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PHYSICS

Physics is not a religion. If it were, we’d have a much easier time raising money.
—Leon M. Lederman

Julia is a superb platform for physics calcu-
lations of all kinds. Various features of its

syntax, such as the ability to use mathemat-
ical symbols and its concise array operations,

make it a natural fit for programming algorithms that
we use in physics. Julia’s speed of execution makes it
one of only a few languages used for the most demand-
ing large-scale simulations (and the others in this club
are all lower-level, statically compiled languages). Ju-
lia’s physics ecosystem includes some state-of-the-art
packages. Finally, Julia’s unique ability to mix and match
functions and data types from disparate packages to
create new capabilities is especially powerful in physics
calculations, as we’ll see in detail in this chapter.

We begin with an introduction to two packages of general utility for
dealing with units and errors. Both of these are potentially helpful in any
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physics project. We’ll spend some time in the first section looking into var-
ious options for producing publication-quality plots including typeset units
in axis labels. Then we’ll turn to specific calculations, first using a package
for fluid dynamics and then using a general-purpose differential equation
solver. See “Further Reading” on page 304 for each major package’s URL.

Bringing Physical Units into the Computer with Unitful
The traditional way to perform physics calculations on a computer is to rep-
resent physical quantities as floating-point numbers, subject those numbers
to a long series of arithmetic operations, and then interpret the results again
as physical quantities. Since physical quantities are usually not simply num-
bers, but have dimensions, we need to manually keep track of the units that
are associated with these quantities, often with code comments to remind us
what the various units are.

NO T E A dimension is a fundamental physical idea encompassing something that can be
measured, such as mass or time. A unit is a specific way of measuring a dimension.
The dimensions are universal, but there are various systems of units. For example,
for the dimension of length, some common units are centimeter (cm), meter (m), or, if
we live in the United States, inches or football fields.

In other words, the physical meanings of the numbers appearing in a
program are not part of the quantities themselves, but are implicit. It may
not be surprising that this can lead to confusion and errors. In 1999, NASA
lost a spacecraft because two different contractors were contributing to the
design, and their engineering programs used different systems of units.

In traditional languages for physics, such as Fortran, not much can be
done about this issue directly. In Julia, because of its sophisticated type sys-
tem, we are not limited to collections of dimensionless numbers; we can
calculate with richer objects including units.

After importing the Unitful package, we can refer to many common
physics units using a nonstandard string literal (see “Nonstandard String
Literals” on page 128) with the prefix u:

julia> using Unitful

julia> u"1m" + u"1cm"

101//100 m

julia> u"1.0m" + u"1cm"

1.01 m

julia> u"1.0m/1s"

1.0 m s^-1

Here we add a meter and a centimeter, and receive the result as a rational
number of meters. The package returns results as rational numbers, when
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possible, to preserve the ability to carry out exact conversions. But, as the
second example shows, we can coerce a floating-point result by supplying a
floating-point coefficient. The third example shows how we can construct
expressions within the string literal.

You can find the complete list of units only in the source code, in its
GitHub repository at src/pkgdefaults.jl, but most of them follow the usual
physics conventions. Using the string literal syntax each time we want to re-
fer to a unit can be cumbersome, so we can assign units to our own variables
to ease our typing and make the code easier to read:

julia> m = u"m";

julia> 1m + u"1km"

1001 m

We add a meter to a kilometer, showing how we can use custom vari-
ables in combination with the string literals. The result is 1,001 meters.

We can parse a string as a Unitful expression with another function
provided by the package (undocumented at the time of writing):

julia> earth_accel = "9.8m/s^2";

julia> kg_weight_earth = uparse("kg * " * earth_accel)

9.8 kg m s^-2

Here we use uparse() to convert a string, created by concatenating a
string representing a mass with another representing the gravitational ac-
celeration near the surface of Earth, into a unit expression representing the
mass’s weight. The forms in which unit expressions appear in the REPL are
not themselves legal strings for converting with uconvert(). For example, we
need to include the multiplication operator in the string in the second line.

Using Unitful Types
We can gain access to a large supply of standard SI units by importing the
DefaultSymbols submodule rather than defining them one by one. This prac-
tice adds a profusion of names to our namespace, however, so it may not be
a good idea if we’re using only a few units:

julia> using Unitful.DefaultSymbols

julia> minute = u"minute"

julia> 2s + 1minute

62 s

Here we add 2 seconds to 1minute, resulting in 62 seconds. The DefaultSymbols

submodule supplies the s unit, but we need to define minute, as that’s not an SI
unit. We’re using Julia’s syntax formultiplication through juxtaposition; this
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expression is the same as 2 * s + 1minute. However, these variables must be
attached to numerical coefficients in arithmetic expressions; 2 * s + minute is
a MethodError.

We can find the reason for this error in the types of the two expressions:

julia> typeof(1minute)

Quantity{Int64, T, Unitful.FreeUnits{(minute,), T, nothing}}

julia> typeof(minute)

Unitful.FreeUnits{(minute,), T, nothing}

The type of 1minute, which is the same as the type of 1 * minute, is a
Quantity, while the type of minute is a FreeUnits. Both of these types are defined
in the package. The Unitful package defines methods for addition and other
arithmetic operations that accept arguments of type Quantity, but not of type
FreeUnits.

These types contain parameters appearing as boldface Unicode charac-
ters. The Unitful package uses these characters to represent dimensions, so
these type specifications tell us that the minute unit has dimensions of time,
represented by T.

The type of minute and other units is an abstract type (see “The Type
Hierarchy” on page 222), while the types of quantified units such as 1minute

are concrete. For good performance, we should calculate with concrete types
and define our own types with fields that have concrete types only.

Stripping and Converting Units
Sometimes we need to remove the units from the result of a calculation—for
example, when passing a result to a function that doesn’t understand units.
We can do this with the convert() function:

julia> convert(Float64, u"1m/100cm")

1.0

The type of the result is Float64. The results returned by Unitful calcula-
tions may not always be what we expect, so we should use convert() when we
require a simple number:

julia> u"1m / 100cm"

0.01 m cm^-1

julia> typeof(u"1m/100cm")

Quantity{Float64, NoDims, Unitful.FreeUnits{(cm^-1, m), NoDims, nothing}}

Here we divide a length by another length, so the result should be the sim-
ple number 1.0 (because the lengths are equal) with no dimensions. The ac-
tual result is equivalent to that, but it’s expressed in an obscure form. Check-
ing the type of the result, we find that it’s the concrete Unitful type Quantity,
with type parameters indicating that it has no dimensions.
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If we use the same literal unit in the numerator and denominator, we get
a result that may be closer to what we expect:

julia> u"1m / 2m"

0.5

julia> typeof(u"1m / 2m")

Float64

A further example shows that Unitful is consistent in retaining the units
we use in expressions instead of making conversions that might seem obvi-
ous to a physicist:

julia> u"1m * 1m"

1 m^2

julia> u"1m * 100cm"

100 cm m

The two input expressions mean the same thing, but lead to equivalent re-
sults that are expressed differently.

The function upreferred() from Unitful converts expressions so they use
a standard set of units. The user can establish preferred systems of units, but
the default behavior uses conventional SI units:

julia> u"1m * 100cm" |> upreferred

1//1 m^2

In addition to converting to a number with convert(), we can use uconvert(),
which is part of Unitful, to convert between units:

julia> uconvert(u"J", u"1erg")

1//10000000 J

julia> uconvert(u"kg", u"2slug")

29.187805874412728 kg

The function takes the unit to convert to in its first argument and the ex-
pression to convert in its second argument. In the first example we con-
vert from ergs to joules. As both are metric units related by an exact ratio,
uconvert() supplies the answer using a rational coefficient. The second ex-
ample is a conversion from the US unit of mass, slugs, to kilograms, the
standard SI unit used in physics. The conversion factor is a floating-point
number.

