
2
LINUX AS A FORENSIC

ACQUISITION PLATFORM

This chapter describes Linux as a plat-
form for performing digital forensic acqui-

sition and discusses its various advantages
and drawbacks. I also examine the acceptance

of Linux and open source software within the digital
forensics community, and the final section provides
an overview of the relevant Linux fundamentals you’ll
need to understand subsequent sections of this book.

The examples shown in this book primarily use Ubuntu Linux Server
version 16.04 LTS (supported until April 2021) with the Bourne Again
shell (Bash), version 4.3.x. The examples should also work on other
Linux distributions and other OSes, such as OS X or Windows, as long
as you use the same or newer tool versions and adjust the device names.
Throughout this book, the words command line, shell, and Bash are used
interchangeably.

Linux and OSS in a Forensic Context
The growing popularity of open source software (OSS) like Linux has made it
important as a platform for performing digital forensics. Many researchers
have discussed the advantages of using OSS for satisfying the Daubert guide-
lines for evidential reliability.1 Brian Carrier, author of Sleuth Kit, explored
the legal arguments for using open source forensic tools and suggested that
parts of forensic software (but not necessarily all) should be made open
source.2

The primary advantage of using OSS in a forensic context is trans-
parency. Unlike proprietary commercial software, the source code can be
reviewed and openly validated. In addition, academic researchers can study
it and build on the work of others in the community. Open source forensic
software applications have become the tools and building blocks of forensic
science research. There are also disadvantages to using OSS and situations
where its use doesn’t make sense. In particular, the openness of the open
source community may in some cases conflict with the confidential nature
of ongoing forensic investigations. Both the advantages and disadvantages of
Linux and OSS are discussed in the following sections.

Advantages of Linux and OSS in Forensics Labs
The public availability of OSS means it is accessible to everyone. It is not
restricted to those who have purchased licenses or signed nondisclosure
agreements. OSS is freely available for download, use, examination, and
modification by anyone interested, and no licensing fees or usage costs are
involved.

Having access to the source code allows you to customize and facili-
tate integration with other software, hardware, and processes in a forensic
lab. This source-level access increases the possibilities for automating and
scripting workloads. Automation reduces the amount of human interaction
needed, which limits the risk of human error and frees up these human
resources so they can be used elsewhere.

Automation is essential in labs with high volumes of casework to foster
optimization and process streamlining. Because you can freely modify the
source code, OSS can be customized to meet the requirements of a partic-
ular forensic lab. Command line software especially allows you to link mul-
tiple tasks and jobs in pipelines with shell scripts to complete an end-to-end
process.

Support for OSS has several advantages. The ad hoc community support
can be excellent, and mailing lists and chat forums can answer calls for help
within minutes. In some cases, quick implementation of patches, bug fixes,
and feature requests can occur.

1. Erin Kenneally, “Gatekeeping Out of the Box: Open Source Software as a Mechanism to
Assess Reliability for Digital Evidence,” Virginia Journal of Law and Technology 6, no. 13 (2001).
2. Brian Carrier, “Open Source Digital Forensic Tools: The Legal Argument” [technical report]
(Atstake Inc., October 2002).

48 Chapter 2

Linux and OSS are ideal for an academic forensic lab setting, because
they use open, published standards rather than closed or proprietary stan-
dards. OSS development communities work with competing groups instead
of against them. Learning from others, copying code and ideas from others
(with due attribution), and building on the work of others are encouraged
and are the basis for learning and gaining knowledge.

The vendor independence that OSS offers prevents vendor product
lock-in and fosters interoperability and compatibility between technologies
and organizations. This makes it easier to change the software over time,
because individual components can be swapped out with new or alternative
technologies without affecting the systems and processes as a whole.

Disadvantages of Linux and OSS in Forensics Labs
The disadvantages of Linux and OSS provide arguments in support of closed
proprietary software. Commercial tool implementations often provide bene-
fits and advantages in this area.

