidance, 171
creating, 171
difference from functions, 171
for information, 177
invocation syntax, 171
for performance, 175–177
for string formatting, 177
for timing, 175
\texttt{map()} operator, 161–163
 and broadcasting, 162–163
\texttt{mapreduce()} operator, 166
\texttt{marginalhist()} plotting function, 356
Marx, Groucho, 123
MathJax, 274–275, 389
math symbols, 13
MATLAB, xxii
matrix, 37
 identity, 399
 special types, 400–402
 triangular, 401
matrix factorization, 402–403
matrix inverse, 147
matrix multiplication, 146–147
\texttt{maximum()} function, 166
\texttt{mean()} function, 319–321
\texttt{measurement()} function, 282
\texttt{Measurements} package, 280–284
 combining with
 \texttt{DifferentialEquations}, 302–303
\texttt{median()} function, 319
membership operator (\(\in\)), 43
\texttt{Meta.parse()} function, 168
metaprogramming, 167–177
\texttt{MethodError}, 179
methods, 229–233
\texttt{methods()} function, 231
\texttt{minimum()} function, 166
\texttt{missing()} function, 330
\texttt{Missings} package, 331
missing type, 328–330
 and logic, 331
 and \texttt{Plots}, 329
MIT, xxi
\texttt{mode()} function, 320
modular arithmetic operator (\(%\)), 29
modules
 creating, 65–67
 current, 66
 exported names, 63
 naming, 63
 paths and dots, 66–67
 renaming imported, 65
Monk, Thelonious, 462
Monty Hall problem, 310–311
\texttt{mosaicview()} function, 443
MP3, 430
multiple dispatch, xxii, 229–233, 241
multiplication by juxtaposition, 29–30
multiprocessing, 468, 479–485
multithreading, 468–479
mutable keyword, 236
mutation, 55–59
 arrays, 55–56
 by functions, 56–57
 strings, 58
mutually assured destruction, 457
\texttt{myid()} function, 483

N
\texttt{N0f8} type, 442
named tuples, 138–139
\texttt{names()} function, 342
namespaces, 62, 66
NASA, 191, 270
native types, 216
Netflix, 406
networked computing, 481–482, 484
\texttt{nframes()} function, 432
Node, 10
nonstandard string literals, 128–129
normal distribution, 324–326
Normal() function, 324
not-a-member operator (∉), 43
notebooks
 Jupyter, 16–17
 Pluto, 17–20
Not() function, 339
nouns, 213, 234
nsolve() SymPy function, 392
numbers, 26
 complex, 27
 irrational, 218–219
 rational, 28
 types of, 26–27
Number type, 222
numerical precision, 216
numeric-symbolic modeling, 384
numeric types, 214
nworkers() function, 480

O
Object() Javis function, 204
object-oriented programming, 213, 229, 240
occursin() function, 131
Oceananigans, 284–294
 boundary conditions, 286
 computational grid, 285
 diffusivities, 286
 equation of state, 287
 initial conditions, 288
 the model, 287
 precompiling, 284
 running a simulation, 287–290
 visualization, 290, 292, 294
Octave, xxii
ODEProblem() function, 296
OffsetArrays.center() function, 458
OffsetArrays package, 454–459
ones() function, 141
OpenStreetMap, 363
operating systems, 4–5
optional arguments, 96–97
OSCAR, 404
outer constructors, 240

