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A CASE STUDY: CLASS IFY ING

AUDIO SAMPLES

Let’s bring together everything that you’ve
learned so far in the book. We’ll be looking

at a single case study. Here’s our scenario:
We are data scientists, and our boss has tasked

us with building a classifier for audio samples stored
as .wav files. We’ll begin with the data itself. We first
want to build some basic intuition for how it’s struc-
tured. From there, we’ll build augmented datasets for
training models.

The first dataset uses the sound samples themselves, a 1D dataset. You’ll
see that this approach isn’t as successful as we’d like it to be. We’ll then turn
the audio data into images to allow us to explore 2D CNNs. This change of
representation will lead to a big improvement inmodel performance. Finally,
we’ll use an ensemble of models to leverage the relative strengths and weak-
nesses of the individual models to boost overall performance still more.
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Building the Dataset
There are 10 classes in our dataset, which consists of 400 samples total,
40 samples per class, each 5 seconds long. We’ll assume we cannot get any
more data because it’s time-consuming and expensive to record the samples
and label them. We must work with the data we are given and no more.

Throughout this book, I’ve consistently preached about the necessity
of having a good dataset. We’ll assume that the dataset we’ve been handed
is complete in the sense that our system will encounter only types of sound
samples in the dataset; there will be no unknown class or classes. Addition-
ally, we’ll assume that the balanced nature of the dataset is real, and all classes
are indeed equally likely.

The audio dataset we’ll use is called ESC-10. For a complete descrip-
tion, see “ESC: Dataset for Environmental Sound Classification” by Karol J.
Piczak (2015). The dataset is available at https://github.com/karoldvl/ESC-50,
but it needs to be extracted from the larger ESC-50 dataset, which doesn’t
have a license we can use. The ESC-10 subset does.

Let’s do some preprocessing to extract the ESC-10 .wav files from the
larger ESC-50 dataset. Download the single ZIP file version of the dataset
from the preceding URL to the src/chapter_14 directory and expand it. This
will create a directory called ESC-50-master. Then, use the code in Listing 12-1
to build the ESC-10 dataset from it.

extract_esc10.py import sys

import os

import shutil

classes = {

"rain":0,

"rooster":1,

"crying_baby":2,

"sea_waves":3,

"clock_tick":4,

"sneezing":5,

"dog":6,

"crackling_fire":7,

"helicopter":8,

"chainsaw":9,

}

with open("ESC-50-master/meta/esc50.csv") as f:

lines = [i[:-1] for i in f.readlines()]

lines = lines[1:]

os.system("rm -rf ../data/audio/ESC-10")

os.system("mkdir ../data/audio/ESC-10")

os.system("mkdir ../data/audio/ESC-10/audio")
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meta = []

for line in lines:

t = line.split(",")

if (t[-3] == 'True'):

meta.append("../data/audio/ESC-10/audio/%s %d" % (t[0],classes[t[3]]))

src = "ESC-50-master/audio/"+t[0]

dst = "../data/audio/ESC-10/audio/"+t[0]

shutil.copy(src, dst)

with open("../data/audio/ESC-10/filelist.txt","w") as f:

for m in meta:

f.write(m+"\n")

Listing 12-1: Building the ESC-10 dataset

The code uses the ESC-50 metadata to identify the sound samples that
belong to the 10 classes of the ESC-10 dataset and then copies them to the
ESC-10/audio directory. It also writes a list of the audio files to filelist.txt. Af-
ter running this code, we’ll use only the ESC-10 files.

If all is well, we should now have 400 five-second .wav files, 40 from each
of the 10 classes: rain, rooster, crying baby, sea waves, clock tick, sneezing,
dog, crackling fire, helicopter, and chainsaw. We’ll politely refrain from ask-
ing our boss exactly why she wants to discriminate between these particular
classes of sound.

Augmenting the Dataset
Our first instinct should be that our dataset is too small. After all, we have
only 40 examples of each sound, and some of those will need to be held
back for testing, leaving even fewer per class for training.

We could resort to k-fold validation, but in this case, we’ll instead opt
for data augmentation. So, how do we augment audio data?

Recall, the goal of data augmentation is to create new data samples that
could plausibly come from the classes in the dataset. With images, we can
make obvious changes like shifting, flipping left and right, and so on. With
continuous vectors, we’ve seen how to use PCA to augment the data in
Chapter 2. To augment the audio files, we need to think of steps we can
take to produce new files that still sound like the original class. Four thoughts
come to mind.

First, we can shift the sample in time, much as we can shift an image
to the left or right a few pixels. Second, we can simulate a noisy environ-
ment by adding a small amount of random noise to the sound itself. Third,
we can shift the pitch of the sound, and make it higher or lower by a small
amount; this is known as pitch shifting. Finally, we can lengthen or compress
the sound in time. This is known as time shifting.

Doing all this sounds complicated, especially if we haven’t worked with
audio data before. In practice, being presented with unfamiliar data is a very
real possibility; we don’t all get to choose what we need to work with.

A Case Study: Classifying Audio Samples 317

Practical Deep Learning, 2nd edition (Sample Chapter) © 2025 by Ronald T. Kneusel



Fortunately for us, we’re working in Python, and the Python community
is vast and talented. It turns out that adding one library, librosa, to our sys-
tem will allow us to easily perform time stretching and pitch shifting. Let’s
install the library:

$ sudo pip3 install librosa

With the necessary library installed, we can augment the ESC-10 dataset
with the code in Listing 12-2 (make_augmented_audio.py).

import os

import random

import numpy as np

from scipy.io.wavfile import read, write

import librosa as rosa

N = 8

os.system("rm -rf ../data/audio/ESC-10/augmented; mkdir ../data/audio/ESC-10/augmented")

os.system("mkdir ../data/audio/ESC-10/augmented/train ../data/audio/ESC-10/augmented/test")

src_list = [i[:-1] for i in open("../data/audio/ESC-10/filelist.txt")]

z = [[] for i in range(10)]

for s in src_list:

_,c = s.split()

z[int(c)].append(s)

train = []

test = []

for i in range(10):

p = z[i]

random.shuffle(p)

test += p[:8]

train += p[8:]

random.shuffle(train)

random.shuffle(test)

augment_audio(train, "train")

augment_audio(test, "test")

Listing 12-2: Augmenting the ESC-10 dataset, part 1

This code loads the necessary modules, including the librosa module,
which we’ll import as rosa, and two functions from the SciPy wavfile module
that let us read and write NumPy arrays as .wav files.

We set the number of samples per class that we’ll hold back for testing
(N = 8) and create the output directory where the augmented sound files
will reside (augmented). Then we read the file list we created with Listing 12-1.
Next, we create a nested list (z) to hold the names of the audio files associ-
ated with each of the 10 classes.
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Using the list of files per class, we pull it apart and create train and test

file lists. Notice that we randomly shuffle the list of files per class and the
final train and test lists. This code follows the convention we discussed in
Chapter 1 of separating train and test first, then augmenting.