Listing 9-1 shows another way to extract the purely numerical part of a
Unitful expression with ustrip().

julia> vi = 17u"m/s"

17 m s^-1
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julia> vf = 17.0u"m/s"

17.0 m s^-1

julia> ustrip(v), ustrip(vf)

(17, 17.0)

Listing 9-1: Stripping units with ustrip()

The ustrip() function preserves the numerical type in the expression.
To extract just the unit from a Unitful expression, the package provides

the unit() function, as shown in Listing 9-2.

julia> unit(vi)

m s^-1

Listing 9-2: Extracting units with unit()

We’ll find applications for ustrip() and unit() in “Plotting with Units” on
page 276.

Typesetting Units
Using the UnitfulLatexify package, we can turn our Unitful expressions into
LaTeX-typeset mathematics: either as LaTeX source ready to be dropped
into a research paper or as a rendered image. Here is a simple example:

julia> using Unitful, Latexify, UnitfulLatexify

julia> 9.8u"m/s^2" |> latexify

L"$9.8\;\mathrm{m}\,\mathrm{s}^{-2}$"

The latexify() function transforms the Unitful expression forEarth’s grav-
itational acceleration into aLaTeX string. WeencounteredLaTeX strings in
Listing 4-1, whenweusedone to generate a title for a graph. The UnitfulLatexify
package combines theLaTeXabilities in Latexifywith Unitful, which iswhywe
need to import all threepackages, aswedid at the start of this example.

When used in the REPL or another nongraphical context, latexify()
produces LaTeX markup ready to be copied and pasted into a document.
We can, instead, create a PDF image of the result by passing it to the render()

function. To do that, you need to have the external program LuaLaTeX, which
is part of standard LaTeX installations, installed. If that program is available,
render() will use it to typeset the LaTeX string and immediately display it with
the default PDF viewer. The render() process litters your temporary directory
with files for every rendered expression, which is something to keep an eye on.

When using UnitfulLatexify in a graphical environment, such as a Pluto
notebook, the output is rendered as LaTeX rather than LaTeX source. In
most environments, typesetting uses a built-in engine rather than an external
program, so no additional installations are required. For example, Pluto uses
MathJax, a JavaScript library for LaTeX mathematical typesetting.
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Figure 9-1 shows a Pluto session with Newton’s Second Law of Motion.

Figure 9-1: Using UnitfulLatexify in Pluto

In the final cell in Figure 9-1, we convert the acceleration to a more
conventional combination of units and pass the result to latexify(). The
typeset version appears as the result. MathJax provides a contextual menu
when right-clicking on the result that gives us access to the LaTeX source.

If the use of negative exponents in unit expressions is not to our taste, we
can pass the permode keyword to tell latexify() to use other styles. Here’s an
example that demonstrates the default and the two options for permode:

julia> a = 0.0571u"m/s^2"

julia> """

a = $(latexify(a))

or

$(latexify(a; permode=:frac))

or

$(latexify(a; permode=:slash))

""" |> println

a = $0.0571\;\mathrm{m}\,\mathrm{s}^{-2}$

or
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$0.0571\;\frac{\mathrm{m}}{\mathrm{s}^{2}}$

or

$0.0571\;\mathrm{m}\,/\,\mathrm{s}^{2}$

The example uses the existing definition for a. The :frac option uses
LaTeX fractions instead of negative exponents, and the :slash option uses a
slash, which is usually better for inline math.

Pasting the output in the previous listing into the LaTeX source of this
book shows the rendered result:

a = 0.0571 m s–2

or
0.0571 m

s2
or
0.0571 m/ s2

We can change the default mode for rendering units with the
set_default(permode=:slash) command.

Plotting with Units
Listing 9-3 shows how Plots knows how to handle Unitful quantities.

julia> using Plots, Unitful

julia> mass = 6.3u"kg";

julia> velocity = (0:0.05:1)u"m/s";

julia> KE = mass .* velocity.^2 ./ 2;

julia> plot(velocity, KE; xlabel="Velocity", ylabel="KE",

lw=3, legend=:topleft, label="Kinetic Energy")

Listing 9-3: Plotting Unitful arrays

Here we import Plots, which we need for plotting, and Unitful, to handle
units. After defining a mass in kilograms and a range of velocities in me-
ters per second, we create an array of kinetic energies, KE, from the fact that
kinetic energy = 1/2 mass × velocity2. The new package gives the plotting
functions in Plots the ability to handle quantities with units and automati-
cally appends the units to the axis labels. Figure 9-2 shows the result of the
plot() statement.
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Figure 9-2: The plot that Listing 9-3 generates

I’ve left the energy units alone for this example, but more conventional
physics usage would involve a conversion to joules using uconvert(), which we
could have done before the plotting call or inline within plot().

We were able to create this graph with the same plot() call that we might
have used to plot the same quantities stored in numerical arrays without
units. All the plotting functions in Plots, such as scatter() and surface(),
work with Unitful arrays to produce similar axis labels.

Making Plots for Publication
When attempting to make high-quality plots for publication, however, we en-
counter some shortcomings. While Plots aspires to create a unified interface
to a variety of backends, each plotting engine works somewhat differently,
with each having unique capabilities and limitations.

These differences among backends become more salient when we are
making the final adjustments that accompany the preparation of graphs for
publication. It is at this stage that, for example, the typographic details in
labels and annotations become important. Figure 9-2 was created using the
GR backend, which, as mentioned in “Useful Backends” on page 115, is the
default at the time of writing, and is fast and capable.
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Figure 9-2 may be acceptable as is, but for publication we may want to
improve the appearance of its graph labels, especially to make the unit no-
tations look like conventional mathematical notation. As we saw in “LaTeX
Titles and Label Positioning by Data” on page 103, we can use LaTeX nota-
tion in graph annotations with mathematical content. This also works for
the automatic labeling using units with the packages we’ve already imported:

julia> using Plots, Unitful, Latexify, UnitfulLatexify

julia> plot(velocity, KE; xlabel="\\textrm{Velocity}",

ylabel="\\textrm{KE}", unitformat=latexroundunitlabel)

The example repeats the plot command from Listing 9-3, but with some
alterations to create LaTeX strings for the plot labels. The unitformat key-
word processes the unit annotations through latexify(), with the value
latexroundunitlabel retaining the parentheses around the units. Since this
triggers placing the entire label into a LaTeX string, we also need to wrap
the non-math parts of the labels in LaTeX commands to set them as normal
text instead of math.

The GR Backend
The results of this approach depend critically on what backend we’re using.
Obviously, it makes sense to use LaTeX strings only with backends that can
do something with them. Although the default GR backend can interpret
LaTeX, the results are not always adequate. This engine includes its own ver-
sion of LaTeX processing, which often creates poor-quality typesetting with
faulty kerning. The LaTeX engine in GR is the focus of some development
activity, however, so its performance may improve.

Good-quality typesetting of labels in most cases requires processing by
an external TeX engine, which involves a TeX installation such as TeXLive.
As many physicists and other scientists have already made such an installa-
tion, we’ll move on to considering options that take advantage of it.