P
-p (julia startup flag), 480
packages, 69–81
 privacy, 9
pairs() function, 148–150
pandemic
 simulation, 313, 316–318
 boundary conditions, 317
 parametric instability, 300–302,
 422–426
parametric plots, 86, 93–94
 3D, 112–113
parametric types, 214, 248–252
PCM, 430
pdf() function, 325
@pdf Luxor macro, 192
Pearson correlation, 354
Peel, Emma, 189
pendulum, 294–302, 408–409,
 422–426
 finite angle, 298–299
 parametric instability, 300–302,
 422–426
performance and type stability,
 242–247
Perl, 133
permode keyword argument, 275–276
permutations, 313
permutedsims() function, 145–146, 343
petaflop club, xxii
PGFPlots plotting backend, 116
PGFPlotsX plotting backend, 116, 279
physics, 269–304
pi, mathematical constant (π),
 218–219, 245
PI, SymPy constant, 393
pixel type from Images package, 442
plot
 aspect ratio, 101
 attributes, 98–99
 fonts, 100
 frame styles, 100
 color palette, 109
 components of, 98
 contour, 110–112
 filled, 111–112
 labeled, 111
current, 91
of a damped oscillator, 91
with errors, 284
functions, 88–89
gnuplot, 116
inset, 106–107, 121
interactive, 116
label position, 103–104
labels, 102
layout, 117–121
legend position, 102–103
mutating, 92
parametric, 93–94
3D, 112–113
polar, 86
polar coordinates, 86, 94–95
for publication, 277–280
recipes, 252–264
pipeline, 254–255
plot, 259–260
series, 255–258
type, 260–262
user, 262–263
saving, 106
scatter, 95–96
with singularities, 89
3D, 114–115
subplot, 100
surface, 108–109
settings, 108
in the terminal, 115
vector, 113
for the web, 116
PlotlyJS plotting backend, 116
plot recipe assignment (→), 256
Plots, 84
backends, 84, 115–116
activation, 84
and dependencies, 86
Gaston, 116
GR, 115
HDF5, 116
installation, 84
names of, 85
PGFPlots, 116
PlotlyJS, 116
PyPlot, 116
UnicodePlots, 115
closing windows, 86
displaying from programs, 86
plot settings, 98
plotting pipeline, 254–255
plot_title plotting argument, 102
plumbing, 406
Pluto, 16–18, 20, 23, 191
dependency graph, 18–20
interactive controls, 208–210
interface, 18–20
and LaTeX math, 274
and MathJax, 274–275
module files, 20
with SymPy, 388–395
PlutoUI package, 208–209
pmap() function, 480–481, 484
@png Luxor macro, 191
point (unit), 191
polar plots, 94–95
power spectral density, 433–435
precision() function, 218
prediction, 322
prerequisites, xxiii
prime factorization, 197–198
prime numbers, 125
@printf macro, 177, 214
Printf package, 177, 214
println() function, 32
multi-argument, 124
privacy with the package system, 9
probabilistic programming, 413–426
probabilistic simulation, 310–313,
316–318
probability, 306
combining, 317
frequency interpretation, 306
philosophy of, 414
probability density function, 325
probability theory, 359
prod() function, 165
psd() function, 433–435
pseudorandom numbers, 307
normally distributed, 326–327
Ptolemy, 201
Pumas package, 362
p-values, 358
pyplot plotting backend, 116
Python, xxii, 10, 25, 240, 388
Quantity Unitful type, 272
quiver() function, 113–114
quote blocks, 168
quoting expressions, 169

R
R, 305, 358
rand() function, 307–309, 323–324
randn() function, 326–327
random_agent() function, 372
random events
 disjunction, 317
 in programs, 309
randomness and computers, 306
random number generators, 359
 seeding, 309
random numbers, 307
range operator (:), 35
ranges, 35–36
rational numbers, 28
rational operator (//), 28
raw strings, 129
RCall package, 358
readchomp() function, 482
readline, 11
readline() function, 124
@recipe macro, 255–256
RecipesBase package, 255–256
red() function, 443
reduce() function, 164–166
 and non-associative operators, 164–165
reducing functions
 and empty collections, 165
 init argument, 165
 neutral element, 165
Reel package, 206–208, 292
regression lines, 357
regular expressions, 132–133
 nonstandard string literal, 132
 for selecting dataframe columns, 340
reltol parameter, 301, 412
renaming imported modules, 65
render() function, and LaTeX, 274
repeat() function, 128, 139

