
4
W o r k i n g W i t h

c a P t U r e d P a c k e t s

Now that you’ve been introduced to
Wireshark, you’re ready to start captur-

ing and analyzing packets. In this chapter,
you’ll learn how to work with capture files,

packets, and time-display formats. We’ll also cover
more advanced options for capturing packets and
dive into the world of filters.

working with capture Files
You’ll find that a good portion of your packet analysis will happen after
your capture. Usually, you’ll perform several captures at various times,
save them, and analyze them all at once. Therefore, Wireshark allows you
to save your capture files to be analyzed later. You can also merge multiple
capture files.

54 Chapter 4

Saving and Exporting Capture Files
To save a packet capture, select File4Save As. You should see the Save file
as dialog, as shown in Figure 4-1. You’ll be asked for a location to save your
packet capture and for the file format you wish to use. If you don’t specify a
file format, Wireshark will use the default .pcapng file format.

Figure 4-1: The Save file as dialog allows you to save your packet
captures.

In many cases, you may only want to save a subset of the packets in your
capture. To do so, select File4Export Specified Packets. The dialog that
appears is shown in Figure 4-2. This is a great way to thin bloated packet-
capture files. You can choose to save only packets in a specific number
range, marked packets, or packets visible as the result of a display filter
(marked packets and filters are discussed later in this chapter).

You can export your Wireshark capture data into several formats for
viewing in other media or for importing into other packet analysis tools.
Formats include plaintext, PostScript, comma-separated values (CSV),
and XML. To export your packet capture in one of these formats, choose
File4Export Packet Dissections and then select the format for the exported
file. You’ll see a Save As dialog containing options related to the format
you’ve chosen.

Working with Captured Packets 55

Figure 4-2: The Export Specified Packets dialog allows you to have more
granular control over the packets you choose to save.

Merging Capture Files
Certain types of analysis require the ability to merge multiple capture files.
This is a common practice when comparing two data streams or combining
streams of the same traffic that were captured separately.

To merge capture files, open one of the files you want to merge and
choose File4Merge to bring up the Merge with capture file dialog, shown
in Figure 4-3. Select the new file you wish to merge into the already open
file and then select the method to use for merging the files. You can pre-
pend the selected file to the currently open one, append it, or merge the
files chronologically based on their timestamps.

56 Chapter 4

Figure 4-3: The Merge with capture file dialog allows you to merge two capture
files.

working with Packets
You will eventually encounter a situation involving a very large number of
packets. As the number of packets grows into the thousands and even mil-
lions, you will need to navigate through packets more efficiently. For this
purpose, Wireshark allows you to find and mark packets that match certain
criteria. You can also print packets for easy reference.

Finding Packets
To find packets that match particular criteria, open the Find Packet bar,
shown circled in Figure 4-4, by pressing cTRl-F. This bar should appear
between the Filter bar and the Packet List pane.

Figure 4-4: Finding packets in Wireshark based on specified criteria—in this case, packets matching the dis-
play filter expression tcp

Working with Captured Packets 57

This pane offers three options for finding packets:

•	 The Display filter option allows you to enter an expression-based filter
that will find only those packets that satisfy that expression. This option
is used in Figure 4-4.

•	 The Hex value option searches for packets with a hexadecimal value
you specify.

•	 The String option searches for packets with a text string you specify.
You can specify the pane the search is performed in or make the search
string case sensitive.

Table 4-1 shows examples of these search types.

Table 4-1: Search Types for Finding Packets

search type examples

Display filter not ip
ip.addr==192.168.0.1
arp

Hex value 00ff
ffff
00ABB1f0

String Workstation1
UserB
domain

Once you’ve decided which search type you will use, enter your search
criteria in the text box and click Find to find the first packet that meets
your criterion. To find the next matching packet, click Find again or press
cTRl-N; find the previous matching packet by pressing cTRl-B.

