
9
P a s s w o r D a t t a C k s

Passwords are often the path of least resistance on
pentesting engagements. A client with a strong secu-
rity program can fix missing Windows patches and
out-of-date software, but the users themselves can’t be
patched. We’ll look at attacking users when we discuss
social engineering in Chapter 11, but if we can correctly guess or calculate
a user’s password, we may be able to avoid involving the user in the attack at
all. In this chapter we’ll look at how to use tools to automate running services
on our targets and sending usernames and passwords. Additionally, we’ll
study cracking the password hashes we gained access to in Chapter 8.

Password management
Companies are waking up to the inherent risks of password-based authen-
tication; brute-force attacks and educated guesses are both serious risks to
weak passwords. Many organizations use biometric (fingerprint or retinal

Penetration Testing
© 2014 by Georgia Weidman

198 Chapter 9

scan-based) or two-factor authentication to mitigate these risks. Even web
services such as Gmail and Dropbox offer two-factor authentication in
which the user provides a password as well as a second value, such as the
digits on an electronic token. If two-factor authentication is not available,
using strong passwords is imperative for account security because all that
stands between the attacker and sensitive data may come down to a simple
string. Strong passwords are long, use characters from multiple complexity
classes, and are not based on a dictionary word.

The passwords we use in this book are deliberately terrible, but unfor-
tunately, many users don’t behave much better when it comes to passwords.
Organizations can force users to create strong passwords, but as passwords
become more complex, they become harder to remember. Users are likely
to leave a password that they can’t remember in a file on their computer, in
their smartphone, or even on a Post-it note, because it’s just easier to keep
of track them that way. Of course, passwords that can be discovered lying
around in plaintext undermine the security of using a strong password.

Another cardinal sin of good password management is using the same
password on many sites. In a worst-case scenario, the CEO’s weak password
for a compromised web forum might just be the very same one for his or
her corporate access to financial documents. Password reuse is something
to bear in mind while performing password attacks; you may find the same
passwords work on multiple systems and sites.

Password management presents a difficult problem for IT staff and will
likely continue to be a fruitful avenue for attackers unless or until password-
based authentication is phased out entirely in favor of another model.

online Password attacks
Just as we used automated scans to find vulnerabilities, we can use scripts to
automatically attempt to log in to services and find valid credentials. We’ll
use tools designed for automating online password attacks or guessing pass-
words until the server responds with a successful login. These tools use a
technique called brute forcing. Tools that use brute forcing try every possible
username and password combination, and given enough time, they will find
valid credentials.

The trouble with brute forcing is that as stronger passwords are used,
the time it takes to brute-force them moves from hours to years and even
beyond your natural lifetime. We can probably find working credentials
more easily by feeding educated guesses about the correct passwords into
an automated login tool. Dictionary words are easy to remember, so despite
the security warnings, many users incorporate them into passwords. Slightly
more security-conscious users might put some numbers at the end of their
password or maybe even an exclamation point.

Penetration Testing
© 2014 by Georgia Weidman

Password Attacks 199

Wordlists
Before you can use a tool to guess passwords, you need a list of credentials
to try. If you don’t know the name of the user account you want to crack, or
you just want to crack as many accounts as possible, you can provide a user-
name list for the password-guessing tool to iterate through.

User Lists

When creating a user list, first try to determine the client’s username scheme.
For instance, if we’re trying to break into employee email accounts, figure
out the pattern the email addresses follow. Are they firstname.lastname, just a
first name, or something else?

You can look for good username candidates on lists of common first or
last names. Of course, the guesses will be even more likely to succeed if you
can find the names of your target’s actual employees. If a company uses a
first initial followed by a last name for the username scheme, and they have
an employee named John Smith, jsmith is likely a valid username. Listing 9-1
shows a very short sample user list. You’d probably want a larger list of users
in an actual engagement.

root@kali:~# cat userlist.txt
georgia
john
mom
james

Listing 9-1: Sample user list

Once you’ve created your list, save the sample usernames in a text file
in Kali Linux, as shown in Listing 9-1. You’ll use this list to perform online
password attacks in “Guessing Usernames and Passwords with Hydra” on
page 202.

Password Lists

In addition to a list of possible users, we’ll also need a password list, as
shown in Listing 9-2.

root@kali:~# cat passwordfile.txt
password
Password
password1
Password1
Password123
password123

Listing 9-2: Sample password list

Penetration Testing
© 2014 by Georgia Weidman

200 Chapter 9

Like our username list, this password list is just a very short example
(and one that, hopefully, wouldn’t find the correct passwords for too many
accounts in the real world). On a real engagement, you should use a much
longer wordlist.

There are many good password lists available on the Internet. Good
places to look for wordlists include http://packetstormsecurity.com/Crackers/
wordlists/ and http://www.openwall.com/wordlists/. A few password lists are also
built into Kali Linux. For example, the /usr/share/wordlists directory con-
tains a file called rockyou.txt.gz. This is a compressed wordlist. If you unzip
the file with the gunzip Linux utility, you’ll have about 140 MB of possible
passwords, which should give you a pretty good start. Also, some of the
password-cracking tools in Kali come with sample wordlists. For example,
the John the Ripper tool (which we’ll use in “Offline Password Attacks” on
page 203) includes a wordlist at /usr/share/john/password.lst.