The open source community support model is not guaranteed to be
reliable, accurate, or trustworthy. The quality of the answers provided by
the community can vary greatly; some answers are excellent, whereas others
might be wrong or even dangerous. Often no formal support organization
exists to help. In situations in which 24/7 support must be guaranteed, com-
mercial providers have an advantage.

Support in the open source world is as transparent as the software,
visible for all to see. However, in a forensic lab setting, casework and inves-
tigations may be sensitive or confidential. Reaching out to the public for
support could reveal or compromise details of an ongoing investigation.
Therefore, information security and privacy are issues in the open source
support model.

Interoperability with proprietary technology poses difficulties with open
source interfaces and APIs. Proprietary technologies that are not public are
often reverse engineered, not licensed. Reverse engineering efforts are often
incomplete, are at risk of incorrectly implementing a particular technology,
and may take a long time to implement.

Free OSS is often a volunteer development effort, and software may be
in a perpetual state of development. Some projects may be abandoned or
die from neglect. Other projects may experience forks in the code where
some developers decide to copy an existing code base and take it in a differ-
ent direction from the original developers.

Free OSS can be rough around the edges. It may be buggy or difficult
to learn or use. It may be poorly documented (the source code might be the
only documentation). Unlike with commercial software, usually no train-
ing is provided with the software product. It takes time and effort to learn
Unix/Linux; in particular, the command line is not as intuitive as an all-GUI
environment. Many experience a learning curve when they first enter the
free, open source world, not just for the software but also for the general
attitude and mind-set of the surrounding community.

Linux as a Forensic Acquisition Platform 49

Commercial software vendors in the forensics community provide a
certain degree of defensibility and guarantees for the proper functioning
of their software. Some forensic companies have even offered to testify in
court to defend the results provided by their software products. In the free,
open source community, no one is accountable or will take responsibility for
the software produced. It is provided “as is” and “use at your own risk.”

Clearly, OSS is not appropriate for every situation, and that is not
implied in this book. In many of the examples throughout, OSS is more
useful for educational purposes and to show how things work than it is a
viable alternative to professional commercial forensic software.

Linux Kernel and Storage Devices
Traditional Unix systems, from which Linux inherits its philosophy, were
designed in a way that everything on them is a file. Each file is designated
as a specific type, which includes regular files and directories, block devices,
character devices, named pipes, hard links, and soft/symbolic links (similar
to LNK files in Windows). On the examiner workstation, files of interest to
forensic investigators are the block device files of attached subject disks that
potentially contain forensic evidence. This section describes Linux devices—
in particular, block devices for storage media.

Kernel Device Detection
Unix and Linux systems have a special directory called /dev, which stores
special files that correspond to devices understood by the kernel. Original
Unix and Linux systems required manual creation of device files in the
/dev directory (using the mknod command) or had scripts (MAKEDEV) to create
devices on boot or when required. With the arrival of plug-and-play hard-
ware, a more dynamic approach was needed, and devfs was created to auto-
matically detect new hardware and create device files. The requirement to
interact better with userspace scripts and programs led to the development
of udev, which replaced devfs. Today, udev has been merged into systemd and
runs a daemon called systemd-udevd.

When a new device is attached to (or removed from) a host, an inter-
rupt notifies the kernel of a hardware change. The kernel informs the udev

system, which creates appropriate devices with proper permissions, executes
setup (or removal) scripts and programs, and sends messages to other dae-
mons (via dbus, for example).

To observe udev in action, use the udevadm tool in monitor mode:

udevadm monitor

monitor will print the received events for:

UDEV - the event that udev sends out after rule processing

KERNEL - the kernel uevent

KERNEL[7661.685727] add /devices/pci0000:00/0000:00:14.0/usb1/1-14 (usb)

KERNEL[7661.686030] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0

50 Chapter 2

(usb)

KERNEL[7661.686236] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/

host9 (scsi)

KERNEL[7661.686286] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/

host9/scsi_host/host9 (scsi_host)

...

KERNEL[7671.797640] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/

host9/target9:0:0/9:0:0:0/block/sdf (block)

KERNEL[7671.797721] add /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/

host9/target9:0:0/9:0:0:0/block/sdf/sdf1 (block)

...