The Gaston Backend
Gnuplot can optionally be compiled with support for the tikz terminal,
which saves plots as text files containing TikZ commands. (TikZ is a graph-
ics language that comes with most full-featured TeX installations.) Such
files are processed with LaTeX and can contain TeX or LaTeX markup for
the annotations on the plot. The result is of the highest quality, with fonts
and styles that match the document in which the plot is included. Unfortu-
nately, at the time of writing, the Gaston backend, which uses gnuplot, does
not properly support the tikz terminal, so this option is off the table. It’s be-
ing worked on, however, and once we can use Gaston with tikz, it will be the
best option for complex plots for publication or when the best typographic
quality is desired.
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The PGFPlotsX Backend
Another backend that can make use of LaTeX strings is PGFPlotsX, which is
invoked with the pgfplotsx() function. This backend creates plots by calling
out to the LuaLaTeX TeX engine, which comes with most TeX installations,
including TeXLive. Since LuaLaTeX does all the typesetting, the labels come
out with TeX-level quality. This backend is, therefore, an excellent choice
for publication-quality graphs. Gaston may still be the best future choice for
complex plots because processing through LuaLaTeX can be far slower than
through gnuplot if the plot contains a large number of elements, such as in a
large scatterplot.

Handling Units Manually
Unfortunately, PGFPlotsX does not work properly with Unitful, not taking TeX
processing into account. This limitation provides the opportunity to demon-
strate a different way of plotting Unitful quantities and labeling axes with
units—one that affords us complete control over the details.

The following listing contains the definition of a function that accepts
two Unitful arrays for plotting, along with keyword arguments for labels:

using Plots, LaTeXStrings, Latexify, UnitfulLatexify

function plot_with_units(ux, uy; xl="", yl="", label="",

legend=:topleft, plotfile="plotfile")

set_default(permode=:slash)

x = ustrip(ux); y = ustrip(uy)

¶ xlabel = L"$\textrm{%$xl}$ (%$(latexify(unit(eltype(ux)))))"

ylabel = L"$\textrm{%$yl}$ (%$(latexify(unit(eltype(uy)))))"

plot(x, y; xlabel, ylabel, lw=2, label, legend)

· savefig(plotfile * ".tex")

savefig(plotfile * ".pdf")

end

Using the ustrip() and unit() functions (see Listings 9-1 and 9-2), this
code separates the arrays from their associated units, plotting the numer-
ical parts and using the unit parts to construct labels with the LaTeXStrings

package.
In order to interpolate values into a LaTeXStrings string, we need to use

the two characters %$ rather than a simple $ ¶. When extracting the units
from the arrays, we require the units of the elements of the array, which is
why eltype() appears in the label assignment. The function saves both the
stand-alone PDF version of the graph and its TeX version · for including in
a LaTeX document.

Physics 279

Practical Julia (Sample Chapter) © 8/16/23 by Lee Phillips



After selecting the desired backend, we call the function to create the
.pdf and .tex files with the default names:

pgfplotsx()

plot_with_units(velocity, KE; xl="Velocity", yl="K. E.")

Figure 9-3 shows the result.
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Figure 9-3: A PGFPlotsX plot with typeset unit labels

Typesetting by LuaTeX provides the excellent quality of the labels in
Figure 9-3.

Error Propagation with Measurements
In the previous section we explored a package that extended the concept
of numbers to include physical units. Here we’ll meet Measurements, another
package that defines a number-like object useful for calculations in physics
or nearly any empirical science.

The Measurements package allows us to attach uncertainties to numbers.
The number in question must be convertible to a float, so we can attach un-
certainties directly to Float64 numbers, integers, and Irrational quantities.
(We can also create complex numbers with uncertainties, if we really want
to, by attaching errors to their real and imaginary parts.) The Measurements

package defines a new data type, called Measurement{T}, where T can be any
size float. We can perform any arithmetic operations on Measurement types
that are allowed on floats, and the errors, or uncertainties, will be propa-
gated to the result using standard linear error propagation theory.

Here are some examples of creating instances of Measurement types:
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julia> using Measurements

julia> 92 ± 3

92.0 ± 3.0

julia> typeof(ans)

Measurement{Float64}

¶ julia> 92.0f0 ± 3

92.0 ± 3.0

julia> typeof(ans)

Measurement{Float64}

julia> 92.0f0 ± 3f0

92.0 ± 3.0

julia> typeof(ans)

Measurement{Float32}

julia> big(1227.0) ± 2

1227.0 ± 2.0

julia> typeof(ans)

Measurement{BigFloat}

We create Measurement objects using a notation that will be familiar to sci-
entists. We can type the ± operator by entering \pm in the REPL and pressing
TAB or by using the operating system’s entry method for special characters.

In the REPL, the ans variable holds the most recently returned result.
Since Measurement objects have only one type parameter, the base number and
the error must be of the same type. As the typeof() calls show, Measurements
promotes the smaller type as needed; the f0 suffix is a way to enter 32-bit
float literals ¶.

The package treats significant digits intelligently:

julia> π ± 0.001

3.1416 ± 0.001

julia> π ± 0.01

3.142 ± 0.01

The digits made insignificant by the error are not printed.
When printing results in the REPL, the package displays only two signifi-

cant digits in the error, to keep things neat:

julia> m1 = 2.20394232 ± 0.00343

2.2039 ± 0.0034
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julia> Measurements.value(m1)

2.20394232

julia> Measurements.uncertainty(m1)

0.00343

However, it retains the full values internally for computations. We can
access these components with the value() and uncertainty() functions shown
here, which, as they are not exported, we need to qualify with the package
namespace.

Scientists often use an alternative, convenient notation to express uncer-
tainty by appending the error in the final significant digits within parenthe-
ses. The Measurements package understands this notation as well:

julia> emass = measurement("9.1093837015(28)e-31")

9.1093837015e-31 ± 2.8e-40

In order to use the notation, we need to employ the measurement() func-
tion and supply the argument as a string. We can also use measurement() as an
alternative to the ± operator:

julia> m1 = measurement(20394232, 0.00343)

2.0394232e7 ± 0.0034

Arithmetic operations propagate errors correctly:

julia> emass

9.1093837015e-31 ± 2.8e-40

julia> 2emass

1.8218767403e-30 ± 5.6e-40

julia> emass + emass

1.8218767403e-30 ± 5.6e-40

julia> emass/2

4.5546918508e-31 ± 1.4e-40

julia> emass/2emass

0.5 ± 0.0

All these examples perform arithmetic as might be expected on the quan-
tities and their errors. More interesting is the last example, where Measurements

has recognized a ratio that has no error. The package maintains the notion
of correlated and independent measurements, which is explained in its doc-
umentation. See “Further Reading” on page 304 for the URL.

Referring back to the example in Listing 9-3, we can add an uncertainty
to the Unitful value for mass in two ways:
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julia> using Measurements, Unitful

julia> mass = 6.3u"kg" ± 0.5u"kg"

6.3 ± 0.5 kg

julia> mass = 6.3u"kg"; mass = (1 ± 0.5/6.3) * mass

6.3 ± 0.5 kg

This example shows that the packages Measurements and Unitful can work
together to create quantities with both units and uncertainties.

Let’s continue with the example from Listing 9-3 using this new value
for mass:

julia> using Plots

julia> velocity = (0:0.05:1)u"m/s";

julia> KE = mass .* velocity.^2 ./ 2;

julia> plot(velocity, uconvert.(u"J", KE); xlabel="Velocity", ylabel="K.E.",

lw=2, legend=:topleft, label="Kinetic energy")

Although, as before, velocity has no uncertainty attached to it, mass does;
therefore, KE should also contain uncertainties.