For better results, customize your wordlists for a particular target by
including additional words. You can make educated guesses based on infor-
mation you gather about employees online. Information about spouses,
children, pets, and hobbies may put you on the right track. For example,
if your target’s CEO is a huge Taylor Swift fan on social media, consider
adding keywords related to her albums, her music, or her boyfriends. If
your target’s password is TaylorSwift13!, you should be able to confirm it
using password guessing long before you have to run a whole precompiled
wordlist or a brute-force attempt. Another thing to keep in mind is the
language(s) used by your target. Many of your pentesting targets may be
global.

In addition to making educated guesses based on information you
gather while performing reconnaissance, a tool like the ceWL custom
wordlist generator will search a company website for words to add to
your wordlist. Listing 9-3 shows how you might use ceWL to create a
wordlist based on the contents of www.bulbsecurity.com.

root@kali:~# cewl --help
cewl 5.0 Robin Wood (robin@digininja.org) (www.digininja.org)

Usage: cewl [OPTION] ... URL
--snip--
--depth x, -d x: depth to spider to, default 2 u
--min_word_length, -m: minimum word length, default 3 v
--offsite, -o: let the spider visit other sites
--write, -w file: write the output to the file w
--ua, -u user-agent: useragent to send
--snip--
URL: The site to spider.
root@kali:~# cewl -w bulbwords.txt -d 1 -m 5 www.bulbsecurity.com x

Listing 9-3: Using ceWL to build custom wordlists

Penetration Testing
© 2014 by Georgia Weidman

Password Attacks 201

The command ceWL --help lists ceWL’s usage instructions. Use the -d
(depth) option u to specify how many links ceWL should follow on the
target website. If you think that your target has a minimum password-size
requirement, you might specify a minimum word length to match with the
-m option v. Once you’ve made your choices, output ceWL’s results to a file
with the -w option w. For example, to search www.bulbsecurity.com to depth
1 with minimum word length of 5 characters and output the words found to
the file bulbwords.txt, you would use the command shown at x. The resulting
file would include all words found on the site that meet your specifications.

Another method for creating wordlists is producing a list of every pos-
sible combination of a given set of characters, or a list of every combination
of characters for a specified number of characters. The tool Crunch in Kali
will generate these character sets for you. Of course, the more possibilities,
the more disk space is required for storage. A very simple example of using
Crunch is shown in Listing 9-4.

root@kali:~# crunch 7 7 AB
Crunch will now generate the following amount of data: 1024 bytes
0 MB
0 GB
0 TB
0 PB
Crunch will now generate the following number of lines: 128
AAAAAAA
AAAAAAB
--snip--

Listing 9-4: Brute-forcing a keyspace with Crunch

This example generates a list of all the possible seven-character com-
binations of just the characters A and B. A more useful, but much, much
larger example would be entering crunch 7 8, which would generate a list
of all the possible combinations of characters for a string between seven
and eight characters in length, using the default Crunch character set of
lowercase letters. This technique is known as keyspace brute-forcing. While
it is not feasible to try every possible combination of characters for a pass-
word in the span of your natural life, it is possible to try specific subsets; for
instance, if you knew the client’s password policy requires passwords to be at
least seven characters long, trying all seven- and eight-character passwords
would probably result in cracking success—even among the rare users who
did not base their passwords on a dictionary word.

n o t e Developing a solid wordlist or set of wordlists is a constantly evolving process. For the
exercises in this chapter, you can use the short sample wordlist we created in Listing 9-2,
but as you gain experience in the field, you’ll develop more complex lists that work
well on client engagements.

Now let’s see how to use our wordlist to guess passwords for services
running on our targets.

Penetration Testing
© 2014 by Georgia Weidman

202 Chapter 9

Guessing Usernames and Passwords with Hydra
If you have a set of credentials that you’d like to try against a running service
that requires a login, you can input them manually one by one or use a tool
to automate the process. Hydra is an online password-guessing tool that can
be used to test usernames and passwords for running services. (Following
the tradition of naming security tools after the victims of Heracles’s labors,
Hydra is named for the mythical Greek serpent with many heads.) Listing 9-5
shows an example of using Hydra for online password guessing.

root@kali:~# hydra -L userlist.txt -P passwordfile.txt 192.168.20.10 pop3
Hydra v7.6 (c)2013 by van Hauser/THC & David Maciejak - for legal purposes only

Hydra (http://www.thc.org/thc-hydra) starting at 2015-01-12 15:29:26
[DATA] 16 tasks, 1 server, 24 login tries (l:4/p:6), ~1 try per task
[DATA] attacking service pop3 on port 110
[110][pop3] host: 192.168.20.10 login: georgia password: passwordu
[STATUS] attack finished for 192.168.20.10 (waiting for children to finish)
1 of 1 target successfuly completed, 1 valid password found
Hydra (http://www.thc.org/thc-hydra) finished at 2015-01-12 15:29:48

Listing 9-5: Using Hydra to guess POP3 usernames and passwords

Listing 9-5 shows how to use Hydra to guess usernames and passwords
by running through our username and password files to search for valid
POP3 credentials on our Windows XP target. This command uses the -L
flag to specify the username file, the -P for the password list file, and spec-
ifies the protocol pop3. Hydra finds that user georgia’s password is password at
u. (Shame on georgia for using such an insecure password!)