Here a disk has been plugged into a USB port, and udev has managed
the setup of all the appropriate device files and links.

The udevadm command can also be used to determine a list of the associ-
ated files and paths for attached devices. For example:

udevadm info /dev/sdf

P: /devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/host9/target9:0:0/9:0:0:0/

block/sdf

N: sdf

S: disk/by-id/ata-ST2000DL003-9VT166_5YD83QVW

S: disk/by-id/wwn-0x5000c50048d79a82

S: disk/by-path/pci-0000:00:14.0-usb-0:14:1.0-scsi-0:0:0:0

E: DEVLINKS=/dev/disk/by-path/pci-0000:00:14.0-usb-0:14:1.0-scsi-0:0:0:0 /dev/disk/

by-id/wwn-0x5000c50048d79a82 /dev/disk/by-id/ata-ST2000DL003-9VT166_5YD83QVW

E: DEVNAME=/dev/sdf

E: DEVPATH=/devices/pci0000:00/0000:00:14.0/usb1/1-14/1-14:1.0/host9/target9:0:0/

9:0:0:0/block/sdf

E: DEVTYPE=disk

E: ID_ATA=1

...

Understanding the Linux device tree is important when you’re perform-
ing forensic acquisition and analysis activities. Knowing which devices are
part of a local investigator’s machine, which devices are the suspect drives,
which device is the write blocker, and so on is crucial when you’re running
forensic commands and collecting information from a device.

Storage Devices in /dev
Attached drives will appear as block devices in the /dev directory when
they’re detected by the kernel. Raw disk device files have a specific nam-
ing convention: sd* for SCSI and SATA, hd* for IDE, md* for RAID arrays,
nvme*n* for NVME drives, and other names for less common or proprietary
disk device drivers.

Individual partitions discovered by the kernel are represented by
numbered raw devices (for example, hda1, hda2, sda1, sda2, and so forth).

Linux as a Forensic Acquisition Platform 51

Partition block devices represent entire partitions as a contiguous sequence
of disk sectors. A partition typically contains a filesystem, which can be
mounted by the kernel and made available to users as a normal part of the
directory tree. Most forensic tools can (and should) examine raw devices
and partition devices without having to mount the filesystem.

Other Special Devices
Several other devices are useful to know for the examples in this book.
The bit bucket, /dev/null, discards any data written to it. A steady stream
of zeros is provided when accessing /dev/zero. The random number gener-
ator, /dev/random, provides a stream of random data when accessed. Tape
drives typically start with /dev/st, and you can access other external media via
/dev/cdrom or /dev/dvd (these are often symbolic links to /dev/sr*). In some
cases, devices are accessed through the generic SCSI device driver interface
/dev/sg*.

Other special pseudo devices include /dev/loop* and /dev/mapper/*
devices. These devices are discussed in more detail throughout the book.

Linux Kernel and Filesystems
Filesystems organize storage into a hierarchical structure of directories
(folders) and files. They provide a layer of abstraction above the block
devices.

Kernel Filesystem Support
The Linux kernel supports a large number of filesystems (for a list, see
https://en.wikipedia.org/wiki/Category:Linux_kernel-supported_file_systems),
which can be useful when performing some forensics tasks. However, file-
system support is not necessary when performing forensic acquisition,
because the imaging process is operating on the block device below the
filesystem and partition scheme.

To provide a consistent interface for different types of filesystems, the
Linux kernel implements a Virtual File System (VFS) abstraction layer.
This allows mounting of regular storage media filesystems (EXT*, NTFS,
FAT, and so on), network-based filesystems (nfs, sambafs/smbfs, and so
on), userspace filesystems based on FUSE,3 stackable filesystems (encryptfs,
unionfs, and so on), and other special pseudo filesystems (sysfs, proc, and
so on).

The Linux Storage Stack Diagram, shown in Figure 2-1, helps you
understand the relationship among filesystems, devices, device drivers, and
hardware devices within the Linux kernel.