Figure 9-4 shows the result.

Figure 9-4: Plotting with units and errors
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Figure 9-4 shows the Unitful arrays plotted as before with the axes la-
beled with their units. It also has error bars, showing how the error increases
as the kinetic energy increases. We didn’t have to change anything in the
call to plot(). Somehow the type of the quantities to be plotted triggered the
plotting function to use both unit labels and error bars. We would observe
the same behavior with the other plotting functions in Plots, such as scatter()
or surface().

Fluid Dynamics with Oceananigans
The Oceananigans package for fluid dynamics simulations is especially well
suited, as the name suggests, to the physics of the ocean. It provides a simu-
lation construction kit that can include the effects of temperature and salin-
ity variations, Earth’s rotation, wind, and more. Its defaults usually perform
well, but it’s flexible enough that the user can specify one of several avail-
able solution methods. It has various physics models built in, including a
linear equation of state, but makes it easy to substitute others of the user’s
devising.

The Physical System
We are setting out to simulate a two-dimensional layer of fluid in Earth’s
gravitational field. The bottom of the layer is maintained at a higher temper-
ature than the top. This heating from below creates a convective motion, as
can be seen in clouds or in a pan on the stove.

NO T E Oceananigans depends on some compiled binaries in the standard library. If the pre-
compilation of Oceananigans fails and you’re using a recent or beta version of Julia,
try it with an earlier Julia release (the previous major version number).

The bottom and top simulation boundaries are impenetrable and free-
slip, which means the fluid can slide across them. Horizontally, we impose a
periodic boundary condition, requiring the solution to wrap around and be
the same on the left and right boundaries. The horizontal direction is x and
the vertical direction is z. We start the fluid at rest and are interested in the
pattern of motion that the temperature difference creates.

Figure 9-5 shows the setup of the simulated system. The gray area rep-
resents the fluid, and the thick black horizontal lines indicate the constant-
temperature boundaries.

Constant high temperature

Constant low temperature

Gravity

x

z

Figure 9-5: The simulation box
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The Luxor program (see “Diagramming with Luxor” on page 190) that
created this diagram is available in the Physics section of the online supple-
ment at https://julia.lee-phillips.org.

A fluid dynamics simulation contains many pieces that we’ll need to
construct separately before we can begin the calculation. In the following
subsections, we’ll define the computational grid, the boundary conditions,
the diffusivity models, and the equation of state, and establish the boundary
conditions and the hydrodynamic model, in that order. After all the pieces
are in place, we’ll run the Oceananigans simulation and visualize the results.

The Grid
To put together an Oceananigans simulation, we’ll define its various compo-
nents using functions exported by the package, and then define a model
using the model() function, passing in the components as arguments. For this
example we’ll use a grid, a buoyancy model that specifies the fluid’s equation
of state, a set of boundary conditions, the coefficients of viscosity and ther-
mal diffusivity (material properties of the fluid), and initial conditions on
the temperature within the fluid. We won’t include the effects of Earth’s ro-
tation, salinity, or wind, but these ingredients are available for use in other
Oceananigans models.

The grid is defined by its computational size (how many grid points ex-
ist in each direction), its extent (the physical lengths represented by these
directions), and its topology, which is the term Oceananigans uses for what
boundary conditions hold in each direction. For our problem we define the
grid this way:

julia> using Oceananigans

julia> grid = RectilinearGrid(size=(256, 32);

topology=(Periodic, Flat, Bounded),

extent=(256, 32))

256×1×32 RectilinearGrid{Float64, Periodic, Flat, Bounded} on CPU with 3×0×3 halo

|-- Periodic x ∈ [0.0, 256.0) regularly spaced with Δx=1.0
|-- Flat y�

-- Bounded z ∈ [-32.0, 0.0] regularly spaced with Δz=1.0

The RectilinearGrid() function that Oceananigans provides constructs
grids as one of many data types defined in the package. We assign the grid
to our own variable, grid, for use later when creating the model. We could
have chosen any name for this variable, but grid is the name of the relevant
keyword argument accepted by the model construction function; using the
same names for our own variables will keep everything neat.

In the topology keyword argument, we list the boundary conditions in
the x, y, and z directions, with z pointing upward. The boundary condition
Flatmeans that we’re not using (in this case) the y direction. This call de-
fines a two-dimensional, x–z grid, with periodic boundaries in x and impene-
trable boundaries in z. Oceananigans uses a kilogram-meter-second unit system.
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Because we set the extent to be equal to the size, the grid spacing is one unit
in length along each dimension, giving us a fluid layer 256 meters wide and
32 meters tall.

As the example shows, Oceananigans has useful forms for representing its
data types in the REPL, summarizing the salient information for our inspec-
tion. Here the output provides us with a summary of the grid parameters and
boundary conditions.

The Boundary Conditions
We define any boundary conditions on physical variables as a separate com-
ponent, which is also eventually passed into model(). We want to impose con-
stant values of temperature on the top and bottom boundaries; Oceananigans
sets this type of boundary condition with the FieldBoundaryConditions() func-
tion, as it sets boundary conditions on, in this case, the temperature field.
We can use Oceananigans’s convenient definitions of top and bottom, which
have their intuitive meaning (there are also north, south, east, and west, which
we don’t need in this problem):

julia> bc = FieldBoundaryConditions(

top=ValueBoundaryCondition(1.0),

bottom=ValueBoundaryCondition(20.0))

Oceananigans.FieldBoundaryConditions, with boundary conditions

|-- west: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)

|-- east: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)

|-- south: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)

|-- north: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)

|-- bottom: ValueBoundaryCondition: 20.0

|-- top: ValueBoundaryCondition: 1.0�

-- immersed: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)

The immersed boundary refers to one that exists inside the fluid volume,
but we’re not using that one, nor any of the other myriad options, such as
defined gradients or fluxes. The ValueBoundaryCondition that we use sets a
constant value for a variable on the specified boundary.

The Diffusivities
We need to assign values to two constants that describe some of the fluid’s
material properties; this is part of the problem definition. The viscosity co-
efficient (ν) determines how “thick” the fluid is, and the thermal diffusivity
(κ) determines how readily it conducts heat. These values are passed to the
model in the closure keyword and can be set through the ScalarDiffusivity()

function:

julia> closure = ScalarDiffusivity(ν=0.05, κ=0.01)
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The symbol for viscosity is the Greek letter nu and that for thermal dif-
fusivity is kappa. Like all Greek letters, we can precede their names with a
backslash and then press TAB to enter them in the REPL.

The Equation of State
The equation of state is a function that describes how the density of the
fluid at any point depends on the temperature and salinity there (the as-
sumption of incompressibility usually used in Oceananigans models means that
density has no dependence on pressure). Our model is salt free, but our
fluid will be lighter when it’s hotter. This is what will cause the fluid to move,
as the lighter parts will rise and the heavier parts will sink, driven by gravity.

The model() function expects the keyword buoyancy, so we’ll use that too:

julia> buoyancy = SeawaterBuoyancy(equation_of_state=

LinearEquationOfState(thermal_expansion=0.01,

haline_contraction=0))

SeawaterBuoyancy{Float64}:

|-- gravitational_acceleration: 9.80665�

-- equation of state: LinearEquationOfState(thermal_expansion=0.01, haline_contraction=0.0)

Oceananigans offers many other options, including the ability to define our
own equation of state, but we’ll keep the model simple. The SeawaterBuoyancy

component deals with buoyancy by combining gravity (with the default Earth
value given here) with density variations. As we’re not interested in salinity
effects for this calculation, we set haline_contraction to 0 (“haline” is essen-
tially a synonym for saline used by oceanographers).