Sometimes you’ll know that a specific username exists on a server, and
you just need a valid password to go with it. For example, we used the SMTP
VRFY verb to find valid usernames on the SLMail server on the Windows XP
target in Chapter 6. As you can see in Listing 9-6, we can use the -l flag
instead of -L to specify one particular username. Knowing that, let’s look
for a valid password for user georgia on the pop3 server.

root@kali:~# hydra -l georgia -P passwordfile.txt 192.168.20.10 pop3
Hydra v7.6 (c)2013 by van Hauser/THC & David Maciejak - for legal purposes only
[DATA] 16 tasks, 1 server, 24 login tries (l:4/p:6), ~1 try per task
[DATA] attacking service pop3 on port 110
[110][pop3] host: 192.168.20.10 login: georgia password: passwordu
[STATUS] attack finished for 192.168.20.10 (waiting for children to finish)
1 of 1 target successfuly completed, 1 valid password found
Hydra (http://www.thc.org/thc-hydra) finished at 2015-01-07 20:22:23

Listing 9-6: Using a specific username with Hydra

Hydra found georgia’s password to be password u.
Now, in Listing 9-7, we’ll use our credentials to read georgia’s email.

root@kali:~# nc 192.168.20.10 pop3
+OK POP3 server xpvictim.com ready <00037.23305859@xpvictim.com>

Penetration Testing
© 2014 by Georgia Weidman

Password Attacks 203

USER georgia
+OK georgia welcome here
PASS password
+OK mailbox for georgia has 0 messages (0 octets)

Listing 9-7: Using Netcat to log in with guessed credentials

Specify the pop3 protocol, and provide the username and password
when prompted. (Unfortunately, there are no love letters in this particular
inbox.) Hydra can perform online password guessing against a range of ser-
vices. (See its manual page for a complete list.) For example, here we use
the credentials we found with Hydra to log in with Netcat.

Keep in mind that most services can be configured to lock out accounts
after a certain number of failed login attempts. There are few better ways
to get noticed by a client’s IT staff than suddenly locking out several user
accounts. Logins in rapid succession can also tip off firewalls and intrusion-
prevention systems, which will get your IP address blocked at the perimeter.
Slowing down and randomizing scans can help with this, but there is, of
course, a tradeoff: Slower scans will take longer to produce results.

One way to avoid having your login attempts noticed is to try to guess a
password before trying to log in, as you’ll learn in the next section.

offline Password attacks
Another way to crack passwords (without being discovered) is to get a copy
of the password hashes and attempt to reverse them back to plaintext pass-
words. This is easier said than done because hashes are designed to be the
product of a one-way hash function: Given an input, you can calculate the
output using the hash function, but given the output, there is no way to
reliably determine the input. Thus, if a hash is compromised, there should
be no way to calculate the plaintext password. We can, however, guess a
password, hash it with the one-way hash function, and compare the results
to the known hash. If the two hashes are the same, we’ve found the correct
password.

n o t e As you’ll learn in “LM vs. NTLM Hashing Algorithms” on page 208, not all pass-
word hashing systems have stood the test of time. Some have been cracked and are no
longer considered secure. In these cases, regardless of the strength of the password cho-
sen, an attacker with access to the hashes will be able to recover the plaintext password
in a reasonable amount of time.

Of course, it’s even better if you can get access to passwords in plain-
text and save yourself the trouble of trying to reverse the cryptography, but
often the passwords you encounter will be hashed in some way. In this section
we’ll focus on finding and reversing password hashes. If you stumble upon a
program configuration file, database, or other file that stores passwords in
plaintext, all the better.

But before we can try to crack password hashes, we have to find them.
We all hope that the services that store our passwords do a good job of

Penetration Testing
© 2014 by Georgia Weidman

204 Chapter 9

protecting them, but that’s never a given. It only takes one exploitable flaw or
a user who falls victim to a social-engineering attack (discussed in Chapter 11)
to bring down the whole house of cards. You’ll find plenty of password hashes
lying around sites like Pastebin, remnants from past security breaches.