We can augment the train and test files by calling augment_audio. This
function is in Listing 12-3.

def augment_audio(src_list, typ):

flist = []

for i, s in enumerate(src_list):

f, c = s.split()

wav = read(f) # (sample rate, data, type) ¶
base = os.path.abspath("../data/audio/ESC-10/augmented/%s/%s"

% (typ, os.path.basename(f)[:-4]))

fname = base+".wav"

write(fname, wav[0], wav[1]) ·
flist.append("%s %s" % (fname, c))

for j in range(19):

d = augment(wav)

fname = base+("_%04d.wav" % j)

write(fname, wav[0], d.astype(wav[1].dtype)) ¸
flist.append("%s %s" % (fname, c))

random.shuffle(flist)

with open("../data/audio/ESC-10/augmented_%s_filelist.txt" % typ,"w") as f:

for z in flist:

f.write("%s\n" % z)

Listing 12-3: Augmenting the ESC-10 dataset, part 2

The function loops over all the filenames in the given list (src_list),
which will be either train or test. The filename is separated from the class
label, and then the file is read from disk ¶. As indicated in the comment,
wav is a list of three elements. The first is the sampling rate in Hz (cycles per
second). This is how often the analog waveform was digitized to produce
the .wav file. For ESC-10, the sampling rate is always 44,100 Hz, which is the
standard rate for a compact disc. The second element is a NumPy array con-
taining the actual digitized sound samples. These are the values we’ll aug-
ment to produce new data files.

After setting up some output pathnames, we write the original sound
sample to the augmented directory ·. Then, we start a loop to generate 19
more augmented versions of the current sound sample. The augmented
dataset, as a whole, will be 20 times larger, for a total of 8,000 sound files,
6,400 for training and 1,600 for testing. Note, the sound samples for an aug-
mented source file are assigned to d. The new sound file is written to disk by
using the sample rate of 44,100 Hz and the augmented data matching the
data type of the source ¸.

As we create the augmented sound files, we also keep track of the file-
name and class and write them to a new file list. Here typ is a string indicat-
ing train or test.
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This function calls yet another function, augment. This is the function
that generates an augmented version of a single sound file by randomly ap-
plying a subset of the four augmentation strategies mentioned previously:
shifting, noise, pitch shifting, or time shifting. Some or all of these might be
used for any call to augment. Listing 12-4 shows the augment function itself.

def augment(wav):

sr = wav[0]

d = wav[1].astype("float32")

¶ if (random.random() < 0.5):

s = int(sr/4.0*(np.random.random()-0.5))

d = np.roll(d, s)

if (s < 0):

d[s:] = 0

else:

d[:s] = 0

· if (random.random() < 0.5):

d += 0.1*(d.max()-d.min())*np.random.random(d.shape[0])

¸ if (random.random() < 0.5):

pf = 20.0*(np.random.random()-0.5)

d = rosa.effects.pitch_shift(d, sr=sr, n_steps=pf)

¹ if (random.random() < 0.5):

rate = 1.0 + (np.random.random()-0.5)

d = rosa.effects.time_stretch(d, rate=rate)

if (d.shape[0] > wav[1].shape[0]):

d = d[:wav[1].shape[0]]

else:

w = np.zeros(wav[1].shape[0], dtype="float32")

w[:d.shape[0]] = d

d = w.copy()

return d

Listing 12-4: Augmenting the ESC-10 dataset, part 3

This function separates the samples (d) from the sample rate (sr) and
makes sure the samples are floating-point numbers. For ESC-10, the source
samples are all of type int16 (signed 16-bit integers). Next come four if state-
ments. Each asks for a single random float, and if that float is less than 0.5,
we execute the body of the if. This means that we apply each possible aug-
mentation with a probability of 50 percent.

The first if shifts the sound samples in time ¶ by rolling the NumPy ar-
ray, a vector, by a number of samples, s. This value amounts to at most an
eighth of a second, sr/4.0. Note that the shift can be positive or negative.
The quantity sr/4.0 is the number of samples in a quarter of a second. How-
ever, the random float is in the range [–0.5, +0.5], so the ultimate shift is at
most an eighth of a second. If the shift is negative, we need to zero samples
at the end of the data; otherwise, we zero samples at the start.
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Random noise is added by literally adding a random value of up to one-
tenth of the range of the audio signal back in ·. When played, this adds
hiss, as you might hear on an old cassette tape.

Next comes shifting the pitch of the sample with librosa. The pitch shift
is expressed in musical steps, or fractions thereof. We randomly pick a float
in the range [–10, +10] (pf) and pass it along with the data (d) and sampling
rate (sr) to the librosa pitch_shift effect function ¸.

The last augmentation uses librosa’s function to stretch or compress
time (time_stretch) ¹. We adjust using an amount of time (rate) that is in
the range [–0.5, +0.5]. If time was stretched, we need to chop off the extra
samples to ensure that the sample length remains constant. If time was com-
pressed, we need to add zero samples at the end. Lastly, we return the new,
augmented samples.

Running the code in Listing 12-2 takes about 11 minutes and creates a
new augmented data directory in the data/audio/ESC-10 directory with subdi-
rectories train and test. These are the raw sound files that we’ll work with go-
ing forward. I encourage you to listen to some of them to understand what
the augmentations have done. The filenames should differentiate the origi-
nals from the augmentations.

Preprocessing the Data
Are we ready to start building models? Not yet. Our experience told us that
the dataset was too small, and we augmented accordingly. However, we
haven’t yet turned the raw data into something we can pass to a model.

A first thought is to use the raw sound samples. These are already vec-
tors representing the audio signal, with the time between the samples set by
the sampling rate of 44,100 Hz. But we don’t want to use them as they are.
The samples are all exactly five seconds long. At 44,100 samples per second,
that means each sample is a vector of 44,100 × 5 = 220,500 samples. That’s
too long for us to work with effectively.

With a bit more thought, we might be able to convince ourselves that
distinguishing between a crying baby and a barking dog might not need
such a high sampling rate. What if instead of keeping all the samples, we
kept only every 100th sample? Moreover, do we really need five seconds’
worth of data to identify the sounds? What if we kept only the first two
seconds?

Let’s keep only the first two seconds of each sound file; that’s 88,200
samples. And let’s keep only every 100th sample, so each sound file now
becomes a vector of 882 elements. That’s hardly more than an unraveled
MNIST digit image, and we know we can work with those.