Marking Packets
After you have found packets that match your criterion, you can mark those
of particular interest. For example, marking packets will let you save only
these packets. Also, you can find your marked packets quickly by their black
background and white text, as shown in Figure 4-5.

Figure 4-5: A marked packet is highlighted on your screen. In this example, the second packet is marked and
appears darker.

To mark a packet, either right-click it in the Packet List pane and
choose Mark Packet from the pop-up or click a packet in the Packet List
pane and press cTRl-M. To unmark a packet, toggle this setting off by
pressing cTRl-M again. You can mark as many packets as you wish in a
capture. To jump forward and backward between marked packets, press
shifT-cTRl-N and shifT-cTRl-B, respectively.

58 Chapter 4

Printing Packets
Although most analysis will take place on the computer screen, you may
need to print captured data. I occasionally print out packets and tape them
to my desk so I can quickly reference their contents while doing other analy-
sis. Being able to print packets to a PDF file is also very convenient, especially
when preparing reports.

To print captured packets, open the Print dialog by choosing File4Print
from the main menu, as shown in Figure 4-6.

Figure 4-6: The Print dialog allows you to print the packets you
specify.

As with the Export Specified Packets dialog, you can print a specific
packet range, marked packets only, or packets displayed as the result of
a filter. You can also select the level of detail you wish to print for each
packet. Once you have selected the options, click Print.

setting time display Formats and references
Time is of the essence—especially in packet analysis. Everything that hap-
pens on a network is time sensitive, and you will need to examine trends
and network latency in capture files frequently. Wireshark supplies several
configurable options related to time. In this section, we’ll look at time dis-
play formats and references.

Working with Captured Packets 59

Time Display Formats
Each packet that Wireshark captures is given a timestamp, which is applied
to the packet by the operating system. Wireshark can show the absolute
timestamp, which indicates the exact moment when the packet was cap-
tured, as well as the time in relation to the last captured packet and the
beginning and end of the capture.

Options related to time display are found under the View heading on
the main menu. The Time Display Format section, shown in Figure 4-7, lets
you configure the presentation format as well as the precision of the time
display.

Figure 4-7: Several time display formats are available.

The presentation format options let you choose various settings for
time display. These include date and time of day, UTC date and time of
day, seconds since epoch, seconds since beginning of capture (the default
setting), seconds since previous captured packet, and more.

The precision options allow you to set the time display precision to
an automatic setting, which takes the format from the capture file, or to a
manual setting, such as seconds, milliseconds, microseconds, and so on. We
will be changing these options later in the book, so you should familiarize
yourself with them now.

60 Chapter 4

n o t e When comparing packet data from multiple devices, be sure that the devices are syn-
chronized with the same time source, especially if you are performing forensic analysis
or troubleshooting. You can use the Network Time Protocol (NTP) to ensure network
devices are synced. When examining packets from devices spanning more than one
time zone, consider analyzing packets in UTC instead of local time to avoid confu-
sion when reporting your findings.

Packet Time Referencing
Packet time referencing allows you to configure a certain packet so that all
subsequent time calculations are done in relation to that packet. This feature
is particularly handy when you are examining a series of sequential events
that are triggered at some point other than the start of the capture file.

To set a time reference to a packet, right-click the reference packet in
the Packet List pane and choose Set/Unset Time Reference. To toggle
this reference off, repeat the same action. You can also toggle a packet as
a time reference on and off by selecting the packet you wish to reference
in the Packet List pane and pressing cTRl-T.

When you enable a time reference on a packet, the Time column in the
Packet List pane will display *REF*, as shown in Figure 4-8.

Figure 4-8: Packet 4 with the packet time reference toggle enabled

Setting a packet time reference is useful only when the time display for-
mat of a capture is set to display the time in relation to the beginning of the
capture. Any other setting will produce no usable results and indeed will
generate a set of times that can be very confusing.