In Chapter 8, we gained access to some password hashes on the Linux
and Windows XP targets. Having gained a Meterpreter session with system
privileges on the Windows XP system via the windows/smb/ms08_067_netapi
Metasploit module, we can use the hashdump Meterpreter command to print
the hashed Windows passwords, as shown in Listing 9-8.

meterpreter > hashdump
Administrator:500:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::
georgia:1003:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:df40c521ef762bb7b9767e30ff112a3c:938ce7d211ea733373bcfc3e6fbb3641:::
secret:1004:e52cac67419a9a22664345140a852f61:58a478135a93ac3bf058a5ea0e8fdb71:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:bc48640a0fcb55c6ba1c9955080a52a8:::

Listing 9-8: Dumping password hashes in Meterpreter

Save the output of the hashdump to a file called xphashes.txt, which we
will use in “John the Ripper” on page 210.

In Chapter 8 we also downloaded backups of the SAM and SYSTEM
hives using the local file inclusion issue in Zervit 0.4 on the Windows XP
system. We used this same issue to download the configuration file for
the FileZilla FTP server, which contained passwords hashed with the MD5
algorithm. On the Linux target, the Vsftpd smiley-face backdoor gave us
root privileges, and thus we can access to the file /etc/shadow, which stores
Linux password hashes. We saved the password for user georgia to the file
linuxpasswords.txt.

Recovering Password Hashes from a Windows SAM File
The SAM file stores hashed Windows passwords. Though we were able to use
Meterpreter to dump the password hashes from the Windows XP system (as
shown previously), sometimes you’ll be able to get only the SAM file.

We weren’t able to get access to the primary SAM file through the
Zervit 0.4 vulnerability, but we were able to download a backup copy from
the C:\Windows\repair directory using a local file-inclusion vulnerability. But
when we try to read the SAM file (as shown in Listing 9-9), we don’t see any
password hashes.

root@bt:~# cat sam
regf P P5gfhbin����nk,�u����� ���� ���������x����SAMX���skx x � �p�µ\µ?
? µ µ
 ����nk L���� �B���� �x �����SAM����skxx7d
�HXµ4µ? ����vk � CP��� � µ�x�µD0�µ �µ�� 4µ1 ? �����
����lf SAM����nk �u����� H#���� Px ����Domains����vk�����8lf �Doma����nk
\��J��� ������0x ����(Account����vk ��
--snip--

Listing 9-9: Viewing the SAM file

Penetration Testing
© 2014 by Georgia Weidman

Password Attacks 205

The SAM file is obfuscated because the Windows Syskey utility encrypts
the password hashes inside the SAM file with 128-bit Rivest Cipher 4 (RC4)
to provide additional security. Even if an attacker or pentester can gain
access to the SAM file, there’s a bit more work to do before we can recover the
password hashes. Specifically, we need a key to reverse the encrypted hashes.

The encryption key for the Syskey utility is called the bootkey, and it’s
stored in the Windows SYSTEM file. You’ll find a copy of the SYSTEM file in
the C:\Windows\repair directory where we found the backup SAM file. We can
use a tool in Kali called Bkhive to extract the Syskey utility’s bootkey from the
SYSTEM file so we can decrypt the hashes, as shown in Listing 9-10.

root@kali:~# bkhive system xpkey.txt
bkhive 1.1.1 by Objectif Securite
http://www.objectif-securite.ch
original author: ncuomo@studenti.unina.it

Root Key : $$$PROTO.HIV
Default ControlSet: 001
Bootkey: 015777ab072930b22020b999557f42d5

Listing 9-10: Using Bkhive to extract the bootkey

Here we use Bkhive to extract the bootkey by passing in the SYSTEM
file system (the file we downloaded from the repair directory using the
Zervit 0.4 directory traversal) as the first argument and extracting the file
to xpkey.txt. Once we have the bootkey, we can use Samdump2 to retrieve
the password hashes from the SAM file, as shown in Listing 9-11. Pass
Samdump2 the location of the SAM file and the bootkey from Bkhive as
arguments, and it will use the bootkey to decrypt the hashes.

root@kali:~# samdump2 sam xpkey.txt
samdump2 1.1.1 by Objectif Securite
http://www.objectif-securite.ch
original author: ncuomo@studenti.unina.it

Root Key : SAM
Administrator:500:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:df40c521ef762bb7b9767e30ff112a3c:938ce7d211ea733373bcfc3e6fbb3641:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:bc48640a0fcb55c6ba1c9955080a52a8:::

Listing 9-11: Using Samdump2 to recover Windows hashes

Now compare these hashes to those found with the hashdump command
in an active Meterpreter session from Listing 9-8. (A Meterpreter session
with sufficient privileges can dump password hashes on the fly without
requiring us to download the SAM and SYSTEM files.) Notice that our hash
list in Listing 9-11 lacks entries for the users georgia or secret. What happened?

When using the Zervit directory traversal, we weren’t able to access
the main SAM file at C:\Windows\System32\config and instead downloaded
a backup from C:\Windows\repair\sam. These users must have been created

Penetration Testing
© 2014 by Georgia Weidman

206 Chapter 9

after the SAM file backup was created. We do have a password hash for the
Administrator user, though. Though not complete or fully up-to-date, we may
still be able to use cracked hashes from this backup SAM to log in to the
systems.