The Model and Initial Conditions
Now that we have all the pieces set up, we can put them together into a model,
the Oceananigans term for the definition of the computational problem, in-
cluding all the physics along with the grid and the boundary conditions:

julia> model = NonhydrostaticModel(;

grid, buoyancy, closure,

boundary_conditions=(T=bc,), tracers=(:T, :S))

NonhydrostaticModel{CPU, RectilinearGrid}(time = 0 seconds, iteration = 0)

|-- grid: 256×1×32 RectilinearGrid{Float64, Periodic, Flat, Bounded}

¶ on CPU with 3×0×3 halo

|-- timestepper: QuasiAdamsBashforth2TimeStepper

|-- tracers: (T, S)

|-- closure: ScalarDiffusivity{ExplicitTimeDiscretization}

(ν=0.05, κ=(T=0.01, S=0.01))

|-- buoyancy: SeawaterBuoyancy with g=9.80665 and

LinearEquationOfState(thermal_expansion=0.01, haline_contraction=0.0)

with -ĝ = ZDirection�

-- coriolis: Nothing
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The package prints a nice summary of the result, including a reminder
of some (but not all) of the features we’re not using, such as the coriolis
force from Earth’s rotation.

The NonhydrostaticModel() function creates a model using the approxima-
tion appropriate to our problem. Oceananigans offers several other choices,
including a hydrostatic model to simulate surface waves.

We use the abbreviated form of passing keyword arguments explained in
“Concise Syntax for Keyword Arguments” on page 154.

Our boundary condition bc doesn’t refer to any particular physical vari-
able; it simply defines a constant field value on the boundaries. The named
tuple assigned to boundary_conditions enforces them on T, the variable used in
Oceananigans for the temperature.

The printed result refers to the CPU ¶, which means that this model
is intended for “normal” machine architectures. The other option is to cal-
culate on GPUs (graphics processing units). The halo refers to the several
points outside the physical grid that the numerical algorithm uses to enforce
the boundary conditions or other constraints.

The final keyword argument, tracers, tells the model to keep track of the
temperature and salinity as those scalar fields are advected around the fluid.
We’re required to include :S even though our equation of state means it will
have no effect.

The fluid layer heated from below defined by our model is physically
unstable, which means that a small perturbation to its initial, motionless state
will be magnified and develop into a state with some form of persistent mo-
tion, driven by the temperature difference and the gravitational field. It is
the development of the instability that we want to study. We need to add
the small perturbation, or else, even though the system is unstable, it will
never move.

The set!() function lets us create any desired initial condition on any of
the fields. We’ll use it to add a small, random perturbation to the tempera-
ture field throughout the fluid volume:

julia> tper(x, y, z) = 0.1 * rand()

tper (generic function with 1 method)

julia> set!(model; T = tper)

The function is spelled with an exclamation point to remind us that it mu-
tates its arguments: it alters the T field in place, and the model as well.

The Simulation
Next we need to create a simulation, using the Simulation() function. This
object will receive the model as its positional argument, along with keyword
arguments for the timestep and when to stop the calculation. It will keep
track of how much simulation time and wall-clock time has elapsed and the
state of all the physical fields. This allows us to continue the simulation after
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the requested start time if we want, save the progress of the simulation in
files, and retrieve the fields for examination and plotting.

julia> simulation = Simulation(model; Δt=0.01, stop_time=1800)

Simulation of NonhydrostaticModel{CPU, RectilinearGrid}(time = 0 seconds, iteration = 0)

|-- Next time step: 10 ms

|-- Elapsed wall time: 0 seconds

|-- Wall time per iteration: NaN years

|-- Stop time: 30 minutes

|-- Stop iteration : Inf

|-- Wall time limit: Inf

|-- Callbacks: OrderedDict with 4 entries:

| |-- stop_time_exceeded => Callback of stop_time_exceeded on IterationInterval(1)

| |-- stop_iteration_exceeded => Callback of stop_iteration_exceeded on IterationInterval(1)

| |-- wall_time_limit_exceeded => Callback of wall_time_limit_exceeded on IterationInterval(1)

| �-- nan_checker => Callback of NaNChecker for u on IterationInterval(100)

|-- Output writers: OrderedDict with no entries�

-- Diagnostics: OrderedDict with no entries

This is a simple call, as model already contains all the details of the prob-
lem. We get a summary of various options for the simulation, most of which
we didn’t use. If you want to use the delta for the time interval in the REPL,
enter \Delta and press TAB.

Before running the simulation, let’s arrange for the velocity and tem-
perature fields to be stored on disk at regular intervals so we can see its de-
velopment over time (if we don’t do this, we’ll see only the final state of the
simulation), as shown in Listing 9-4.

julia> simulation.output_writers[:velocities] =

JLD2OutputWriter(model, model.velocities,

filename="conv4.jld2", schedule=TimeInterval(1))

JLD2OutputWriter scheduled on TimeInterval(1 second):

|-- filepath: ./conv4.jld2

|-- 3 outputs: (u, v, w)

|-- array type: Array{Float32}

|-- including: [:grid, :coriolis, :buoyancy, :closure]�

-- max filesize: Inf YiB

julia> simulation.output_writers[:tracers] =

JLD2OutputWriter(model, model.tracers,

filename="conv4T.jld2", schedule=TimeInterval(1))

JLD2OutputWriter scheduled on TimeInterval(1 second):

|-- filepath: ./conv4T.jld2

|-- 2 outputs: (T, S)

|-- array type: Array{Float32}

|-- including: [:grid, :coriolis, :buoyancy, :closure]�

-- max filesize: Inf YiB

Listing 9-4: Setting up output writers
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Adding elements to the output_writers property of the simulation causes
it to store the results periodically. The JLD2OutputWriter uses the JLD2 file for-
mat, which is a compact way to store multiple Julia data structures in a single
file. It’s a version of the HDF5 format widely used in computational science.
The schedule causes a data dump every 1 second, which, using our timestep,
will be every 100 steps. The information in the result shows which quantities
will be saved: T and S are the temperature and salinity.

With this, we’re ready to run the calculation:

julia> run!(simulation)

[ Info: Initializing simulation...

[ Info: ... simulation initialization complete (6.850 ms)

[ Info: Executing initial time step...

[ Info: ... initial time step complete (80.507 ms).

The REPL will not have anything more to say until it reaches the final
timestep, which in this case will take several hours on a typical personal com-
puter. Then it will indicate that the calculation is complete and return to the
interactive prompt. Chapter 15 explores ways to speed up such calculations
by using parallel processing.

The Results
When an Oceananigans simulation ends, the final state of the fields (the veloc-
ity components and the temperature, in this case) is available as properties
of the model. Listing 9-5 shows how to retrieve them.

julia> using Plots

julia> uF = model.velocities.u;

julia> TF = model.tracers.T;

julia> heatmap(interior(TF, 1:grid.Nx, 1, 1:grid.Nz)';

aspect_ratio=1, yrange=(0, 1.5grid.Nz))

Listing 9-5: Examining the results of a simulation

The velocity and temperature fields are properties of the model. The
heatmap() call will plot the two-dimensional temperature field, but first we
need to turn it into an array with the interior() function. This function con-
verts the Oceananigans field into a numerical array and trims away the halo

points. Its arguments, following the field to convert, are the extents of the
grid in each of the three directions; we enter a 1 to indicate an unused coor-
dinate. In setting the yrange, we’ve accessed another property of the field, its
grid shape. The prime after the array to plot transposes it so that it appears
in its natural orientation, with a vertical gravity.