Time Shifting
In some cases, you might encounter packets from multiple sources that are
not synchronized to the same time source. This is especially common when
examining capture files taken from two locations that contain the same
stream of data. While most administrators desire a state in which every
device on their network is synced, it’s not uncommon for there to be a few
seconds of time skew between certain types of devices. Wireshark provides
the ability to shift the timestamp on packets to alleviate this problem dur-
ing your analysis.

Working with Captured Packets 61

To shift the timestamp on one or more packets, select Edit4Time Shift
or press cTRl-shifT-T. On the Time Shift screen that opens, you can specify
a time range to shift the entire capture file by, or you can specify a time to
set individual packets to. In the example shown in Figure 4-9, I’ve chosen
to shift the timestamp of every packet in the capture by adding two minutes
and five seconds to each packet.

Figure 4-9: The Time Shift dialog

setting capture options
We looked at the Capture Interfaces dialog while walking through a very
basic packet capture in the last chapter. Wireshark offers quite a few addi-
tional capture options that we didn’t address then. To access these options,
choose Capture4Options.

The Capture Interfaces dialog has a lot of bells and whistles, all
designed to give you more flexibility while capturing packets. It’s divided
into three tabs: Input, Output, and Options. We’ll examine each separately.

Input Tab
The main purpose of the Input tab (Figure 4-10) is to display all the
interfaces available for capturing packets and some basic information for
each interface. This includes the friendly name of the interface provided
by the operating system, a traffic graph showing the throughput on the
interface, and additional configuration options such as promiscuous mode
status and buffer size. At the far right (not pictured), there is also a column
for the applied capture filter, which we’ll talk about in “Capture Filters” on
page 65.

In this section, you can click most of these options and edit them inline.
For example, if you want to disable promiscuous mode on an interface, you
can click that field and change it from enabled to disabled via the provided
drop-down menu.

62 Chapter 4

Figure 4-10: The Capture Interfaces Input options tab

Output Tab
The Output tab (Figure 4-11) allows you to automatically store captured
packets in a file, rather than capturing them first and then saving the file.
Doing so offers you more flexibility in managing how packets are saved. You
can choose to save them as a single file or a file set or even use a ring buffer
(which we’ll cover in a moment) to manage the number of files created. To
enable this option, enter a complete file path and name in the File text box.
Alternatively, use the Browse... button to select a directory and provide a
filename.

Figure 4-11: The Capture Interfaces Output options tab

Working with Captured Packets 63

When you are capturing a large amount of traffic or performing long-
term captures, file sets can prove particularly useful. A file set is a grouping
of multiple files separated by a particular condition. To save to a file set,
check the Create a new file automatically after... option.

Wireshark uses various triggers to manage saving to file sets based upon
a file size or time condition. To enable one of these triggers, select the radio
button next to the size- or time-based option and then specify the value and
unit on which to trigger. For instance, you can set a trigger that creates a new
file after every 1MB of traffic captured or, as shown in Figure 4-12, after every
minute of traffic captured.

Figure 4-12: A file set created by Wireshark at one-minute intervals

The Use a ring buffer option lets you specify a certain number of files
your file set will hold before Wireshark begins to overwrite files. Although
the term ring buffer has multiple meanings, for our purposes, it is essentially
a file set that specifies that once the last file it can hold has been written,
when more data must be saved, the first file is overwritten. In other words, it
establishes a first in, first out (FIFO) method of writing files. You can check
this option and specify the maximum number of files you wish to cycle
through. For example, say you choose to use multiple files for your capture
with a new file created every hour, and you set your ring buffer to 6. Once
the sixth file has been created, the ring buffer will cycle back around and
overwrite the first file rather than create a seventh file. This ensures that no
more than six files (or in this case, hours) of data will remain on your hard
drive, while still allowing new data to be written.

Lastly, the Output tab also lets you specify whether to use the .pcapng
file format. If you plan to interact with your saved packets using a tool that
isn’t capable of parsing .pcapng, you can select the traditional .pcap format.