Listing 12-5 has the code to build the actual initial version of the dataset
we’ll use to build the models.

import os

import random

import numpy as np
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from scipy.io.wavfile import read

sr = 44100 # Hz

N = 2*sr # number of samples to keep

w = 100 # every 100 (0.01 s)

afiles = [i[:-1] for i in open("../data/audio/ESC-10/augmented_train_filelist.txt")]

trn = np.zeros((len(afiles), N//w, 1), dtype="int16")

lbl = np.zeros(len(afiles), dtype="uint8")

for i,t in enumerate(afiles):

f, c = t.split() ¶
trn[i,:,0] = read(f)[1][:N:w]

lbl[i] = int(c)

np.save("../data/audio/ESC-10/esc10_raw_train_audio.npy", trn)

np.save("../data/audio/ESC-10/esc10_raw_train_labels.npy", lbl)

afiles = [i[:-1] for i in open("../data/audio/ESC-10/augmented_test_filelist.txt")]

tst = np.zeros((len(afiles), N//w, 1), dtype="int16")

lbl = np.zeros(len(afiles), dtype="uint8")

for i, t in enumerate(afiles):

f, c = t.split()

tst[i,:,0] = read(f)[1][:N:w]

lbl[i] = int(c)

np.save("../data/audio/ESC-10/esc10_raw_test_audio.npy", tst)

np.save("../data/audio/ESC-10/esc10_raw_test_labels.npy", lbl)

Listing 12-5: Building the reduced samples dataset

This code builds train and test NumPy files containing the raw data. The
data is from the augmented sound files we built in Listing 12-2. The file list
contains the file location and class label ¶. We load each file in the list and
put it into an array, either the train or test array.

We have a 1D feature vector and a number of train or test files, so we
might expect we need a 2D array to store our data, either 6,400×882 for
the training set or 1,600×882 for the test set. However, we know we’ll ulti-
mately be working with Keras, and we know that Keras wants a dimension
for the number of channels, so we define the arrays to be 6,400×882×1 and
1,600×882×1 instead. The most substantial line in this code is the following:

trn[i,:,0] = read(f)[1][:N:w]

It reads the current sound file, keeps only the sound samples ([1]), and
from the sound samples keeps only the first two seconds’ worth at every
100th sample, [:N:w]. Spend a little time with this code. If you’re confused,
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I suggest experimenting with NumPy at the interactive Python prompt to
understand what it’s doing.

In the end, we have train and test files for the 882-element vectors and
associated labels. We’ll build our first models with these. Figure 12-1 shows
the resulting vector for a crying baby.

Figure 12-1: The feature vector for a crying baby

The x-axis is the sample number (think time), and the y-axis is the sample
value.

Classifying the Audio Features
We have our training and test sets. Let’s build some models and see how
they do. Since we have feature vectors, we can start quickly with classical
models. After those, we can build some 1D convolutional networks and see
if they perform any better.

With Classical Models
We can test the same suite of classical models we used in Chapter 4 with the
breast cancer dataset. Listing 12-6 has the setup code.

esc10_audio
_classical.py

import numpy as np

from sklearn.neighbors import NearestCentroid

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import LinearSVC

x_train = np.load("../data/audio/ESC-10/esc10_raw_train_audio.npy")[:,:,0]

y_train = np.load("../data/audio/ESC-10/esc10_raw_train_labels.npy")
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x_test = np.load("../data/audio/ESC-10/esc10_raw_test_audio.npy")[:,:,0]

y_test = np.load("../data/audio/ESC-10/esc10_raw_test_labels.npy")

¶ x_train = (x_train.astype('float32') + 32768) / 65536

x_test = (x_test.astype('float32') + 32768) / 65536

train(x_train, y_train, x_test, y_test)

Listing 12-6: Classifying the audio features with classical models, part 1

We import the necessary model types, load the dataset, scale it, and then
call a train function that we’ll introduce shortly.

Scaling is crucial here. Consider the y-axis range for Figure 12-1. It goes
from about –4,000 to 4,000. We need to scale the data so that the range is
smaller and the values are closer to being centered around 0. Recall, for the
MNIST and CIFAR-10 datasets, we divided by the maximum value to scale
to [0, 1].

The sound samples are 16-bit signed integers. This means the full range
of values they can take on covers [–32,768, +32,767]. If we make the samples
floats, add 32,768, and then divide by 65,536 (twice the lower value) ¶, we’ll
get samples in the range [0, 1), which is what we want.

Training and evaluating the classical models is straightforward, as
Listing 12-7 shows.

def run(x_train, y_train, x_test, y_test, clf):

clf.fit(x_train, y_train)

score = 100.0*clf.score(x_test, y_test)

print("score = %0.2f%%" % score)

def train(x_train, y_train, x_test, y_test):

print("Nearest Centroid : ", end='')

run(x_train, y_train, x_test, y_test, NearestCentroid())

print("k-NN classifier (k=3) : ", end='')

run(x_train, y_train, x_test, y_test, KNeighborsClassifier(n_neighbors=3))

print("k-NN classifier (k=7) : ", end='')

run(x_train, y_train, x_test, y_test, KNeighborsClassifier(n_neighbors=7))

print("Naive Bayes (Gaussian) : ", end='')

run(x_train, y_train, x_test, y_test, GaussianNB())

print("Random Forest (trees= 5) : ", end='')

run(x_train, y_train, x_test, y_test,

RandomForestClassifier(n_estimators=5))

print("Random Forest (trees= 50) : ", end='')

run(x_train, y_train, x_test, y_test,

RandomForestClassifier(n_estimators=50))

print("Random Forest (trees=500) : ", end='')

run(x_train, y_train, x_test, y_test,

RandomForestClassifier(n_estimators=500))

print("Random Forest (trees=1000): ", end='')

run(x_train, y_train, x_test, y_test,

RandomForestClassifier(n_estimators=1000))
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print("LinearSVM (C=0.01) : ", end='')

run(x_train, y_train, x_test, y_test, LinearSVC(C=0.01))

print("LinearSVM (C=0.1) : ", end='')

run(x_train, y_train, x_test, y_test, LinearSVC(C=0.1))

print("LinearSVM (C=1.0) : ", end='')

run(x_train, y_train, x_test, y_test, LinearSVC(C=1.0))

print("LinearSVM (C=10.0) : ", end='')

run(x_train, y_train, x_test, y_test, LinearSVC(C=10.0))

Listing 12-7: Classifying the audio features with classical models, part 2

The train function creates the particular model instances and then calls
run. We saw this same code structure in Chapter 4. The run function uses
fit to train the model and score to score the model on the test set. For the
time being, we’ll evaluate the models based solely on their overall accuracy
(the score). Running this code takes about eight minutes to produce output
like this:

Nearest Centroid : score = 11.9%

k-NN classifier (k=3) : score = 12.1%

k-NN classifier (k=7) : score = 10.5%

Naive Bayes (Gaussian) : score = 28.1%

Random Forest (trees= 5) : score = 22.6%

Random Forest (trees= 50) : score = 30.8%

Random Forest (trees=500) : score = 32.8%

Random Forest (trees=1000): score = 34.4%

LinearSVM (C=0.01) : score = 16.5%

LinearSVM (C=0.1) : score = 17.5%

LinearSVM (C=1.0) : score = 13.4%

LinearSVM (C=10.0) : score = 10.2%

We can quickly see that the classical models have performed terribly.
Many are essentially guessing the class label. There are 10 classes, so ran-
dom chance guessing should have an accuracy of around 10 percent. The
best-performing classical model is a random forest with 1,000 trees, but
even that is performing at only 34.44 percent—far too low an overall accu-
racy to make the model one we’d care to use in most cases. The dataset is
not a simple one, at least not for old-school approaches. Somewhat surpris-
ingly, the Gaussian naive Bayes model is right 28 percent of the time. Recall
that the Gaussian naive Bayes expects the samples to be independent of one
another. Here the independence assumption between the sound samples
for a particular test input is not valid. The feature vector, in this case, repre-
sents a signal evolving in time, not a collection of independent features.