Now let’s look at another way to access password hashes.

Dumping Password Hashes with Physical Access
On some engagements, you’ll actually have physical access to user machines,
with so-called physical attacks in scope. While having physical access may
not appear very useful at first, you may be able to access the password hashes
by restarting a system using a Linux Live CD to bypass security controls.
(We’ll use a Kali ISO image, though other Linux Live CDs such as Helix
or Ubuntu will work. We used a prebuilt Kali virtual machine in Chapter 1.
To get a standalone ISO of Kali, go to http://www.kali.org.) When you boot
a machine with a Live CD, you can mount the internal hard disk and gain
access to all files, including the SAM and SYSTEM files. (When Windows
boots, there are certain security controls in place to stop users from access-
ing the SAM file and dumping password hashes, but these aren’t active when
the filesystem is loaded in Linux.)

Our Windows 7 virtual machine, with its solid external security posture,
has been a bit neglected in these last few chapters. Let’s dump its hashes
using a physical attack. First, we’ll point our virtual machine’s optical drive
to a Kali ISO file, as shown in Figure 9-1 (for VMware Fusion). In VMware
Player, highlight your Windows 7 virtual machine, right-click it and choose
Settings, then choose CD/DVD (SATA) and point to the ISO in the Use
ISO Image field on the right side of the page.

Figure 9-1: Setting our Windows 7 virtual machine to boot from the Kali
ISO file

By default, VMware will boot up the virtual machine so quickly that
it will be difficult to change the BIOS settings to boot from the CD/DVD
drive instead of the hard disk. To fix this, we’ll add a line to the VMware
configuration file (.vmx) to delay the boot process at the BIOS screen for
a few seconds.

Penetration Testing
© 2014 by Georgia Weidman

Password Attacks 207

1. On your host machine, browse to where you saved your virtual machines.
Then, in the folder for the Windows 7 target, find the .vmx configura-
tion file, and open it in a text editor. The configuration file should look
similar to Listing 9-12.

.encoding = "UTF-8"
config.version = "8"
virtualHW.version = "9"
vcpu.hotadd = "TRUE"
scsi0.present = "TRUE"
scsi0.virtualDev = "lsilogic"
--snip--

Listing 9-12: VMware configuration file (.vmx)

2. Add the line bios.bootdelay = 3000 anywhere in the file. This tells the
virtual machine to delay booting for 3000 ms, or three seconds, enough
time for us to change the boot options.

3. Save the .vmx file, and restart the Windows 7 target. Once you can access
the BIOS, choose to boot from the CD drive. The virtual machine should
start the Kali ISO. Even though we’re booted into Kali, we can mount the
Windows hard disk and access files, bypassing the security features of
the Windows operating system.

Listing 9-13 shows how to mount the file system and dump the password
hashes.

root@kali:# umkdir -p /mnt/sda1
root@kali:# vmount /dev/sda1 /mnt/sda1
root@kali:# wcd /mnt/sda1/Windows/System32/config/
root@kali:/mnt/sda1/Windows/System32/config bkhive SYSTEM out
root@kali:/mnt/sda1/Windows/System32/config samdump2 SAM out
samdump2 1.1.1 by Objectif Securite
http://www.objectif-securite.ch
original author: ncuomo@studenti.unina.it

Root Key : CMI-CreateHive{899121E8-11D8-41B6-ACEB-301713D5ED8C}
Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Georgia Weidman:1000:aad3b435b51404eeaad3b435b51404ee:8846f7eaee8fb117ad06bdd830b75B6c:::

Listing 9-13: Dumping Windows hashes with a Linux Live CD

We create a directory where we can mount our Windows filesystem with
the mkdir command at u. Next, we use mount v to mount the Windows file-
system (/dev/sda1) in the newly created directory (/mnt/sda1), which means
that the target’s C drive is effectively at /mnt/sda1. The SAM and SYSTEM
files in Windows are in the C:\Windows\System32\config directory, so we change
directories to /mnt/sda1/Windows/System32/config to access these files using

Penetration Testing
© 2014 by Georgia Weidman

208 Chapter 9

cd w, at which point we can use Samdump2 and Bkhive against the SAM
and SYSTEM files without first saving these files and moving them to our
Kali system.

Once again we’ve managed to get access to password hashes. We now
have hashes for our Windows XP target, our Windows 7 target, our Linux
target, and the FileZilla FTP server on the Windows XP target.

n o t e In Chapter 13, we’ll explore some tricks for using password hashes to authenticate
without the need for access to the plaintext passwords, but usually, in order to use
these hashes, we’ll need to reverse the cryptographic hash algorithms and get the plain-
text passwords. The difficulty of this depends on the password-hashing algorithm used
as well as the strength of the password used.

LM vs. NTLM Hashing Algorithms
Listing 9-14 compares the two password hash entries. The first one belongs
to the Administrator account on Windows XP, which we found with hashdump in
Meterpreter, and the second is Georgia Weidman’s account from Windows 7,
which we found with physical access in the previous section.