Options Tab
The Options tab contains a number of other packet-capturing choices,
including display, name resolution, and capture termination options,
shown in Figure 4-13.

64 Chapter 4

Figure 4-13: The Capture Interfaces Options tab

Display Options

The Display Options section controls how packets are shown as they are
being captured. The Update list of packets in real-time option is self-
explanatory and can be paired with the Automatically scroll during live
capture option. When both of these options are enabled, all captured
packets are displayed on the screen, with the most recently captured
ones shown instantly.

W a r n i n g When paired, the Update list of packets in real-time and Automatically scroll during
live capture options can be processor intensive, even when you are capturing a modest
amount of data. Unless you have a specific need to see the packets in real time, it’s
best to deselect both options.

The Show extra capture information dialog option lets you enable or
suppress the display of a small window that shows the number and percent-
age of packets that have been captured, sorted by their protocol. I like to
show the capture info dialog since I typically don’t allow for the live scroll-
ing of packets during capture.

Name Resolution Settings

The Name Resolution section options allow you to enable automatic MAC
(layer 2), network (layer 3), and transport (layer 4) name resolution for
your capture. We’ll discuss name resolution as a general topic in more
depth, including its drawbacks, in Chapter 5.

Working with Captured Packets 65

Stop Capture Settings

The Stop capture automatically after... section lets you stop the running
capture when certain conditions are met. As with multiple file sets, you can
trigger the capture to stop based on file size and time interval, but you
can also trigger on number of packets. These options can be used with
the multiple-file options on the Output tab.

using Filters
Filters allow you to specify which packets you have available for analysis.
Simply stated, a filter is an expression that defines criteria for the inclusion
or exclusion of packets. If there are packets you don’t want to see, you can
write a filter that gets rid of them. If there are packets you want to see exclu-
sively, you can write a filter that shows only those packets.

Wireshark offers two main types of filters:

•	 Capture filters are specified when packets are being captured and will
capture only those packets that are specified for inclusion/exclusion in
the given expression.

•	 Display filters are applied to an existing set of captured packets in order
to hide unwanted packets or show desired packets based on the speci-
fied expression.

Let’s look at capture filters first.

Capture Filters
Capture filters are applied during the packet-capturing process to limit
the packets delivered to the analyst from the start. One primary reason for
using a capture filter is performance. If you know that you do not need to
analyze a particular form of traffic, you can simply filter it out with a cap-
ture filter and save the processing power that would typically be used in
capturing those packets.

The ability to create custom capture filters comes in handy when you’re
dealing with large amounts of data. The analysis can be sped up by ensur-
ing that you are looking at only the packet relevant to the issue at hand.

As an example, suppose you are troubleshooting an issue with a service
running on port 262, but the server you are analyzing runs several different
services on a variety of ports. Finding and analyzing only the traffic on one
port would be quite a job in itself. To capture only the traffic on a specific
port, you could use a capture filter. To do so, use the Capture Interfaces
dialog as follows:

1. Choose the Capture4Options button next to the interface on which you
want to capture packets. This will open the Capture Interfaces dialog.

2. Find the interface you wish to use and scroll to the Capture Filter
option in the far-right column.

66 Chapter 4

3. You can apply the capture filter by clicking in this column to enter an
expression. We want our filter to show only traffic inbound and out-
bound to port 262, so enter port 262, as shown in Figure 4-14. (We’ll
discuss expressions in more detail in the next section.) The color of the
cell should turn green, indicating that you’ve entered a valid expres-
sion; it will turn red if the expression is invalid.

Figure 4-14: Creating a capture filter in the Capture Interfaces dialog

4. Once you have set your filter, click Start to begin the capture.

You should now see only port 262 traffic and be able to more efficiently
analyze this particular data.