The models that failed the most are nearest centroid, k-NN, and the lin-
ear SVMs. We have a reasonably high-dimensional input of 882 elements,
but only 6,400 of them in the training set. That is likely too few samples
for the nearest-neighbor classifiers to make use of; the feature space is too
sparsely populated. Once again, the curse of dimensionality is rearing its
ugly head. The linear SVM fails because the features seem not to be linearly
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separable. We did not try an RBF (Gaussian kernel) SVM, but we’ll leave that
as an exercise for the reader. If you do try it, remember that there are now
two hyperparameters to tune: C and γ.

With a Traditional Neural Network
We haven’t yet tried a traditional neural network. We’ll use the sklearn
MLPClassifier class as we did before; Listing 12-8 has the code.

esc10_audio
_mlp.py

from sklearn.neural_network import MLPClassifier

import numpy as np

num_classes = 10

x_train = np.load("../data/audio/ESC-10/esc10_raw_train_audio.npy")[:,:,0]

y_train = np.load("../data/audio/ESC-10/esc10_raw_train_labels.npy")

x_test = np.load("../data/audio/ESC-10/esc10_raw_test_audio.npy")[:,:,0]

y_test = np.load("../data/audio/ESC-10/esc10_raw_test_labels.npy")

x_train = (x_train.astype('float32') + 32768) / 65536

x_test = (x_test.astype('float32') + 32768) / 65536

model = MLPClassifier(hidden_layer_sizes=(512, 128),

max_iter=200,

solver='lbfgs')

model.fit(x_train, y_train)

score = 100.0*model.score(x_test, y_test)

print("score = %0.2f%%" % score)

Listing 12-8: Using a traditional neural network

After loading the necessary modules, we load the data itself and scale
it as we did for the classical models. Next, we build the model by using two
hidden layers of 512 and 128 nodes, respectively, then train by calling fit.

The MLPClassifier constructor has a new keyword, solver, which is set to
lbfgs. This is new. Solver is sklearn-speak for an optimizer. If not specified,
it defaults to Adam. Here I’ve set the solver to use the L-BFSG algorithm
instead. The training set is small, 6,400 vectors, and that isn’t enough to get
a traditional neural network to learn anything when using SGD or Adam. In
those cases, the final test-set accuracy is 10 percent, pure random guessing.

The label lbfgs stands for limited-memory BFGS, and BFGS stands for
Broyden–Fletcher–Goldfarb–Shanno. Standard machine learning optimizers,
as we know, use the gradient, which is the multivariable version of the deriva-
tive; think of it as the slope of a curve at a point. Optimization algorithms
based on the gradient alone are known as first-order algorithms, as discussed
in Chapter 6. Both SGD and Adam are first-order algorithms.

Ideally, optimization makes use of what we might call the gradient of the
gradient—that is, information about how the gradient itself is changing in
the vicinity of a point. This is the second derivative, so algorithms using this
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information are known as second-order optimization algorithms. The BFGS
algorithm falls into this class. The “limited” part approximates the second-
order informationmaking the algorithm useful for high-dimensional spaces,
like the 882-element vectors we’re working with in this example. Therefore,
we might expect the L-BFGS algorithm to do a better job than SGD or
Adam. Unfortunately, our expectation, while true, isn’t anything to brag
about; even with L-BFGS, the best we achieve is 19.1 percent accuracy, plac-
ing the traditional neural network near the bottom of the pack of models
tested so far.

With a Convolutional Neural Network
Classical models and the traditional neural network don’t cut it. We shouldn’t
be too surprised, but giving them a try was easy. Let’s move on and apply a
1D convolutional neural network to this dataset to see whether it performs
any better.

We haven’t worked with 1D CNNs yet. Besides the structure of the input
data, the only difference is that we replace calls to Conv2D and MaxPooling2D

with calls to Conv1D and MaxPooling1D.
Listing 12-9 shows the code for the first model we’ll try.

import tensorflow.keras as keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Flatten

from tensorflow.keras.layers import Conv1D, MaxPooling1D

import numpy as np

batch_size = 32

num_classes = 10

epochs = 16

nsamp = (882, 1)

x_train = np.load("../data/audio/ESC-10/esc10_raw_train_audio.npy")

y_train = np.load("../data/audio/ESC-10/esc10_raw_train_labels.npy")

x_test = np.load("../data/audio/ESC-10/esc10_raw_test_audio.npy")

y_test = np.load("../data/audio/ESC-10/esc10_raw_test_labels.npy")

x_train = (x_train.astype('float32') + 32768) / 65536

x_test = (x_test.astype('float32') + 32768) / 65536

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()

model.add(Conv1D(32, kernel_size=3, activation='relu',

input_shape=nsamp))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))
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model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adam(),

metrics=['accuracy'])

history = model.fit(x_train, y_train,

batch_size=batch_size,

epochs=epochs,

verbose=1,

validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)

print('Test accuracy:', score[1])

Listing 12-9: A 1D CNN in Keras

This model loads and preprocesses the dataset as before. This architec-
ture, which we’ll call the shallow architecture, has a single convolutional layer
of 32 filters with a kernel size of 3. We’ll vary this kernel size in the same
way we tried different 2D kernel sizes for the MNIST models. Following the
Conv1D layer is a single max-pooling layer with a pool kernel size of 3. Dropout
and Flatten layers come next, before a single Dense layer of 512 nodes with
dropout. A softmax layer completes the architecture.

We’ll train for 16 epochs by using a batch size of 32. We’ll keep the train-
ing history so we can examine the losses and validation performance as a
function of epoch. We have 1,600 test samples, and we use all of them to
monitor (but not alter) training and for performance testing. Finally, we’ll
vary the Conv1D kernel size from 3 to 33 in an attempt to find one that works
well with the training data.

Let’s define four other architectures. We’ll refer to them asmedium, deep0,
deep1, and deep2. With no prior experience working with this data, trying
multiple architectures makes sense. At present, there’s no way to know the
best architecture for a new dataset ahead of time. All we have is our previous
experience.

Listing 12-10 lists the specific architectures, separated by comments.

# medium

model = Sequential()

model.add(Conv1D(32, kernel_size=3, activation='relu',

input_shape=nsamp))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

# deep0

model = Sequential()

model.add(Conv1D(32, kernel_size=3, activation='relu',

input_shape=nsamp))
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model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

# deep1

model = Sequential()

model.add(Conv1D(32, kernel_size=3, activation='relu',

input_shape=nsamp))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

# deep2

model = Sequential()

model.add(Conv1D(32, kernel_size=3, activation='relu',

input_shape=nsamp))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Conv1D(64, kernel_size=3, activation='relu'))
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model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(Conv1D(64, kernel_size=3, activation='relu'))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

Listing 12-10: Various 1D CNN architectures

The files esc10_audio_cnn_shallow.py through esc10_audio_cnn_deep2.py
contain the code. Each file expects an integer argument on the command
line that it uses as the kernel size for the first convolutional layer. Combin-
ing this flexibility with the statements in the train_all_1d_cnn script trains
and tests each combination of architecture and kernel size to produce the
results in Table 12-1. The best-performing model for each architecture is
bolded.