Administratoru:500v:e52cac67419a9a224a3b108f3fa6cb6dw:8846f7eaee8fb117ad06bdd830b7586cx
Georgia Weidmanu:1000v:aad3b435b51404eeaad3b435b51404eew:8846f7eaee8fb117ad06bdd830b7586cx

Listing 9-14: Dumping Windows hashes with a Linux Live CD

The first field in the hashes is the username u; the second is the user
ID v; the third is the password hash in LAN Manager (LM) format w; and
the fourth is the NT LAN Manager (NTLM) hash x. LM Hash was the pri-
mary way to hash passwords on Microsoft Windows up to Windows NT, but
it’s a cryptographically unsound method that makes it possible to discover
the correct plaintext password for an LM hash, regardless of a password’s
length and complexity. Microsoft introduced NTLM hashing to replace LM
hash, but on Windows XP, passwords are stored in both LM and NTLM for-
mats by default. (Windows 7 opts exclusively for the more secure NTLM hash.)

In the hashes in Listing 9-14, because both passwords are the
string password, the NTLM hash entries for each account are identi-
cal, but the LM hash fields are different. The first entry has the value
e52cac67419a9a224a3b108f3fa6cb6d, whereas the Windows 7 entry has
aad3b435b51404eeaad3b435b51404ee, which is LM hash-speak for empty. The
inclusion of the LM hash entry will make cracking the hashes much sim-
pler. In fact, any LM-hashed password can be brute-forced in minutes to
hours. In contrast, our ability to crack the NTLM hashes will depend on
both our ability to guess and the length and complexity of the password.
If the hashing function is cryptographically sound, it could take years,
decades, or more than your lifetime to try every possible password.

Penetration Testing
© 2014 by Georgia Weidman

Password Attacks 209

The Trouble with LM Password Hashes
When you see LM hashes on a pentest, you can be sure that the plaintext
password is recoverable from the password hash. However, one-way hash
functions can’t be reversed. Complex math is used to develop algorithms that
make it impossible to discover the original plaintext password value that was
hashed, given the password hash. But we can run a plaintext password guess
through the cryptographic hashing function and compare the results to
the hash we’re trying to crack; if they’re the same, we’ve found the correct
password.

The following issues contribute to the insecurity of LM hashes:

•	 Passwords are truncated at 14 characters.

•	 Passwords are converted to all uppercase.

•	 Passwords of fewer than 14 characters are null-padded to 14 characters.

•	 The 14-character password is broken into two seven-character passwords
that are hashed separately.

Why are these characteristics so significant? Say we start with a com-
plex, strong password like this:

T3LF23!+?sRty$J

This password has 15 characters from four classes, including lowercase
letters, uppercase letters, numbers, and symbols, and it’s not based on a
dictionary word. However, in the LM hash algorithm, the password is trun-
cated to 14 characters like this:

T3LF23!+?sRty$

Then the lowercase letters are changed to uppercase:

T3LF23!+?SRTY$

Next, the password is split into two seven-character parts. The two parts
are then used as keys to encrypt the static string KGS!@#$% using the Data
Encryption Standard (DES) encryption algorithm:

T3LF23! +?SRTY$

The resulting eight-character ciphertexts from the encryption are then
concatenated to make the LM hash.

To crack an LM hash, we just need to find seven characters, all upper-
case, with perhaps some numbers and symbols. Modern computing hardware
can try every possible one- to seven-character combination, encrypt the string
KGS!@#$%, and compare the resulting hash to a given value in a matter of min-
utes to hours.

Penetration Testing
© 2014 by Georgia Weidman

210 Chapter 9

John the Ripper
One of the more popular tools for cracking passwords is John the Ripper.
The default mode for John the Ripper is brute forcing. Because the set of pos-
sible plaintext passwords in LM hash is so limited, brute forcing is a viable
method for cracking any LM hash in a reasonable amount of time, even with
our Kali virtual machine, which has limited CPU power and memory.

For example, if we save the Windows XP hashes we gathered earlier
in this chapter to a file called xphashes.txt, then feed them to John the
Ripper like this, we find that John the Ripper can run through the entire
set of possible passwords and come up with the correct answer, as shown in
Listing 9-15.

root@kali: john xphashes.txt
Warning: detected hash type "lm", but the string is also recognized as "nt"
Use the "--format=nt" option to force loading these as that type instead
Loaded 10 password hashes with no different salts (LM DES [128/128 BS SSE2])
 (SUPPORT_388945a0)
PASSWOR (secret:1)
 (Guest)
PASSWOR (georgia:1)
PASSWOR (Administrator:1)
D (georgia:2)
D (Administrator:2)
D123 (secret:2)

Listing 9-15: Cracking LM hashes with John the Ripper

John the Ripper cracks the seven-character password hashes. In
Listing 9-15, we see that PASSWOR is the first half of the user secret’s pass-
word. Likewise, it’s the first half of the password for georgia and Administrator.
The second half of secret’s password is D123, and georgia and Administrator’s
are D. Thus, the complete plaintext of the LM-hashed passwords are
PASSWORD for georgia and Administrator and PASSWORD123 for secret. The
LM hash doesn’t tell us the correct case for a password, and if you try log-
ging in to the Windows XP machine as Administrator or georgia with the
password PASSWORD or the account secret with PASSWORD123, you will
get a login error because LM hash does not take into account the correct
case of the letters in the password.