S
saying signals, 441
scatterplots, 95–96, 354
 3D, 114
 voluminous, 355
scientific communication, 210
scientific machine learning, 405–427
scientific notation, 27
scientists, 23
SciML, 405–427
scope, 52
 and begin blocks, 52
 and if blocks, 52
 and functions, 52–53
 and loops, 54
 modification in interactive contexts, 54
ScreenSend, 15
secrets, 63
semantic version strings, 129–130
semicolon (;), 29
@series macro, 257
:series_plotindex attribute, 257
series recipes, 255–258
setprecision() function, 218
sets, 135–137
 adding elements, 137
difference, 136
intersection, 136
subset, 136
superset, 136
Set type, 135–137, 221
sfilt() function, 438–441
@shorthands macro, 257
Shostak, Seth, 429
show() function for dataframes, 335
SignalAnalysis package, 431–441
signal() function, 431
signal processing, 430–441
signals, saving, 441
significant digits, 281–282
simulated evolution, 362–379
simulation, probabilistic, 310–313, 316–318
SI units, 271–273
skipmissing() function, 330
slurping, 156–157
Smith, Frederick W., 61
smooth plot setting, 105
Socrates, 405
solar system, 190
solve() function
 in DifferentialEquations, 296
 in SymPy, 390
source code for Julia, 6
sparse array, 196
SparseArrays package, 196, 233
@spawnat macro, 483
@spawn macro, 474–475
SpecialFunctions package, 207, 233
spectrogram, 433
splatting, 154–155
split() function, 58
spreadsheet, 19
@sprintf macro, 177
standard deviation, 321
standard library, 62
statistics, 305, 322, 358–359
 Julia packages, 359
 standard library, 319
Statistics package, common functions, 320
StatsBase package, 320
StatsPlots package, 335, 356–357
std() function, 321
Steed, John, 189
string() function, 128
string interpolation, 133–134
string literals, nonstandard, 128–129
strings, raw, 129
strings and characters, 44–46
struct, 137–138
 constructor, 137
 mutable, 138
 properties, 138
struct keyword, 235
SubDataFrame type, 349
substitute() function, 383
subtype, 222
subtype operator (⊂), 233–234
subtypes() function, 224
supertype, 222
supertype() function, 222
supertypes() function, 224
surface plots, 108–109
@svg Luxor macro, 192
symbolic mathematics, 382–395, 404
Symbols package, 382–388
 tracing to generate expressions, 386
symbols, 167
 defined, 170, 187
Symbol type, 168
SymPy package, 388–395
 differential equations, 393–395
 evaluating integrals, 392–393
 numerical root finding, 391–392
 with Pluto, 388–395
@syms macro, 389
@sync macro, 474–475

T

-t (julia startup flag), 469
thermal convection, 288
thermal diffusivity, 287
thickness scaling plot setting, 104
@threads macro, 470–474
3D plot, 108–112
throw() function, 183–185
TikZ, 278
time() function, 478
timing, 475
tracing
 to generate Symbols expression, 386
 of a matrix, 399
transpose() function, 145
transposing dataframes, 342–343
tr() function, 399
triangular matrix, 401
trigonometry, 160
try...catch blocks, 181–182
tuples, 42–43
 named, 138–139
turbulent convection, 292
turing package, 413–426
twinx() function, 300
2D plot, 86
two language problem, xxii
type aliases, 247
 for collections, 248
type assertion, 224–228
type assertion or declaration operator (::), 225–229
type declaration, 224–228
 of global variables, 226
 purpose, 228
 and scope blocks, 228
typemax() function, 215
typemin() function, 215
typeof() function, 214, 222
type piracy, 233
type promotion, 27, 219–220
type recipes, 260–262
types, 26, 213–265
 abstract, 223, 229
 creating, 234
 concrete, 222
 creating composite, 234–236
 irrational, 218–219
 native, 216
 numeric, 214
 parametric, 214, 248–252
 user-defined, 234–242
typesetting units, 274–276
type stability, 228, 242–247

U
u (nonstandard string literal), 270
uconvert() function, 273
Ulm, 381
uncertainty() function, 282
undirected graph, 193
Unicode characters, 13
 code point, 130
 entering in the REPL, 13
unicodeplots plotting backend, 115
uniform distribution, 309
UnionAll type, 249
Union types, 233–234
unitformat plotting keyword, 278
Unitfullatexify package,
Unitful package, 270–280
unit() function, 274, 279
units
 combining with errors, 283
 converting, 272–274
 physical, 270–280
 in plots, 276–280
 stripping from Unitful expressions, 272–274
 typesetting, 274–276
uparse() function, 271
uprefered() function, 273
US Census, 351–353
user-defined types, 234–242
 performance, 242
@userplot macro, 263–264
user recipes, 262–263
 using keyword, 63
ustrip() function, 273, 279
V
value() function, 282
var() function, 321
@variables macro, 382
versions of Julia, 5–6
@view macro, 395–396
views, 395–397, 450–452
@views macro, 395–396
Vim, 14–15, 23
 REPL interaction, 14–15
viscosity, 287
VS Code, 20–22
W
wait() function, 476
WAV file, 430
WAV package, 441
weather, 253
where keyword, 249
while block, 32
whitespace, 33
Windows, 4–5
worker processes, 480
write() method from Reel, 208

Y
yield() function, 477–479

Z
zeros() function, 141
zip() function, 150–151