Table 12-1: Test-Set Accuracies by Convolutional Kernel Size and
Model Architecture
Kernel size Shallow Medium Deep0 Deep1 Deep2
3 41.63 38.75 47.06 10.00 10.00
5 38.13 40.44 46.82 10.00 10.00
7 38.19 38.69 44.69 50.50 50.44
9 40.13 38.25 42.94 49.19 50.19
11 38.00 39.44 43.19 46.88 10.00
13 37.00 37.06 45.44 49.38 49.63
15 35.25 40.38 41.13 10.00 10.00
33 32.81 36.81 43.06 46.50 10.00

Looking at Table 12-1, we see a general trend of accuracy improving as
the model depth increases. However, at the deep2 model, things start to
fall apart. Some of the models fail to converge, showing an accuracy equiva-
lent to random guessing. The deep1 model is the best performing for larger
kernel sizes. When looking across by kernel size, there is no clear winner
among the five architectures, but deep1’s highest overall accuracy for a ker-
nel width of 7 implies this might be a good combination.

We trained the deep1 with kernel width 7 architecture for only 16 epochs.
Will accuracy improve if we train for more? Let’s train the deep1 model for
60 epochs and plot the training and validation loss and error to see how they
converge (or don’t). Doing this produces Figure 12-2, which shows the train-
ing and validation loss and error as a function of epoch.
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Figure 12-2: The training and validation loss (top) and error (bottom)
for the deep1 architecture

Immediately, we should pick up on the explosion of the loss for the
validation set. The validation loss is continually decreasing until after about
epoch 15 or so; then it goes up and becomes oscillatory. This is a clear ex-
ample of overfitting. The likely source of this overfitting is our limited train-
ing set size, only 6,400 samples, even after data augmentation. The validation
error remains more or less constant after initially decreasing. The conclusion
is that we cannot expect to do much better than an overall accuracy of about
50 percent for this dataset using 1D vectors.

If we want to improve, we need to be more expressive with our dataset.
Fortunately for us, we have another preprocessing trick up our sleeves.
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Spectrograms
Let’s return to our augmented set of audio files. To build the dataset, we
took the sound samples, keeping only two seconds’ worth and only every
100th sample. The best we could do is an accuracy of a little more than
50 percent.

However, if we work with a small set of sound samples from an input
audio file, say 200 milliseconds’ worth, we can use the vector of samples to
calculate the Fourier transform. The Fourier transform of a signal measured
at regular intervals tells us the frequencies that went into building the sig-
nal. Any signal can be thought of as the sum of many sine and cosine waves.
If the signal is composed of only a few waves, like the sound you might get
from an instrument such as the ocarina, then the Fourier transform will
have essentially a few peaks at those frequencies. If the signal is complex,
like speech or music, then the Fourier transform will have many frequencies,
leading to many peaks.

The Fourier transform itself is complex-valued: Each element has both
a real and an imaginary component. You can write it as a + bi, where a and b
are real numbers and i =

√
–1. If we use the absolute value of these quan-

tities, we’ll get a real number representing the energy of a particular fre-
quency. This is called the power spectrum of the signal. A simple tone might
have energy in only a few frequencies, while something like a cymbal crash
or white noise will have energy more or less evenly distributed among all
frequencies. Figure 12-3 shows two power spectra.

Figure 12-3: The power spectrum of an ocarina (top) and a cymbal (bottom)
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On the top is the spectrum of an ocarina, and on the bottom is a cym-
bal crash. As expected, the ocarina has energy in only a few frequencies,
while the cymbal uses all the frequencies. The important point for us is that
visually the spectra are quite different from each other. (The spectra were
made with Audacity, an excellent open source audio-processing tool.)

We could use these power spectra as feature vectors, but they represent
only the spectra of tiny slices of time. The sound samples are five seconds
long. Instead of using a spectrum, we will use a spectrogram. This is an image
made up of columns that represent individual spectra. The x-axis represents
time, and the y-axis represents frequency. The color of a pixel is proportional
to the energy in that frequency at that time.

In other words, a spectrogram is what we get if we orient the power
spectra vertically and use color to represent intensity at a given frequency.
With this approach, we can turn an entire sound sample into an image. For
example, Figure 12-4 shows the spectrogram of a crying baby. Compare this
to the feature vector of Figure 12-1.

Figure 12-4: The spectrogram of a crying baby

To create spectrograms of the augmented audio files, we need a new
tool and a bit of code. The tool we need is called sox. It’s not a Python li-
brary, but a command line tool. Odds are that it is already installed if you’re
using our canonical Ubuntu Linux distribution. If not, you can install it:

$ sudo apt-get install sox

We’ll use sox from inside a Python script to produce the spectrogram
images we want. Each sound file becomes a new spectrogram image.

The source code to process the training images is in Listing 12-11 (see
make_augmented_spectrograms.py).

import os

import numpy as np

from PIL import Image
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rows = 100

cols = 160

flist = [i[:-1] for i in open("../data/audio/ESC-10/augmented_train_filelist.txt")] ¶
N = len(flist)

img = np.zeros((N, rows, cols, 3), dtype="uint8")

lbl = np.zeros(N, dtype="uint8")

p = []

for i,f in enumerate(flist):

src, c = f.split()

os.system("sox %s -n spectrogram" % src) ·
im = np.array(Image.open("spectrogram.png").convert("RGB"))

im = im[42:542,58:858,:] ¸
im = Image.fromarray(im).resize((cols,rows))

img[i,:,:,:] = np.array(im)

lbl[i] = int(c)

p.append(os.path.abspath(src))

os.system("rm -rf spectrogram.png")

p = np.array(p)

idx = np.argsort(np.random.random(N)) ¹
img = img[idx]

lbl = lbl[idx]

p = p[idx]

np.save("../data/audio/ESC-10/esc10_spect_train_images.npy", img)

np.save("../data/audio/ESC-10/esc10_spect_train_labels.npy", lbl)

np.save("../data/audio/ESC-10/esc10_spect_train_paths.npy", p)

Listing 12-11: Building the spectrograms

We start by defining the size of the spectrogram. This is the input to our
model, and we don’t want it to be too big because we’re limited in the size
of the inputs we can process. We’ll settle for 100×160 pixels. We then load
the training file list ¶ and create NumPy arrays to hold the spectrogram im-
ages and associated labels. The list p will hold the pathname of the source
for each spectrogram in case we want to get back to the original sound file at
some point. In general, it’s a good idea to preserve information to get back
to the source of derived datasets.