To find out the correct case of the password, we need to look at the
fourth field of the NTLM hash. John the Ripper noted in the example in
Listing 9-15 that NTLM hashes were also present, and you can use the flag
--format=nt to force John the Ripper to use those hashes (we don’t have LM
hashes for Windows 7, so we will have to crack Windows 7 passwords with a
wordlist since brute forcing the NTLM hashes would likely take too long).

Cracking Windows NTLM hashes is nowhere near as easy as cracking
LM ones. Although a five-character NTLM password that uses only lower-
case letters and no other complexity could be brute-forced as quickly as
an LM hash, a 30-character NTLM password with lots of complexity could

Penetration Testing
© 2014 by Georgia Weidman

Password Attacks 211

take many years to crack. Trying every possible character combination of
any length, hashing it, and comparing it to a value could go on forever until
we happened to stumble upon the correct value (only to find out that the
user has since changed his or her password).

Instead of attempting to brute-force passwords, we can use wordlists
containing known passwords, common passwords, dictionary words, combi-
nations of dictionary words padded with numbers and symbols at the end,
and so on. (We’ll see an example of using a wordlist with John the Ripper
in “Cracking Linux Passwords” on page 212).

a r e a l-wor l D e x a mPl e

Legacy password hashing once made all the difference on one of my pentests .
The domain controller was Windows Server 2008, with a strong security pos-
ture . The workstations throughout the enterprise were reasonably secure, too,
having recently been upgraded to fully patched Windows 7 systems . There
was, however, one promising light in the dark: a Windows 2000 box that was
missing several security patches . I was able to quickly gain system privileges on
the machine using Metasploit .

The trouble was that, while on paper, the penetration test was now a suc-
cess, compromising the machine had gained me next to nothing . The system
contained no sensitive files, and it was the only machine on this particular net-
work, isolated from the new, updated Windows domain . It had all the trappings
of a domain controller, except it had no clients . All of the other machines in
the environment were members of the new Windows 2008 domain controller’s
domain . Though technically I was now a domain administrator, I was no further
along on the pentest than I was before I found the Windows 2000 machine .

Since this was the domain controller, the domain user password hashes
were included locally . Windows 2000, like Windows XP, stored the LM hashes
of passwords . The client’s old domain administrator password was strong; it
had about 14 characters; included uppercase letters, lowercase letters, numbers,
and symbols; and was not based on a dictionary word . Fortunately, because it
was LM hashed, I was able to get the password back in a matter of minutes .

What do you think the domain administrator’s password was on the
new domain? You guessed it . It was the same as the domain administrator’s
password on the old domain . The Windows 2000 box had not been used in
over six months, but it was still running, and it used an insecure hashing algo-
rithm . Also, the client wasn’t changing their passwords regularly . These two
things combined to bring down what was otherwise a strong security posture . I
was able to access every system in the environment just by logging in with the
domain administrator password I found on the compromised Windows 2000
system .

Penetration Testing
© 2014 by Georgia Weidman

212 Chapter 9

Cracking Linux Passwords
We can also use John the Ripper against the Linux password hashes we
dumped after exploiting the Vsftpd server backdoor in Chapter 8, as shown
in Listing 9-16.

root@kali# cat linuxpasswords.txt
georgia:1CNp3mty6$lRWcT0/PVYpDKwyaWWkSg/:15640:0:99999:7:::
root@kali# johnlinuxpasswords.txt --wordlist=passwordfile.txt
Loaded 1 password hash (FreeBSD MD5 [128/128 SSE2 intrinsics 4x])
password (georgia)
guesses: 1 time: 0:00:00:00 DONE (Sun Jan 11 05:05:31 2015) c/s: 100
trying: password - Password123

Listing 9-16: Cracking Linux hashes with John the Ripper

User georgia has an MD5 hash (we can tell from the 1 at the beginning
of the password hash). MD5 can’t be brute-forced in a reasonable amount of
time. Instead, we use a wordlist with the --wordlist option in John the Ripper.
John the Ripper’s success at cracking the password depends on the inclu-
sion of the correct password in our wordlist.

