






































































to combine the abilities of two or three packages without making any par-
ticular arrangements to do so. We made plots and typeset expressions that
contained units, and saw that they were handled sensibly. We handed the
output of a differential equation solver to a plotting function from a differ-
ent package, and it extracted the relevant data and plotted it. We solved dif-
ferential equations with error estimates in their initial conditions, and the
error was propagated through the solution correctly. We plotted this result,
and, as if by magic, the solution now displayed error bars.

We wrote scripts and programs that combined the abilities of five pack-
ages in various combinations, giving them capabilities neither envisioned
nor planned by their authors. Most of these packages were written without
any knowledge of the others that we combined them with. The authors of
these packages wrote their code in a generic way that allows Julia’s type sys-
tem and its method of multiple dispatch to enable its functions to work with
data types defined in other packages.

Julia initially attracted attention as a language that was as easy to pick up
and be productive in as a high-level interpreted language, but one that was
fast enough for the most demanding scientific work: as “easy as Python and
as fast as Fortran.” The second reason for Julia’s increasing adoption in the
sciences is its ability to combine the abilities of disparate packages with no
additional work on the part of the application programmer. Julia creators
and package authors refer to this property as the composability of packages,
in analogy with the composition of functions.

FURTHER READING

• The GitHub community “Julia’s Physics Ecosystem”
(https://juliaphysics.github.io/latest/ecosystem/) maintains a
convenient list of packages related to all areas of physics, and
includes related packages for mathematics and plotting.

• The Unitful package is available at
https://github.com/PainterQubits/Unitful.jl.

• See https://www.simscale.com/blog/2017/12/
nasa-mars-climate-orbiter-metric/ for details on how a mixup in units
destroyed the Mars Climate Orbiter.

• The documentation for UnitfulLatexify is at
https://gustaphe.github.io/UnitfulLatexify.jl/dev/.

• The Measurements package resides at
https://github.com/JuliaPhysics/Measurements.jl.

• To get started with Oceananigans, see https:
//clima.github.io/OceananigansDocumentation/stable/quick_start/.

• The DifferentialEquations.jl documentation is available at
https://diffeq.sciml.ai/stable/.

• Animations, color images, and supplementary code for this chapter
are available at https://julia.lee-phillips.org.

308 Chapter 9

Practical Julia (Sample Chapter) © 4/28/23 by Lee Phillips

https://juliaphysics.github.io/latest/ecosystem/
https://github.com/PainterQubits/Unitful.jl
https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/
https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/
https://gustaphe.github.io/UnitfulLatexify.jl/dev/
https://github.com/JuliaPhysics/Measurements.jl
https://clima.github.io/OceananigansDocumentation/stable/quick_start/
https://clima.github.io/OceananigansDocumentation/stable/quick_start/
https://diffeq.sciml.ai/stable/
https://julia.lee-phillips.org