Then we loop over the file list. We get the filename and class label and
then call sox, passing in the source sound filename ·. The sox application
is sophisticated. The syntax here turns the given sound file into a spectro-
gram image with the name spectrogram.png. We immediately load the output
spectrogram into im, making sure it’s an RGB file with no transparency layer
(hence the call to convert("RGB")).

The spectrogram created by sox has a border with frequency and time
information. We want only the spectrogram image portion, so we subset
the image ¸. We determined the indices we’re using empirically. It’s possi-
ble, but somewhat unlikely, that a newer version of sox will require tweaking
these to avoid including any border pixels.

334 Chapter 12

Practical Deep Learning, 2nd edition (Sample Chapter) © 2025 by Ronald T. Kneusel



Next, we resize the spectrogram so that it fits in our 100×160-pixel
array. This is downsampling, true, but hopefully enough characteristic in-
formation is still present to allow a model to learn the difference between
classes. We keep the downsampled spectrogram and the associated class
label and sound filepath.

When we’ve generated all the spectrograms, the loop ends, and we re-
move the final extraneous spectrogram PNG file. We convert the list of
sound filepaths to a NumPy array so we can store it in the same manner as
the images and labels. Finally, we randomize the order of the images as a
precaution against any implicit sorting that might group classes ¹. This is
so that minibatches extracted sequentially are representative of the mix of
classes as a whole. To conclude, we write the images, labels, and pathnames
to disk. We repeat this entire process for the test set.

Are we able to visually tell the difference between the spectrograms of
different classes? If we can do that easily, we have a good shot of getting a
model to tell the difference too. Figure 12-5 shows 10 spectrograms of the
same class in each row.

0: rain

1: rooster

2: baby

3: waves

4: clock

5: sneezing

6: dog

7: fire

8: helicopter

9: chainsaw

Figure 12-5: The sample spectrograms for each class in ESC-10. Each row shows
10 examples from the same class.

Visually, we can usually tell the spectra apart, which is encouraging.
With our spectrograms in hand, we’re ready to try some 2D CNNs to see
if they do better than the 1D CNNs.

Classifying Spectrograms
To work with the spectrogram dataset, we need 2D CNNs. A possible start-
ing point is to convert the shallow 1D CNN architecture to 2D by changing
Conv1D to Conv2D, and MaxPooling1D to MaxPooling2D. However, if we do this, the
resulting model has 30.7 million parameters, which is many more than we
want to work with. Instead, let’s opt for a deeper architecture that has fewer
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parameters and then explore the effect of different kernel sizes for the first
convolutional layer. The code is in Listing 12-12.

esc10_cnn
_deep.py

import sys

import pickle

import tensorflow.keras as keras

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Flatten

from tensorflow.keras.layers import Conv2D, MaxPooling2D

import numpy as np

# kernel size -- 3 or 7

z = int(sys.argv[1])

batch_size = 16

num_classes = 10

epochs = 16

img_rows, img_cols = 100, 160

input_shape = (img_rows, img_cols, 3)

x_train = np.load("../data/audio/ESC-10/esc10_spect_train_images.npy")

y_train = np.load("../data/audio/ESC-10/esc10_spect_train_labels.npy")

x_test = np.load("../data/audio/ESC-10/esc10_spect_test_images.npy")

y_test = np.load("../data/audio/ESC-10/esc10_spect_test_labels.npy")

x_train = x_train.astype('float32') / 255

x_test = x_test.astype('float32') / 255

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()

model.add(Conv2D(32, kernel_size=(z, z),

activation='relu',

input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adam(),

metrics=['accuracy'])
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history = model.fit(x_train, y_train,

batch_size=batch_size,

epochs=epochs,

verbose=0,

validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)

print('%dx%d: accuracy: %0.3f' % (z,z,100.0*score[1]))

Listing 12-12: Classifying spectrograms

We’re using aminibatch size of 16 for 16 epochs along with the Adam op-
timizer. Themodel architecture has two convolutional layers, a max-pooling
layer with dropout, another convolutional layer, and a second max-pooling
layer with dropout. There is a single dense layer of 128 nodes before the soft-
max output.

We’ll test two kernel sizes for the first convolutional layer: 3×3 and 7×7.
The kernel size is expected on the command line.

All the initial 1D convolutional runs used a single training of the model
for evaluation. Because of random initialization, we’ll get slightly different
results from training to training, even if nothing else changes. For the 2D
CNNs, let’s train each model six times and present the overall accuracy as a
mean ± standard error of the mean. Doing just this gives us the following
overall accuracies:

Kernel size Score
3×3 75.54 ± 0.92%
7×7 76.18 ± 0.85%

The standard error ranges overlap, indicating this experiment finds nomean-
ingful difference between using a 3×3 initial convolutional layer kernel size
or a 7×7. Therefore, we’ll stick with 3×3 going forward.

As an aside, just because the results from six runs of each kernel size
aren’t statistically significantly different doesn’t mean there is, truly, no dif-
ference between 3×3 and 7×7 kernels. There might be a true difference,
but the effect size is small enough that six trials isn’t able to reveal it. What
might we get with 100 trials of each kernel size? If those results are statis-
tically significantly different, with a p-value well below 0.05, then we might
come to believe one kernel size is superior to the other, but my money is on
such a difference having a small Cohen’s effect size (d), making the differ-
ence real but meaningless in practice. The “it’s real but effectively meaning-
less in practice” scenario is more common than we might think.

Figure 12-6 shows the training and validation loss and error for one run
of the 2D CNN trained on the spectrograms. As we saw in the 1D CNN case,
after only a few epochs, the validation error starts to increase, but not as
dramatically.
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Figure 12-6: The training and validation loss (top) and error (bottom)
for the 2D CNN architecture

The 2D CNN performs significantly better than the 1D CNN: 75 percent
accuracy versus only 50 percent. This level of accuracy is still not particularly
useful for many applications, but for others, it might be completely accept-
able. Nevertheless, we’d like to do better if we can.

Let’s take a quick look at the confusion matrix generated by one of the
models using our chosen architecture. We’ve seen previously how to calcu-
late the matrix; we’ll show it here for discussion and for comparison with the
confusion matrices we’ll make in the next section. To generate it, run stats.py
passing in a trained model (a .keras file).

Table 12-2 shows the matrix; as always, rows are the true class label, and
columns are the model-assigned label. The elements have been scaled by
the number of examples per class so that the entries in the matrix represent
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percentages. For example, 93.8 percent of class 1 examples were correctly
labeled by the model.