We would normally run a simulation for just a few timesteps and exam-
ine the fields in this way before running a long calculation, to make sure
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we’ve set it up correctly. If we want to take another look after a few more
timesteps, we can do this:

julia> simulation.stop_time+=10;

julia> run!(simulation);

These commands advance the simulation an additional 10 timesteps, after
which we can repeat the steps in Listing 9-5 to see how things are going.

Returning now to the quantities stored in files, as set up in Listing 9-4,
Listing 9-6 shows how to retrieve the entire history of a field.

julia> uF = FieldTimeSeries("conv4.jld2", "u")

256×1×32×1030 FieldTimeSeries{InMemory} located at

(Face, Center, Center) on CPU

|-- grid: 256×1×32 RectilinearGrid{Float64, Periodic, Flat, Bounded}

on CPU with 3×0×3 halo

|-- indices: (1:256, 1:1, 1:32)�

-- data: 256×1×32×1030 OffsetArray(::Array{Float64, 4},

1:256, 1:1, 1:32, 1:1030) with eltype Float64 with

indices 1:256×1:1×1:32×1:1030

�-- max=7.66057, min=-7.88889, mean=2.79295e-11

Listing 9-6: Retrieving a field from the JLD2 file

The summary of the result shows that the FieldTimeSeries has dimensions
of 256×1×32×1,030, which means that it’s defined on a 2D, 256×32 grid and
evolves over 1,030 timesteps.

After this call the entire history of the x-velocity field and its various
properties are conveniently available. The data structure uF itself takes up
almost no space:

julia> sizeof(uF)

544

The sizeof() function returns the amount of storage, in bytes, occupied by
its argument. The actual data occupies 256 × 32 × 1,030 × 8 = 67,502,080
bytes.

We can plot the horizontal velocity field at any timestep:

julia> using Printf

julia> i = 50;

julia> h50 = heatmap(interior(uF[i], 1:grid.Nx, 1, 1:grid.Nz)';

aspect_ratio=1, yrange=(0, 1.5grid.Nz),

colorbar=:false, ylabel="z",

annotations=[

(0, uF.grid.Nz+15,

text("Horizontal velocity at timestep $i", 12, :left)),

Physics 291

Practical Julia (Sample Chapter) © 8/16/23 by Lee Phillips



(0, uF.grid.Nz+5,

text((@sprintf "Max = %.3g" maximum(uF[i])), 8, :left)),

(100, uF.grid.Nz+5,

text((@sprintf "Min = %.3g" minimum(uF[i])), 8, :left))],

grid=false, axis=false)

We’ve added some labeling to the version in Listing 9-5, annotating
the plot using properties read out from the field. Creating similar plots
for timesteps 100 and 500, adding an xlabel to the last one, and putting
them together with plot(h50, h100, h500; layout=(3, 1)) creates the plot in
Figure 9-6.

Figure 9-6: Results of an Oceananigans simulation

The system evinces the regime called turbulent convection; it’s interest-
ing to observe the emergence of large-scale order from randomness and its
persistent coexistence with the turbulent flow.

In order to make an animation of the simulation, we need to gener-
ate plots at equally spaced time intervals and stitch them together into a
video file. Our simulation used a constant timestep, so in this case, equal
time intervals translates into equal numbers of timesteps. However, that
won’t always be the case. Oceananigans has options for automatically adjusted
timesteps, and we may perform a simulation in stages with differently sized
∆t. It’s convenient, therefore, to have a function that creates a plot given a
time. Since a given time may not correspond to any particular stored field,
but may fall between two consecutive data dumps, we’ll need a function that
determines which stored field is closest to the time requested. The Julia pro-
gram shown in Listing 9-7 retrieves the simulation output and produces a
movie of a specified duration.
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using Oceananigans, Reel, Plots

function heatmap_at_time(F, time, fmin, fmax, duration)

ts = F.times

time = time * ts[end]/duration

i = indexin(minimum(abs.(ts .- time)), abs.(ts .- time))[1] ¶
xr = yr = zr = 1

if F.grid.Nx > 1

xr = 1:F.grid.Nx

end

if F.grid.Ny > 1

yr = 1:F.grid.Ny

end

if F.grid.Nz > 1

zr = 1:F.grid.Nz

end

heatmap(interior(F[i], xr, yr, zr)'; aspect_ratio=1, yrange=(0, 1.5F.grid.Nz),

clim=(fmin, fmax)) ·
end

uF = FieldTimeSeries("conv4.jld2", "u")

const fmin = 0.5minimum(uF) ¸
const fmax = 0.5maximum(uF)

const duration = 30

function plotframe(t, dt)

heatmap_at_time(uF, t, fmin, fmax, duration)

end

uMovie = roll(plotframe; fps=30, duration)

write("uMovie.mp4", uMovie)

Listing 9-7: Creating an animation of an Oceananigans simulation

The heatmap_at_time() function does what’s needed, creating a heatmap
at the time closest to the time in its argument. In this function, F is a field
retrieved with a call to FieldTimeSeries(), as in Listing 9-6. It makes use of
the times property of these objects, which is an array holding all the times at
which the field has been saved. The index i holds the dump corresponding
to the time closest to the supplied time ¶. When making an animation of a
heatmap, we want to use the same mapping from values to colors in each
frame, so our call to heatmap() uses the clim keyword ·.

With this function in place we can create an animation using the Reel

package introduced in “Animations with Reel” on page 206. To work with
that package, we need to define a function of time t and (an unused) dt that
returns a plot corresponding to t: the plotframe() function. The three con-
stants ¸ in the script set the palette limits based on the data and the desired
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total duration of the animation. The palette limits are scaled so that more
details are visible near the beginning of the run, but we can adjust it based
on the features of interest.

NO T E See the online supplement at https://julia.lee-phillips.org for the resulting anima-
tion, along with full-color versions of the figures.

The final call saves the animation as an MP4 file. Other options that will
work with Reel are gif and webm. To create these file types, we merely need to
use the appropriate file ending.

Solving Differential Equations with DifferentialEquations
Since the 18th century, differential equations have been the language of
physical science and engineering, and of the quantitative aspects of other
sciences as well. Julia’s DifferentialEquations package is a massive, state-of-
the-art facility for solving many types of differential equations using a mul-
titude of methods. It incorporates recent research on the use of machine
learning to apply the best line of attack for solving a given equation.

This section introduces the use of DifferentialEquations by solving an
example problem. Interested readers can delve into its detailed documenta-
tion for more information (see “Further Reading” on page 304).

Defining the Physics Problem and Its Differential Equation
As an example, let’s investigate the pendulum. Figure 9-7 diagrams the prob-
lem and defines the string length (L) and the angle (θ).

L
θ

Figure 9-7: The pendulum system

We measure θ counterclockwise from the vertical reference line, which is
dotted in the diagram, and the gravitational acceleration points down.

NO T E The Luxor program that produced the diagram is available in the code section of the
Physics chapter on the online supplement at https://julia.lee-phillips.org.
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A straightforward analysis of the forces on the pendulum bob (the black
circle in the diagram) and Newton’s Second Law leads to the differential
equation

d2θ

dt2
= –

g
L

sin(θ)

which is derived in any introductory general physics text. Here t is time and
g is the gravitational acceleration. The usual next step is to confine the prob-
lem to small angles (≲ 5◦), where sin(θ) ≈ θ, and solve the resulting differen-
tial equation for simple harmonic motion. We’re going to solve the “exact”
pendulum equation numerically, using the DifferentialEquations package.
We’ll be able to examine the solution for any initial θ, up to π radians.