Capture/BPF Syntax

Capture filters are applied by libpcap/WinPcap and use the Berkeley Packet
Filter (BPF) syntax. This syntax is common in several packet-sniffing applica-
tions, mostly because packet-sniffing applications tend to rely on the libpcap/
WinPcap libraries, which allow for the use of BPFs. A knowledge of BPF syn-
tax will be crucial as you dig deeper into networks at the packet level.

A filter created using the BPF syntax is called an expression, and each
expression consists of one or more primitives. Primitives consist of one or
more qualifiers (as listed in Table 4-2), followed by an ID name or number,
as shown in Figure 4-15.

Table 4-2: The BPF Qualifiers

Qualifier Description examples

Type Identifies what the ID name or number
refers to

host, net, port

Dir Specifies a transfer direction to or from the
ID name or number

src, dst

Proto Restricts the match to a particular protocol ether, ip, tcp, udp, http, ftp

Working with Captured Packets 67

dst host 192.168.0.10&& tcp 80

Pr
im

iti
ve

Pr
im

iti
ve

O
pe

ra
to

r

Q
ua

lif
ie

r

Q
ua

lif
ie

r

ID ID

Q
ua

lif
ie

r

Q
ua

lif
ie

r

port

Figure 4-15: A sample capture filter

Given the components of an expression, a qualifier of dst host and
an ID of 192.168.0.10 would combine to form a primitive. This primitive
alone is an expression that would capture traffic only with a destination
IP address of 192.168.0.10.

You can use logical operators to combine primitives to create more
advanced expressions. Three logical operators are available:

•	 Concatenation operator AND (&&)

•	 Alternation operator OR (||)

•	 Negation operator NOT (!)

For example, the following expression will capture only traffic with a
source IP address of 192.168.0.10 and a source or destination port of 80:

src host 192.168.0.10 && port 80

Hostname and Addressing Filters

Most filters you create will center on a particular network device or group-
ing of devices. Depending on the circumstances, filtering can be based on a
device’s MAC address, IPv4 address, IPv6 address, or DNS hostname.

For example, say you’re curious about the traffic of a particular host
that is interacting with a server on your network. From the server, you can
create a filter using the host qualifier that captures all traffic associated with
that host’s IPv4 address:

host 172.16.16.149

If you are on an IPv6 network, you would filter based on an IPv6
address using the host qualifier, as shown here:

host 2001:db8:85a3::8a2e:370:7334

68 Chapter 4

You can also filter based on a device’s hostname with the host qualifier,
like so:

host testserver2

Or, if you’re concerned that the IP address for a host might change,
you can filter based on its MAC address as well by adding the ether proto-
col qualifier:

ether host 00-1a-a0-52-e2-a0

The transfer direction qualifiers are often used in conjunction with fil-
ters, such as the ones in the previous examples, to capture traffic based on
whether it’s going to or coming from a host. For example, to capture only
traffic coming from a particular host, add the src qualifier:

src host 172.16.16.149

To capture only data destined for 172.16.16.149, use the dst qualifier:

dst host 172.16.16.149

When you don’t use a type qualifier (host, net, or port) with a primitive,
the host qualifier is assumed. Therefore, this expression, which excludes
that qualifier, is the equivalent of the preceding example:

dst 172.16.16.149

Port Filters

In addition to filtering on hosts, you can filter based on the ports used in
each packet. Port filtering can be used to filter for services and applications
that use known service ports. For example, here’s a simple filter to capture
traffic only to or from port 8080:

port 8080

To capture all traffic except that on port 8080, this would work:

!port 8080

The port filters can be combined with transfer direction qualifiers. For
example, to capture only traffic going to the web server listening on the
standard HTTP port 80, use the dst qualifier:

dst port 80

Working with Captured Packets 69

Protocol Filters

Protocol filters let you filter packets based on certain protocols. They are
used to match non–application layer protocols that can’t simply be defined
by the use of a certain port. Thus, if you want to see only ICMP traffic, you
could use this filter:

icmp

To see everything but IPv6 traffic, this will do the trick:

!ip6

Protocol Field Filters

One of the real strengths of the BPF syntax is the ability that it gives us to
examine every byte of a protocol header in order to create very specific
filters based on that data. The advanced filters that we’ll discuss in this
section will allow you to retrieve a specific number of bytes from a packet
beginning at a particular location.