Table 12-2: The Confusion Matrix for the Spectrogram Model
Class 0 1 2 3 4 5 6 7 8 9
0 67.5 0.0 0.0 27.5 0.0 0.0 0.0 0.0 0.6 4.4
1 0.0 93.8 5.0 0.0 0.0 0.6 0.6 0.0 0.0 0.0
2 0.0 9.4 79.4 0.0 0.6 0.0 0.0 0.0 0.0 10.6
3 13.8 0.0 0.0 68.8 0.0 0.0 0.0 1.2 3.1 13.1
4 0.6 0.0 0.0 0.0 83.1 0.0 0.0 16.2 0.0 0.0
5 0.0 1.9 4.4 0.0 13.1 60.6 16.2 3.8 0.0 0.0
6 0.0 3.8 2.5 0.0 8.1 1.2 82.5 1.9 0.0 0.0
7 0.0 0.0 0.0 0.0 2.5 0.0 0.0 89.4 8.1 0.0
8 11.2 0.0 0.0 2.5 1.2 0.0 0.0 6.9 77.5 0.6
9 16.9 0.0 0.6 5.6 0.0 0.0 0.0 0.0 8.1 68.8

The two worst-performing classes are sneezing (5) and rain (0). Rain is
most often confused with waves (3), which seems reasonable. Sneezing is
roughly equally confused with a clock (4) or dog barking (6), with the edge
going to the dogs. I can understand dogs, maybe, but confusing a sneeze for
a ticking clock is a bit odd. Consider it an example of the mysterious ways of
deep learning models. The two best-performing classes are a rooster (1) and
a crackling fire (7).

Does this mean we’re stuck at 76 percent accuracy? No, we have one
more trick to try. We’ve been training and evaluating the performance of
single models, but nothing is stopping us from training multiple models and
combining their results. This is ensembling. We presented ensembles briefly
in Chapter 3 and again in Chapter 6 when discussing dropout. Now let’s use
the idea directly to see if we can improve our sound sample classifier.

Ensembles
The core idea of an ensemble is to take the output of multiple models
trained on the same, or extremely similar, dataset(s) and combine them.
It embodies the “wisdom of the crowds” concept: One model might be bet-
ter at certain classes or types of inputs for a particular class than another, so
it follows that if they work together, they might arrive at a final result better
than either one could do on its own.

We’ll use the same machine learning architecture we used in the previ-
ous section. Our different models will be separate trainings of this architec-
ture, using the spectrograms as input. This is a weaker form of ensembling.
Typically, the models in the ensemble are quite different from one another,
either different architectures of neural networks, or completely different
types of models like random forests and k-nearest neighbors. Of course, as
we now understand, random forests are themselves ensembles of decision
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trees. The variation between models here is due to the random initialization
of the networks and the different parts of the loss landscape the network
finds itself in when training stops. Our approach works like this:

1. Train multiple models (n = 6) by using the spectrogram dataset.

2. Combine the softmax output of these models on the test set in
some manner.

3. Use the resulting output from the combination to predict the
assigned class label.

We hope that the set of class labels assigned after combining the individual
model outputs is superior to the set assigned by the model architecture used
alone. Intuitively, we feel that this approach should buy us something. It
makes sense.

However, a question immediately arises: How do we best combine the
outputs of the individual networks? We have total freedom in the answer to
that question. What we are looking for is an f() such that:

ypredict = f(y0, y1, y2, . . . , yn)

Here yi, i = 0, 1, . . . ,n are the outputs of the nmodels in the ensemble, and
f() is a function, operation, or algorithm that best combines them into a sin-
gle new prediction, ypredict.

Some combination approaches come readily to mind: We could average
the outputs and select the largest, keep maximum per-class output across the
ensemble and then choose the largest of those, or use voting to decide which
class label should be assigned.

We need the predictions of each model on the test set. To get those, run
train_six_cnn, which is nothing more than a script that executes esc10_cnn
_deep.py six times by using an additional command line argument to save the
test-set predictions in a NumPy file:

python3 esc10_cnn_deep.py 3 prob_run0.npy 2>/dev/null

python3 esc10_cnn_deep.py 3 prob_run1.npy 2>/dev/null

python3 esc10_cnn_deep.py 3 prob_run2.npy 2>/dev/null

python3 esc10_cnn_deep.py 3 prob_run3.npy 2>/dev/null

python3 esc10_cnn_deep.py 3 prob_run4.npy 2>/dev/null

python3 esc10_cnn_deep.py 3 prob_run5.npy 2>/dev/null

Appending 2>/dev/null to the command line directs TensorFlow output to
the null device to prevent the output from cluttering the screen.

The script takes a little more than four hours to run on my test machine.
The per-model accuracy on the test set is displayed when each training run
finishes. My run produced the following individual model accuracies:

model 0: 76.688%

model 1: 76.375%

model 2: 78.875%

model 3: 78.000%
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model 4: 75.937%

model 5: 72.188%

These accuracies are in line with the results from earlier in the chapter,
but, clearly, not all these models were created (trained) equal. Model 2 is
the most accurate at 78.9 percent, while model 5 is rather poor, producing
an accuracy of only 72.2 percent. Recall that the only difference between
model 2 and model 5 is the random weight initialization—something worth
remembering when a paper claims state-of-the-art accuracies yet provides no
uncertainty estimates.

The file ensemble.py loads the six test-set prediction files, prob_run0.npy
through prob_run5.npy, along with the true test-set class labels and calculates
the average predictions, the maximum predictions, and voting among the
six models. Listing 12-13 contains the code.

import sys

import numpy as np

def Accuracy(y, p):

cm = np.zeros((10, 10))

for i in range(len(y)): cm[y[i], p[i]] += 1

return 100.0*np.diag(cm).sum()/cm.sum()

p0 = np.load("prob_run0.npy"); p1 = np.load("prob_run1.npy")

p2 = np.load("prob_run2.npy"); p3 = np.load("prob_run3.npy")

p4 = np.load("prob_run4.npy"); p5 = np.load("prob_run5.npy")

y = np.load("../data/audio/ESC-10/esc10_spect_test_labels.npy")

prob = (p0+p1+p2+p3+p4+p5)/6.0

p = np.argmax(prob, axis=1)

print("Accuracy (average) = %0.2f%%" % Accuracy(y,p))

p = np.zeros(len(y), dtype="uint8")

for i in range(len(y)):

t = np.array([p0[i], p1[i], p2[i], p3[i], p4[i], p5[i]])

p[i] = np.argmax(t.reshape(60)) % 10

print("Accuracy (maximum) = %0.2f%%" % Accuracy(y, p))

t = np.zeros((6, len(y)), dtype="uint32")

t[0,:] = np.argmax(p0, axis=1); t[1,:] = np.argmax(p1, axis=1)

t[2,:] = np.argmax(p2, axis=1); t[3,:] = np.argmax(p3, axis=1)

t[4,:] = np.argmax(p4, axis=1); t[5,:] = np.argmax(p5, axis=1)

p = np.zeros(len(y), dtype="uint8")

for i in range(len(y)):

q = np.bincount(t[:,i])

p[i] = np.argmax(q)

print("Accuracy (voting) = %0.2f%%" % Accuracy(y, p))

Listing 12-13: Ensembling the test-set predictions
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The Accuracy function returns the overall accuracy by first creating the
confusion matrix and then calculating the accuracy from it. The next code
paragraph loads the six sets of test-set predictions. Remember, the predic-
tions are softmax outputs, a set of 1,600 vectors of 10 elements stored in a
1,600×10 matrix. Finally, y holds the true class labels.