The package works with systems of first-order equations, which means
differential equations limited to first derivatives of the unknown function.
To handle the pendulum equation, therefore, we first need to cast it into the
form of two coupled first-order equations. This first step is also part of many
analytic solution methods. We can proceed easily by defining a new variable:

dθ

dt
= ω

dω

dt
= –

g
L

sin(θ)

Now we’re solving for two functions of time, the angle θ(t) and the angular
velocity ω(t).

Setting Up the Problem
The first step in translating the mathematical problem into a form that
DifferentialEquations can digest is to define a Julia function of four posi-
tional arguments:

du An array for the derivatives of the solutions

u An array for the solution functions

p An array of parameters

t The time

Listing 9-8 is the version for the pendulum problem.

function pendulum!(du, u, p, t)

L, g = p

θ, ω = u

du[1] = ω
du[2] = -g/L * sin(θ)

end

Listing 9-8: The Julia version of the pendulum equation
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This is a mutating function, as indicated by the exclamation point, because
as the calculation progresses, the solution engine mutates the u and du arrays
to hold the results. Here L and g are set through destructuring the array p,
and θ and ω are read from the array u. The solver from DifferentialEquations

will repeatedly call pendulum!() as it builds up the solution, passing in p, t, and
the developing solution arrays themselves.

Solving the Equation System
To calculate the solution, we first define the computational problem and
then pass that problem to the solve() function. The components of the com-
putational problem are the parameter array, the initial conditions, the time
span over which we want the solution, and the function that defines the dif-
ferential equations to be solved, in this example pendulum!(). Other options
include such things as the numerical method to be employed, but in this
simple example we’ll leave those options unspecified. The package generally
does an excellent job of choosing the solution method best suited to the na-
ture of the equations we present to it. Listing 9-9 shows the problem set up
and initiated.

using DifferentialEquations

p = [1.0, 9.8]

# L g <- Parameters

u0 = [deg2rad(5), 0]

# θ ω <- Initial conditions

tspan = (0, 20)

prob = ODEProblem(pendulum!, u0, tspan, p)

sol5d = solve(prob)

Listing 9-9: Solving differential equations using DifferentialEquations

The only two functions in this section from the DifferentialEquations

package are ODEProblem() and solve(). ODEProblem() takes four positional ar-
guments: the function defining the equation system, an array of initial con-
ditions, the time span, and the parameter array. We defined the function
in Listing 9-8 and we define the other three arguments here. Allowing the
solver to pass the parameters as arguments makes it convenient to generate
families of solutions with a range of parameters.

The result returned by ODEProblem() contains the complete solutions of
all functions (in this example, two) bundled into a data type defined in the
package. This data type is designed to make it easy to examine and plot the
solutions, and it contains, in addition to the computed functions, informa-
tion about the problem and the calculation.
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Examining the Solutions
For small angles, the analytic solution to our pendulum problem is

θ(t) = θ0 cos
(√

g
L
t
)

where θ0 is the initial angle. The initial conditions in Listing 9-9 have the
pendulum at rest with a starting angle of 5°, so the small angle approxima-
tion should be valid.

Since we know the analytic solution, we can check the numerical result
against it. Listing 9-10 shows how we can plot one against the other.

using Plots

plot(sol5d; idxs=1, lw=4, lc=:lightgrey, label="Numeric",

legend=:outerright, title="Pendulum at θ0 = 5°")

L, g = p

plot!(t -> u0[1]*cos(sqrt(g/L)*t); xrange=(0, 20),

ls=:dash, lc=:black, label="Analytic")

Listing 9-10: Solving for the small angle case

The first plot() call uses only one data argument, the solution itself,
assigned to sol5d in Listing 9-9. This is neither an array nor a function, yet
plot() seems to know how to display it. The first keyword argument, idxs, re-
quests that (in this case) the first function, θ, is plotted. idxs does not appear
in the documentation for the Plots package, and in fact is not defined in that
package. Thus, it has no effect unless we first import DifferentialEquations.

The plot, shown in Figure 9-8, gives us confidence that we’ve set up the
problem correctly and that the numerical solution methods are working.

Figure 9-8: Checking the small angle solution of the pendulum equation
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Plotting the solution as we did here does not simply plot the solution
arrays. It also interpolates between calculated values in order to generate
a smooth plot. In this case, the solution contains only 83 points, which, if
plotted directly, would make a coarse graph.

Although the solution objects are not arrays, the package defines meth-
ods for indexing that make it convenient to extract the data. If we do want
access to the uninterpolated solution data, we can get it by indexing. Here,
sol5d[1, :] returns a Vector of the 83 points for the first variable, θ, and
sol5d[2, :] for the second, ω. To get the times at which these values are
defined, we use a property: sol5d.t.

Using the solution objects as functions returns the result interpolated
to the time passed as an argument. (We’re using time in this section, but
in other problems the independent variable may be something else.) The
sol5d(1.3) function call returns a Vector of two elements, one for each vari-
able, interpolated to the time 1.3. These functions accept ranges and arrays
as well, so sol5d(0:0.1:1) returns the interpolated solution data at 11 times
from 0 to 1. To extract just the angle variable at these times, we can call
sol5d(0:0.1:1)[1, :]. Controlling the density of the interpolation by using
the functional form of the solution objects can be helpful when making,
for example, scatterplots, where we need to control the density of plotted
points.

How does the solution depend on the initial angle? Redefining u0 to try
two larger initial angles, and proceeding as in Listing 9-10 to generate two
new solutions, we get the results shown in Figure 9-9.

Figure 9-9: The pendulum with larger initial angles
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The 90° solution, with the pendulum string initially horizontal, appears
approximately sinusoidal, but with the frequency around 25 percent lower
than the small angle case. When the initial angle is 175°, the period is nearly
three times the small angle period, and the solution is clearly far from si-
nusoidal. In generating Figure 9-9, we limit the range of the independent
variable by passing another DifferentialEquations-defined keyword to plot():
tspan=(0, 10).

Defining Time-Dependent Parameters
By replacing one or more of the constant parameters in the p array with
functions of time, we can study the system’s response to time-dependent
parameters. In this way we can include inhomogeneous terms in the differ-
ential equations, forcing functions, and time-varying parameters in general.

Let’s find out what happens if we pull up on the string steadily as the
pendulum oscillates. We’ll start at 45° and calculate the solution over 10 sec-
onds, replacing the constant L by a linearly decreasing function of time:

tspan = (0, 10)

u0 = [π/4, 0]

Lt(t) = 1 - 0.999t/10

We need to create a slightly different version of our pendulum() function,
shown in Listing 9-11, that can use the time-dependent string length.

function pendulum2!(du, u, p, t)

L, g = p

θ, ω = u

du[1] = ω
¶ du[2] = -g/L(t) * sin(θ)
end

Listing 9-11: The pendulum function with a time-dependent L

The only change we made to the previous function is replacing L with
L(t) ¶. We proceed just as before. The ODEProblem() function needs a new
parameter array, shown in Listing 9-12, to pass in to pendulum2().

p = [Lt, 9.8]

prob = ODEProblem(pendulum2!, u0, tspan, p)

solLt = solve(prob)

Listing 9-12: Getting the numerical solution with a time-varying L

The ease of generalizing the problem to include a time-varying parame-
ter clarifies the advantages of the parameter-passing approach in Differential

Equations. The result, in Figure 9-10, shows a steadily decreasing period and
amplitude with an increasing angular velocity (ω).
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Figure 9-10: Pulling up the string on the pendulum

We create Figure 9-10 with the following calls:

plot(solLt; idxs=1, label="θ", legend=:topleft, ylabel="θ",
¶ right_margin=13mm)

plot!(twinx(), solLt; idxs=2, label="ω", legend=:topright,

ylabel="ω", ls=:dot)

In the call to plot!(), the first argument, twinx(), creates a subplot over-
lay that shares the horizontal axis with the first plot and draws a new vertical
axis; we use it so the two curves don’t have to share the same scale. We need
some extra room on the right ¶ for the labels on the second vertical axis.
This margin setting requires the import of Plots.PlotMeasures, as explained in
“Working with Plot Settings” on page 101.