3. FUSE is a userspace filesystem implementation (see https://en.wikipedia.org/wiki/Filesystem_in_
Userspace).

52 Chapter 2

https://en.wikipedia.org/wiki/Category:Linux_kernel-supported_file_systems
https://en.wikipedia.org/wiki/Filesystem_in_Userspace
https://en.wikipedia.org/wiki/Filesystem_in_Userspace

Figure 2-1: The Linux Storage Stack Diagram (https://www.thomas-krenn.com/en/wiki/
Linux_Storage_Stack_Diagram, used under CC Attribution-ShareAlike 3.0 Unported)

Mounting Filesystems in Linux
An often-misunderstood concept is the difference between an attached disk
device and a mounted disk device. A device does not need to be mounted to
acquire it or even to access it with forensic analysis tools. Forensic tools that
operate directly on block devices will have access to attached disks without
mounting them through the OS.

Linux as a Forensic Acquisition Platform 53

https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram
https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Filesystems that reside on disk devices in Unix and Linux require
explicit mounting before being accessible as a regular directory structure.
Mounting a filesystem simply means it is made available to use with standard
file access tools (file managers, applications, and so on), similar to drive
letters in the DOS/Windows world. Linux doesn’t use drive letters; mounted
disks become part of the local filesystem and are attached to any chosen part
of the filesystem tree. This is called the filesystem’s mount point. For example,
the following command mounts a USB stick on an investigator system using
(/mnt) as the mount point:

mount /dev/sdb1 /mnt

To physically remove a mounted disk in Linux, unmount the filesystem
first to prevent corruption of the filesystem. You can use the umount com-
mand (that is umount, not unmount) with either the device name or the mount
point. These two commands perform the same action to unmount a disk
filesystem:

umount /dev/sdb1

umount /mnt

After the filesystem is unmounted, the raw disk is still visible to the ker-
nel and accessible by block device tools, even though the filesystem is not
mounted. An unmounted disk is safe to physically detach from an investiga-
tor’s acquisition system.

Don’t attach or mount suspect drives without a write blocker. There is a
high risk of modifying, damaging, and destroying digital evidence. Modern
OSes will update the last-accessed timestamps as the files and directories
are accessed. Any userspace daemons (search indexers, thumbnail genera-
tors, and so on) might write to the disk and overwrite evidence, filesystems
might attempt repairs, journaling filesystems might write out journal data,
and other human accidents might occur. You can mount a filesystem while
using a write blocker, and it will be accessible in the same way as a regular
filesystem but in a read-only state, ensuring digital evidence is protected.

Accessing Filesystems with Forensic Tools
When you’re using forensic tools, such as Sleuth Kit, dcfldd, foremost, and
others, you can access the filesystem (without mounting) by using the cor-
rect block device representing the partition where the filesystem resides. In
most cases, this will be a numbered device, such as /dev/sda1, /dev/sda2, or
/dev/sdb1, and so on, as detected by the Linux kernel.

54 Chapter 2

In cases where the Linux kernel does not detect the filesystem, you may
need to explicitly specify it. A filesystem will not be correctly detected for any
of the following reasons:

• The filesystem is not supported by the host system (missing kernel mod-
ule or unsupported filesystem).

• The partition table is corrupted or missing.

• The partition has been deleted.

• The filesystem offset on the disk is unknown.

• The filesystem needs to be made accessible (unlock device, decrypt par-
tition, and so on).

In later sections of the book, I’ll explain techniques that use loop
devices to access partitions and filesystems that are not automatically
detected by the Linux kernel or various forensic tools.

Linux Distributions and Shells
When you’re creating an investigator workstation to perform digital forensic
acquisition or analysis work, it’s useful to understand the basic construction
or composition of a Linux system.