For example, suppose that we want to filter based on the type field of
an ICMP header. The type field is located at the very beginning of a packet,
which puts it at offset 0. To identify the location to examine within a packet,
specify the byte offset in square brackets next to the protocol qualifier—
icmp[0] in this example. This specification will return a 1-byte integer value
that we can compare against. For instance, to get only ICMP packets that
represent destination unreachable (type 3) messages, we use the equal to
operator in our filter expression:

icmp[0] == 3

To examine only ICMP packets that represent an echo request (type 8)
or echo reply (type 0), use two primitives with the OR operator:

icmp[0] == 8 || icmp[0] == 0

These filters work great, but they filter based on only 1 byte of informa-
tion within a packet header. You can also specify the length of the data to
be returned in your filter expression by appending the byte length after the
offset number within the square brackets, separated by a colon.

For example, say we want to create a filter that captures all ICMP
 destination-unreachable, host-unreachable packets, identified by type 3,
code 1. These are 1-byte fields, located next to each other at offset 0 of
the packet header. To do this, we create a filter that checks 2 bytes of data
beginning at offset 0 of the packet header, and we compare that data
against the hex value 0301 (type 3, code 1), like this:

icmp[0:2] == 0x0301

70 Chapter 4

A common scenario is to capture only TCP packets with the RST flag
set. We will cover TCP extensively in Chapter 8. For now, you just need to
know that the flags of a TCP packet are located at offset 13. This is an inter-
esting field because it is collectively 1 byte in size as the flags field, but each
particular flag is identified by a single bit within this byte. As I will discuss
further in Appendix B, each bit in a byte represents some base 2 number.
The bit the flag is stored in is specified by the number the bit represents, so
the first bit would represent 1, the second 2, the third 4, and so on. Multiple
flags can be set simultaneously in a TCP packet. Therefore, we can’t effi-
ciently filter by using a single tcp[13] value because several values may repre-
sent the RST bit being set.

Instead, we must specify the location within the byte that we wish to
examine by appending a single ampersand (&), followed by the number that
represents where the flag is stored. The RST flag is at the bit representing
the number 4 within this byte, and the fact that this bit is set to 4 tells us
that the RST flag is set. The filter looks like this:

tcp[13] & 4 == 4

To see all packets with the PSH flag set, which is identified by the bit
location representing the number 8 in the TCP flags at offset 13, our filter
would use that location instead:

tcp[13] & 8 == 8

Sample Capture Filter Expressions

You will often find that the success or failure of your analysis depends on
your ability to create filters appropriate for your current situation. Table 4-3
shows a few common capture filters that you might use frequently.

Table 4-3: Commonly Used Capture Filters

filter Description

tcp[13] & 32 == 32 TCP packets with the URG flag set
tcp[13] & 16 == 16 TCP packets with the ACK flag set
tcp[13] & 8 == 8 TCP packets with the PSH flag set
tcp[13] & 4 == 4 TCP packets with the RST flag set
tcp[13] & 2 == 2 TCP packets with the SYN flag set
tcp[13] & 1 == 1 TCP packets with the FIN flag set
tcp[13] == 18 TCP SYN-ACK packets
ether host 00:00:00:00:00:00 Traffic to or from your MAC address
!ether host 00:00:00:00:00:00 Traffic not to or from your MAC address
broadcast Broadcast traffic only
icmp ICMP traffic

Working with Captured Packets 71

filter Description

icmp[0:2] == 0x0301 ICMP destination unreachable, host unreachable
ip IPv4 traffic only
ip6 IPv6 traffic only
udp UDP traffic only

Display Filters
A display filter is one that, when applied to a capture file, tells Wireshark to
display only packets that match that filter. You can enter a display filter in
the Filter text box above the Packet List pane.