Parametric Instability
A child “pumping” a swing in the playground to get it moving is exploiting
a parametric instability. The driver of this instability is the periodic change in
the effective length of the pendulum string. The results of linear theory (the
small angle version of the differential equation that we’re attacking in this
section) tell us that a resonance occurs when the forcing frequency is twice
the natural frequency of the pendulum, which, using our L = 1, is 2√g. If
the string length is perturbed sinusoidally at this frequency, the amplitude
of small oscillations will increase exponentially.

Since we know how to insert any time-dependent function L(t) into the
numerical solution, we can investigate the response of the pendulum to
parametric excitation beyond the small angle approximation. We’ll start
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with a small initial angle, follow the evolution for a longer span, and define a
new function of time for the string length:

const g = 9.8

tspan = (0, 400)

u0 = [π/32, 0]

Lt(t) = 1.0 + 0.1*cos(2*sqrt(g)*t)

Lt(t) will perturb the nominal length of 1 meter by 10 percent at the
frequency of parametric resonance.

Our work proceeds exactly as before, with one adjustment. We use
pendulum2(), defined in Listing 9-11, and set up the problem as in Listing 9-12.
The adjustment is that we need to supply a keyword argument to the solving
function:

solLt = solve(prob; reltol=1e-5)

The reltol parameter adjusts the adaptive timestepping as needed to limit
the local error to the value that we supply. Its default of 0.001 led to a solution
that seemed suspicious, as it was not quite periodic. I generated solutions
with reltol = 1e–4, 1e–5, and 1e–6. The 1e–4 solution looked reasonable, but
the 1e–5 solution was slightly different. As the solution with reltol = 1e–6
looked identical to the one at 1e–5, they’re probably accurate. Figure 9-11
shows the resulting graph of θ versus time.

Figure 9-11: Parametric instability of the finite-angle pendulum

Initially, the amplitude increases exponentially, as predicted by the linear
theory. But we know from our previous solutions that the frequency of the
pendulum decreases with amplitude; therefore, it moves continuously out
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of resonance with the forcing function, and the amplitude decreases back
to close to its initial value. At that point it’s closer to resonance, and the
amplitude again grows exponentially. As the solution shows, the process
repeats.

Combining DifferentialEquations with Measurements
Suppose we want to verify the predictions of our pendulum solutions with
an experiment. There will be some error inherent in the setting of the initial
angle. If we estimate that uncertainty to be one degree, we might think to
state the initial conditions this way (see “Error Propagation with Measure-
ments” on page 280):

using Measurements

u0 = [π/2 ± deg2rad(1), 0]

The function deg2rad() converts from degrees to radians.
We can proceed exactly as before, repeating the procedure shown in

Listings 9-8 and 9-9. A plot of the solution for θ(t) now looks like Figure 9-12.

Figure 9-12: Combining DifferentialEquations with Measurements

Although we don’t tell the plot() function anything about drawing error
bars, they appear in the plot. The plot shows how the error in the angular
position grows, on average, over time. The error doesn’t grow monotoni-
cally, however. It decreases when the exact solution and those at the limits
of the error bound happen to be in phase.
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We generate the solution and plot it in Figure 9-12 as follows:

prob = ODEProblem(pendulum!, u0, tspan, p)

solM = solve(prob)

plot(solM(0:0.1:5)[1, :]; legend=false, lw=2, ylabel="θ", xlabel="t")

Since DifferentialEquations places an error on every point of the solu-
tion, including the points interpolated when creating a plot, we have to use
the technique described in “Examining the Solutions” on page 297 to limit
the number of points plotted; otherwise, the plot becomes too crowded with
error bars and is impossible to interpret.

Conclusion
Although we delved into several physics packages at some length in this
chapter, we really only scratched their surfaces. I hope, however, that the
introductions here are sufficient to help you assess whether any of the pack-
ages explored in this chapter might be a good choice for your projects and
to show you how to get started.

Another purpose of this chapter is to serve as an introduction to a su-
perpower of Julia and the Julia ecosystem. In several examples we were able
to combine the abilities of two or three packages without making any par-
ticular arrangements to do so. We made plots and typeset expressions that
contained units, and saw that they were handled sensibly. We handed the
output of a differential equation solver to a plotting function from a differ-
ent package, and it extracted the relevant data and plotted it. We solved dif-
ferential equations with error estimates in their initial conditions, and the
error was propagated through the solution correctly. We plotted this result,
and, as if by magic, the solution displayed error bars.

We wrote scripts and programs that combined the abilities of five pack-
ages in various combinations, giving them capabilities neither envisioned
nor planned by their authors. Most of these packages were written without
any knowledge of the others that we combined them with. The authors of
these packages wrote their code in a generic way that allows Julia’s type sys-
tem and its method of multiple dispatch to enable its functions to work with
data types defined in other packages.

Julia initially attracted attention as a language that was as easy to pick up
and be productive in as a high-level interpreted language, but one that was
fast enough for the most demanding scientific work: “as easy as Python and
as fast as Fortran.” The second reason for Julia’s increasing adoption in the
sciences is its ability to combine the abilities of disparate packages with no
additional work on the part of the application programmer. Julia creators
and package authors refer to this property as the composability of packages,
in analogy with the composition of functions.
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FURTHER READING

• The GitHub community “Julia’s Physics Ecosystem” (https://julia
physics.github.io/latest/ecosystem/) maintains a convenient list of
packages related to all areas of physics, and includes related
packages for mathematics and plotting.

• The Unitful package is available at https://github.com/Painter
Qubits/Unitful.jl.

• See https://www.simscale.com/blog/2017/12/nasa-mars-climate
-orbiter-metric/ for details on how a mixup in units destroyed the
Mars Climate Orbiter.

• The documentation for UnitfulLatexify is at https://gustaphe
.github.io/UnitfulLatexify.jl/dev/.

• The Measurements package resides at https://github.com/Julia
Physics/Measurements.jl.

• To get started with Oceananigans, see https://clima.github.io/
OceananigansDocumentation/stable/quick_start/.

• The DifferentialEquations.jl documentation is available at
https://diffeq.sciml.ai/stable/.

• Animations, color images, and supplementary code for this chapter
are available at https://julia.lee-phillips.org.

• You can find simple examples of the use of DifferentialEquations.jl
at https://lwn.net/Articles/835930/ and https://lwn.net/Articles/
834571/.

• The parametric instability of a pendulum is demonstrated in the video
at https://www.youtube.com/watch?v=dGE_LQXy6c0.

• The theory of parametric resonance for the general harmonic oscillator
is treated at https://www.lehman.edu/faculty/dgaranin/Mechanics/
Parametric_resonance.pdf.
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