Linux Distributions
The term Linux technically refers only to the kernel, which is the actual
OS.4 The graphical interface, tools and utilities, and even the command
line shell are not Linux but parts of a Linux distribution. A distribution is
a functional package that typically contains the Linux kernel, installers
and package managers (usually unique to the distribution), and various
additional programs and utilities (including standard applications, such as
Office suites, web browsers, or email/chat clients). There is only one official
Linux kernel, but there are many Linux distributions—for example, Red
Hat, SUSE, Arch, and Debian, among others. There are also many deriva-
tive distributions. For example, Ubuntu is a derivative based on Debian,
CentOS is based on Red Hat, and Manjaro is based on Arch. For a compre-
hensive list of distributions (and other non-Linux, open source OSes), visit
http://distrowatch.com/ .

Multiple components make up the graphic interface of various Linux
distributions and are useful to understand. The X11 window system is a dis-
play server that interacts with the graphics hardware and provides an inter-
face to the X11 graphics primitives (Wayland is a newer alternative to X11).
A window manager controls movement, resizing, placement, and other
windows management on a system. Some examples of window managers

4. There is some naming controversy regarding the inclusion of GNU with Linux, see
https://en.wikipedia.org/wiki/GNU/Linux_naming_controversy.

Linux as a Forensic Acquisition Platform 55

http://distrowatch.com/
https://en.wikipedia.org/wiki/GNU/Linux_naming_controversy

include Compiz, Mutter, and OpenBox, and you can use them without a
desktop environment. Desktop environments provide the look and feel of a
distribution and operate on top of the window manager. Examples of pop-
ular desktops are Gnome, KDE, Xfce, and Mate. The graphics environment
you choose for your forensic investigator’s workstation can be based on your
personal preference; it doesn’t have any impact on the evidence you collect
or analyze. The examples shown in this book were performed on a system
without a GUI (Ubuntu Server version).

The Shell
The shell is a command prompt that humans and/or machines use to sub-
mit commands to instruct and control an OS. The shell starts or stops pro-
grams, installs software, shuts down a system, and performs other work.
Arguably, the command shell offers more powerful features and possibili-
ties than graphical environments.

The examples in this book use the command line environment. Some
GUI equivalents or GUI frontends to the command line tools may exist, but
they are not covered in this book.

The most common shell in use today, and the default in most Linux
distributions, is Bash. The examples in this book use Bash but may also work
on other shells (zsh, csh, and so on).

Command Execution
The shell is simply another program that runs on a system. Human users
interface with it in the form of typed commands, and machines interface
with it in the form of executed shell scripts.

When human users enter commands, they usually type them into the
prompt and then press ENTER or RETURN. There may or may not be any
output, depending on the program run and the configuration of the shell.

Piping and Redirection
A useful feature of the Unix/Linux command line is the ability to pass
streams of data to programs and files using piping and redirection. This is
somewhat similar to drag-and-drop and copy/paste in graphical environ-
ments, but with much more flexibility.

A program can receive data from the output of other programs or
from files on the filesystem. A program can also output data to the input
of another program or send it to a file on the filesystem.

The following examples illustrate tool.sh redirecting output into file.txt,
receiving input from file.txt, and piping output from tool.sh to the input of
othertool.sh:

$ tool.sh > file.txt

$ tool.sh < file.txt

$ tool.sh | othertool.sh

56 Chapter 2

This piping and redirection mechanism is not limited to single com-
mands or files and can be chained in a sequence with multiple programs:

$ tool.sh < file.txt | othertool.sh | lasttool.sh > lastfile.txt

Pipelines and redirection are used extensively throughout this book.
They allow you to complete multiple tasks using a single line of commands,
and they facilitate scripting and automation, eliminating the need for
human interaction. The examples in this book use piping and redirection
to acquire images of storage media, move data between forensic programs,
and save evidential information of interest in files.

Closing Thoughts
In this chapter, I discussed the use of Linux as a viable platform to perform
forensic acquisition tasks and covered both its advantages and disadvantages.
I provided a review of Linux distributions and how the Linux kernel works. I
showed the concept of devices and filesystems and the use of shells, piping,
and redirection from the perspective of the forensic examiner. You now
have the Linux knowledge needed to understand the examples in the rest
of the book.

Linux as a Forensic Acquisition Platform 57