The final three code paragraphs calculate the average, maximum, and
voting predicted class labels before printing the accuracy. The average is
straightforward: Sum the predictions and divide by 6 before using np.argmax

to assign a class label. The maximum approach uses a loop to first form a
vector of 60 elements for each prediction by appending the six softmax vec-
tors. Then, np.argmax returns the index of the maximum, which modulo 10
(for the 10 classes) returns a class label corresponding to the largest value in
the extended vector. Finally, voting uses np.bincount with np.argmax to select
the class label that appears most often among the six models.

My run of ensemble.py produced the following:

Accuracy (average) = 78.88%

Accuracy (maximum) = 78.81%

Accuracy (voting) = 78.50%

All of these are an improvement over an individual model, with averaging
the softmax predictions providing the best performance on the test set,
78.9 percent.

In most cases, we’d stop here, claim victory on this assignment, and
present our boss with the ensemble model. However, we’re not that easily
satisfied. Notice that simple averaging produced the best result from the
ensemble approach. Why should we use simple averaging when we know
that the six models did not perform equally on the test set? Some were sig-
nificantly better than the others. Might it be that simple averaging gives the
poorer models too much say in the outcome?

Let’s mix things up by using a weighted average of the models instead.
That means, effectively, replacing

prob = (p0+p1+p2+p3+p4+p5)/6.0

with something like the following for scalar weights w0 through w5 that reflect
the importance or belief we place on each individual model’s quality:

prob = w0*p0 + w1*p1 + w2*p2 + w3*p3 + w4*p4 + w5*p5

Great! Weighted averaging is a small tweak to the existing approach, but we
have a small problem: How do we pick the weights?

A first thought might be to build them from the individual model accu-
racies. After all, we have them, and they represent a relative measure of each
model’s quality. To turn them into weights, we divide each accuracy by the
sum of all six, then use those weights to calculate the class label. This helps a
tiny bit and produces an ensemble accuracy of 79.1 percent.

It’s intuitively reasonable to make the weights based on the performance
of the individual models, but that isn’t likely to be ideal. It’s an ad hoc substi-
tute for doing what machine learning is always doing: learning the necessary
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parameter values. In other words, let’s learn what the best set of weights is
to maximize the ensemble’s performance on the test set in the hopes that
the weighting reflects true learning and will work equally well when the en-
semble is used in the wild.

The next question is, of course, how do we learn the weights? Whenever
I am presented with a situation where I’m looking for the best set of some-
thing, I think “optimization”—in this case, swarm intelligence optimization.
As a topic, swarm intelligence and related evolutionary algorithms are far
beyond what we can do justice to here. The short description is that swarm
intelligence uses a collection of agents that move, somewhat intelligently,
through the search space. Here the search space is 6D, and each dimension
corresponds to one of the weights we want to find. The best set of weights
then becomes a best position in this 6D space. The swarm will locate this
point (we hope), and when it does, we’ll have the weights that give us the
best possible ensemble.

The swarm search code is in swarm_ensemble.py. We won’t walk through
it, but the problem-specific code begins on line 1,370. If you want to learn
more about swarm techniques, I recommendmy bookThe Art of Randomness:
Randomized Algorithms in the Real World (No Starch Press, 2024). Running
swarm_ensemble.py tells us how to use it:

swarm_ensemble <npart> <niter> <alg>

<npart> - number of particles

<niter> - number of iterations

<alg> - PSO,JAYA,DE,RO,GWO,GA

Three arguments are required. The code is already configured to load
the prob_run0.npy files along with the true test-set labels. The first argument
is the size of the swarm. Good values are in the vicinity of 20. The second
argument is the number of iterations, meaning the number of times the
swarm updates it position in the search space. Empirically, for this experi-
ment, a few hundred iterations is sufficient.

The final argument is the specific swarm algorithm to use. There are
hundreds in the literature, but only six are available here: bare-bones par-
ticle swarm optimization (PSO), Jaya, differential evolution (DE), random
optimization (RO), Grey Wolf Optimizer (GWO), and a genetic algorithm
variant (GA). I recommend experimenting with all of them. Random opti-
mization is the simplest algorithm and generally isn’t the best choice. My
experimenting indicates that Jaya, differential evolution, and bare-bones
PSO work well. For example, a run using Jaya produced the following:

> python3 swarm_ensemble.py 20 500 Jaya

0001: accuracy = 80.00000000

0100: accuracy = 81.00000000

0200: accuracy = 81.00000000

0300: accuracy = 81.00000000

0400: accuracy = 81.06250000

0500: accuracy = 81.06250000
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Accuracy: 81.062500000

Weights:

0: 0.120140320

1: 0.139839471

2: 0.244902847

3: 0.281249365

4: 0.212761744

5: 0.001106253

(11 best updates, 10020 function calls, time: 11.262 seconds)

The output shows the evolution of the ensemble accuracy as the weight
vector is improved by the swarm as it searches. The final position leads to an
ensemble accuracy of just over 81 percent, which is about 2 percent better
than simple averaging.

The weights per model are listed, indicating the relative importance
placed on each model’s predictions. Models 2 and 3 are given the greatest
weight. These were the best-performing models individually, so this weight-
ing makes sense. Model 5 is given a tiny weight, thereby greatly minimizing
its contribution to the ensemble. Model 5 was the worst-performing indi-
vidual model, so, again the search results are sensible; a bad model was in a
sense detected and removed from the ensemble.

This exercise demonstrates that ensemble techniques are helpful, but
at a cost: We needed to train multiple models and then use each of them to
classify new samples. Because of this, at least for large models, ensembling is
not used as often as it might be.

Summary
This chapter presented a case study, a new dataset, and the steps we need to
take to work through building a useful model. We started by working with
the dataset as given to us, as raw sound samples, which we were able to aug-
ment successfully. We noticed that we had a feature vector and attempted
to use classical models. From there, we moved on to 1D CNNs. Neither of
these approaches was particularly successful.

Fortunately for us, our dataset allowed for a new representation, one
that illustrated more effectively what composed the data and, especially im-
portant for us, introduced spatial elements so that we could work with 2D
convolutional networks. With these networks, we improved quite a bit on
the best 1D results, but we were still not at a level that was likely to be useful.

We then moved to ensembles of classifiers. With these, we discovered
a modest improvement by using simple approaches to combining the base
model outputs (for example, voting).
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We can show the progression of models and their overall accuracies to
see how our case study evolved. Table 12-3 shows the power of modern deep
learning and the utility of combining it with well-proven classical approaches
like ensembles.

Table 12-3: Case Study Model Performance
Model Data source Accuracy
Gaussian naive Bayes 1D sound sample 28.1%
Random forest (1,000 trees) 1D sound sample 34.4%
1D CNN 1D sound sample 50.5%
2D CNN Spectrogram 75.5%
Ensemble (simple average) Spectrogram 78.9%
Ensemble (weighted average) Spectrogram 81.1%

The next chapter continues our exploration of convolutional networks
by introducing us to advanced CNN architectures, specific model architec-
tures that have become staples, especially for computer vision tasks.
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