Display filters are used more often than capture filters because they
allow you to filter the packet data you see without actually omitting the rest
of the data in the capture file. That way, if you need to revert to the original
capture, you can simply clear the filter expression. They are also a lot more
powerful thanks to Wireshark’s extensive library of packet dissectors.

As an example, in some situations, you might use a display filter to
clear irrelevant broadcast traffic from a capture file by filtering out ARP
broadcasts from the Packet List pane when those packets don’t relate to
the current problem being analyzed. However, because those ARP broad-
cast packets may be useful later, it’s better to filter them temporarily than
it is to delete them.

To filter out all ARP packets in the capture window, place your cursor
in the Filter text box at the top of the Packet List pane and enter !arp to
remove all ARP packets from the list (Figure 4-16). To remove the filter,
click the X button, and to save the filter for later, click the plus (+) button.

Figure 4-16: Creating a display filter using the Filter text box above the Packet List pane

There are two ways to apply display filters. One is to apply them directly
using the appropriate syntax, as we did in this example. Another is to use
the Display Filter Expression dialog to build your filter iteratively; this is the
easier method when you are first starting to use filters. Let’s explore both
methods, starting with the easier first.

The Display Filter Expression Dialog

The Display Filter Expression dialog, shown in Figure 4-17, makes it easy for
novice Wireshark users to create capture and display filters. To access this
dialog, click the Expression button on the Filter toolbar.

72 Chapter 4

Figure 4-17: The Display Filter Expression dialog allows for the easy creation of
filters in Wireshark.

The left side of the dialog lists all possible protocol fields, and these
fields specify all possible filter criteria. To create a filter, follow these steps:

1. To view the criteria fields associated with a protocol, expand that proto-
col by clicking the arrow symbol next to it. Once you find the criterion
you want to base your filter on, click to select it.

2. Choose how your selected field will relate to the criterion value you
supply. This relation is specified as equal to, greater than, less than,
and so on.

3. Create your filter expression by specifying a criterion value that will
relate to your selected field. You can define this value or select it from
predefined ones programmed into Wireshark.

4. Your complete filter will be displayed at the bottom of the screen. When
you’ve finished, click OK to insert it into the filter bar.

The Display Filter Expression dialog is great for novice users, but once
you get the hang of things, you’ll find that manually entering filter expres-
sions greatly increases your efficiency. The display filter expression syntax
structure is simple, yet extremely powerful.

Working with Captured Packets 73

The Filter Expression Syntax Structure

When you begin using Wireshark more, you will want to start using the
display filter syntax directly in the main window to save time. Fortunately,
the syntax used for display filters follows a standard scheme and is easy to
navigate. In most cases, this scheme is protocol-centric and follows the for-
mat protocol.feature.subfeature, as you saw when looking at the Display Filter
Expression dialog. Now we will look at a few examples.

You will most often use a capture or display filter to see packets based
on a specific protocol alone. For example, say you are troubleshooting a
TCP problem and you want to see only TCP traffic in a capture file. If so,
a simple tcp filter will do the job.

Now let’s look at things from the other side of the fence. Imagine that
in the course of troubleshooting your TCP problem, you have used the ping
utility quite a bit, thereby generating a lot of ICMP traffic. You could remove
this ICMP traffic from your capture file with the filter expression !icmp.

Comparison operators allow you to compare values. For example, when
troubleshooting TCP/IP networks, you will often need to view all packets
that reference a particular IP address. The equal to comparison operator
(==) will allow you to create a filter showing all packets with an IP address
of 192.168.0.1:

ip.addr==192.168.0.1

Now suppose that you need to view only packets that are less than
128 bytes. You can use the less than or equal to operator (<=) to accom-
plish this goal:

frame.len<=128

Table 4-4 shows Wireshark’s comparison operators.