Cracking Configuration File Passwords
Finally, let’s try to crack the MD5 hashed passwords we found in the
FileZilla FTP server configuration file we downloaded with the Zervit 0.4
file inclusion vulnerability. As you’ll see, sometimes we don’t even need to
crack a password hash. For example, try entering the hash for the user
georgia, 5f4dcc3b5aa765d61d8327deb882cf99, into a search engine. The first
few hits confirm that georgia’s password is password. Additionally, searching
tells us that the account newuser is created when a FileZilla FTP server is
installed with the password wampp.

m a ngl ing wor Dl is t s w i t H JoHn t He r iPPe r

When required by a password policy to include a number and/or a symbol in
a password, many users will just tack them on to the end of a dictionary word .
Using John the Ripper’s rules functionality, we can catch this and other common
mutations that may slip by a simple wordlist . Open the John the Ripper configu-
ration file at /etc/john/john.conf in an editor and search for List.Rules:Wordlist .
Beneath this heading, you can add mangling rules for the wordlist . For example,
the rule $[0-9]$[0-9]$[0-9] will add three numbers to the end of each word
in the wordlist . You can enable rules in John the Ripper by using the flag
--rules at the command line . More information on writing your own rules
can be found at http://www.openwall.com/john/doc/RULES.shtml .

Penetration Testing
© 2014 by Georgia Weidman

Password Attacks 213

Now try logging in to the Windows XP target’s FTP server with these
credentials. Sure enough, login is successful. The administrator of this
system forgot to change the default password for the built-in FTP account.
If we were not able to recover the plaintext passwords this easily, we could
again use John the Ripper with a wordlist, as discussed previously.

Rainbow Tables
Rather than taking a wordlist, hashing each entry with the relevant algo-
rithm, and comparing the resulting hash to the value to be cracked, we
can speed up this process considerably by having our wordlist prehashed.
This, of course, will take storage space—more with longer hash lists, and
approaching infinity as we try to store every possible password hash value
for brute forcing.

A set of precomputed hashes is known as a rainbow table. Rainbow tables
typically hold every possible hash entry for a given algorithm up to a certain
length with a limited character set. For example, you may have a rainbow
table for MD5 hashes that contains all entries that are all lowercase letters
and numbers with lengths between one and nine. This table is about 80 GB—
not so bad with today’s price of storage, but keep in mind this is only a very
limited amount of the possible keyspace for MD5.

Given its limited keyspace (discussed previously), an LM hash appears
to be an ideal candidate for using rainbow tables. A full set of LM hash
rainbow tables is about 32 GB.

You can download pregenerated sets of hashes from http://project
-rainbowcrack.com/table.htm. The tool Rcrack in Kali can be used to sift
through the rainbow tables for the correct plaintext.

Online Password-Cracking Services
The current hip thing to do in IT is to move things to the cloud, and pass-
word cracking is no different. By leveraging multiple high-spec machines,
you can get faster, more comprehensive results than you could with just
a virtual machine on your laptop. You can, of course, set up up your own
high-powered machines in the cloud, create your own wordlists, and so on,
but there are also online services that will take care of this for you for a
fee. For example, https://www.cloudcracker.com/ can crack NTLM Windows
hashes, SHA-512 for Linux, WPA2 handshakes for wireless, and more. You
simply upload your password hash file, and the cracker does the rest.

dumping Plaintext Passwords from memory with
windows Credential editor

Why bother cracking password hashes if we can get access to plaintext
passwords? If we have access to a Windows system, in some cases we can pull
plaintext passwords directly from memory. One tool with this functionality
is the Windows Credential Editor (WCE). We can upload this tool to an
exploited target system, and it will pull plaintext passwords from the Local

Penetration Testing
© 2014 by Georgia Weidman

214 Chapter 9

Security Authority Subsystem Service (LSASS) process in charge of enforcing
the system’s security policy. You can download the latest version of WCE from
http://www.ampliasecurity.com/research/wcefaq.html. An example of running
WCE is shown in Listing 9-17.

C:\>wce.exe -w
wce.exe -w
WCE v1.42beta (Windows Credentials Editor) - (c) 2010-2013 Amplia Security - by Hernan Ochoa
(hernan@ampliasecurity.com)
Use -h for help.

georgia\BOOKXP:password

Listing 9-17: Running WCE

Here WCE found the plaintext of the user georgia’s password. The
downside to this attack is that it requires a logged-in user for the password
to be stored in memory. Even if you were able to get a plaintext password or
two with this method, it is still worth dumping and attempting to crack any
password hashes you can access.

summary
Reversing password hashes is an exciting field, and as the speed of hard-
ware increases, it becomes possible to crack stronger hashes faster. Using
multiple CPUs and even the graphics processing units (GPUs) on video
cards, password crackers can try many hashes very quickly. Our virtual
machines don’t have much processing power, but even your average modern
laptop is much faster than the machines that were used for password crack-
ing just a few short years ago. The cutting edge of password cracking these
days is taking to the cloud and harnessing multiple top-spec cloud servers
for cracking. You’ll even find some cloud-based password-cracking services.

As you’ve seen in this chapter, using information gathered from suc-
cessful exploits in Chapter 8, we’ve managed to reverse password hashes
to recover plaintext passwords for some services and the systems themselves.
Having managed to get a foothold on the systems, let’s look at some advanced
attack methods that can help us if we can’t find anything vulnerable when
listening on the network. We still have the Windows 7 machine to exploit,
after all.

Penetration Testing
© 2014 by Georgia Weidman