Table 4-4: Wireshark Filter Expression Comparison Operators

operator Description

== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Logical operators allow you to combine multiple filter expressions into
one statement, dramatically increasing the effectiveness of your filters.

74 Chapter 4

For example, say that you’re interested in displaying only packets to two IP
addresses. You can use the or operator to create one expression that will dis-
play packets containing either IP address, like this:

ip.addr==192.168.0.1 or ip.addr==192.168.0.2

Table 4-5 lists Wireshark’s logical operators.

Table 4-5: Wireshark Filter Expression Logical Operators

operator Description

and Both conditions must be true .
or Either one of the conditions must be true .
xor One and only one condition must be true .
not Neither one of the conditions is true .

Sample Display Filter Expressions

Although the concepts related to creating filter expressions are fairly
 simple, you will need to use several specific keywords and operators when
creating new filters for various problems. Table 4-6 shows some of the dis-
play filters that I use most often. For a complete list, see the Wireshark
 display filter reference at http://www.wireshark.org/docs/dfref/.

Table 4-6: Commonly Used Display Filters

filter Description

!tcp.port==3389 Filter out RDP traffic
tcp.flags.syn==1 TCP packets with the SYN flag set
tcp.flags.reset==1 TCP packets with the RST flag set
!arp Clear ARP traffic
http All HTTP traffic
tcp.port==23 || tcp.port==21 Telnet or FTP traffic
smtp || pop || imap Email traffic (SMTP, POP, or IMAP)

Saving Filters
Once you begin creating a lot of capture and display filters, you will find
that you use certain ones frequently. Fortunately, you don’t need to type
these in each time you want to use them, because Wireshark lets you save
your filters for later use. To save a custom capture filter, follow these steps:

1. Select Capture4Capture Filters to open the Capture Filter dialog.

2. Create a new filter by clicking the plus (+) button on the lower left side
of the dialog.

Working with Captured Packets 75

3. Enter a name for your filter in the Filter Name box.

4. Enter the actual filter expression in the Filter String box.

5. Click the OK button to save your filter expression in the list.

To save a custom display filter, follow these steps:

1. Type your filter into the Filter bar above the Packet List pane in the
main window and click the ribbon button on the left side of the bar.

2. Click the Save this Filter option, and a list of saved display filters will be
presented in a separate dialog. There you can provide a name for your
filter before clicking OK to save it (Figure 4-18).

Figure 4-18: You can save display filters directly from the main toolbar.

Adding Display Filters to a Toolbar
If you have filters that you find yourself flipping on and off frequently, one of
the easiest ways to interact with them is to add filter toggles to the Filter bar
just above the Packet List pane. To do this, complete the following steps:

1. Type your filter into the Filter bar above the Packet List pane in the
main window and click the plus (+) button on the right side of the bar.

2. A new bar will display below the Filter bar where you can provide a
name for your filter in the Label field (Figure 4-19). This is the label
that will be used to represent the filter on the toolbar. Once you’ve
input something in this field, click OK to create a shortcut to this
expression in the Filter toolbar.

76 Chapter 4

Figure 4-19: Adding a filter expression shortcut to the Filter toolbar

As you can see in Figure 4-20, we’ve created a shortcut to a filter that
will quickly show any TCP packets with the RST flag enabled. Additions to
the filtering toolbar are saved to your configuration profile (as discussed in
Chapter 3), making them a powerful way to enhance your ability to identify
problems in packet captures in various scenarios.

Figure 4-20: Filtering using a toolbar shortcut

Wireshark includes several built-in filters that are great examples of
what a filter should look like. You’ll want to use them (together with the
Wireshark help pages) when creating your own filters. We’ll use filters in
examples throughout this book.

