
This chapter introduces arrays, a compound
data type designed for storing and manipu-

lating multiple data items under a single vari-
able name. Arrays allow you to group related

data and efficiently apply the same operations to each
data item.

At its heart, an array is a mapping of values to keys. Each value is a piece
of data you want to store in the array, and its key is a unique identifier associ-
ated with that value so that you can access it from within the array. In this
chapter, we’ll focus on simple arrays, which use integers as the keys. You’ll
learn how to create and manipulate simple arrays, and how to iterate over the
items in an array by using a foreach loop. In the next chapter, we’ll explore
how to create more sophisticated arrays by using strings (and other data
types) as keys, instead of integers.

7
S I M P L E A R R AY S

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

126 Chapter 7

Creating an Array and Accessing Its Values
Let’s start our exploration of arrays by creating a simple array that stores
the monthly rainfall totals for a location (Listing 7-1).

<?php
$rainfall = [10, 8, 12];

Listing 7-1: Declaring a simple array

We declare an array called $rainfall by using a sequence of comma-
separated values inside square brackets: [10, 8, 12]. This is a three-element
array, containing the values 10, 8, and 12.

By default, PHP gives each array value an integer as a key. The keys are
assigned in sequence, starting from zero: the first value (10) has a key of 0, the
second value (8) has a key of 1, and the third value (12) has a key of 2. Accepting
this default mapping is what makes $rainfall a simple array (as opposed to
the sophisticated arrays with custom key-value mappings that we’ll explore in
Chapter 8).

Now that we have an array, we can use its keys to access its values indi-
vidually. In Listing 7-2, we concatenate each value from the $rainfall array
into a string message and print it out.

<?php
$rainfall = [10, 8, 12];

print "Monthly rainfall\n";
print "Jan: " . $rainfall[0] . "\n";
print "Feb: " . $rainfall[1] . "\n";
print "Mar: " . $rainfall[2] . "\n";

Listing 7-2: Accessing array elements with their integer keys

We access an item in an array by specifying its key in square brackets,
after the array name. For example, $rainfall[0] gives us the first value in the
$rainfall array (10), which we concatenate with the string "Jan: ". Similarly,
we access the second element of the array with $rainfall[1]. Since the inte-
ger keys start at zero, the last element of an n -member array has a key of
n – 1. In this case, we access the last element of our three-element array
with $rainfall[2]. Here’s the output of running this script:

Monthly rainfall
Jan: 10
Feb: 8
Mar: 12

The values 10, 8, and 12 have been successfully read from the array and
printed using their integer keys 0, 1, and 2.

If you try to access an array element by using a key that hasn’t been
assigned, you’ll get a PHP warning. For example, say we add the following
print statement to the end of Listing 7-2:

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

Simple Arrays 127

print "Apr: " . $rainfall[3] . "\n";

This statement will trigger a warning that looks something like this:

PHP Warning: Undefined array key 3 in /Users​/matt​/main​.php on line 8

Our array has only three elements, with keys 0, 1, and 2, so no element
exists corresponding to $rainfall[3]. Later in the chapter, we’ll discuss how
to avoid warnings like this by first ensuring that an array element with a
particular key exists before trying to access it.

T HE A R R AY() F UNC T ION

In Listing 7-1, we declared an array by writing it out as a literal, enclosing
its values in square brackets. Another way to declare an array is to call the
array() function, passing the array element values as a sequence of comma-
separated arguments. Here’s how to declare the same $rainfall array from
Listing 7-1 by using the array() function:

$rainfall = array(10, 8, 12);

Understanding this alternative technique for declaring arrays is important,
since you may find it in older programs and some of the PHP documentation
pages (https://www​.php​.net). These days, however, the square-bracket notation
is more common (and more succinct), so I’ll stick to square-bracket notation in
this book. Learn more about this function at https://www​.php​.net​/manual​/en​/
function​.array​.php.

Updating an Array
Often you’ll need to update an array after you’ve created it by adding or
removing elements. For example, it’s common to start with an empty array,
created by assigning an empty set of square brackets ([]) to a variable, and
then to add elements to it as a script progresses. In this section, we’ll discuss
common techniques for changing the contents of an array.

Appending an Element
If you’re adding a new element to an array, you’ll most often want to add it
at the end, an operation known as appending. This is such a common task
that PHP makes it very easy to do as part of a simple assignment statement.
On the left side of the equal sign, you write the array name followed by an
empty set of square brackets; on the right side of the equal sign, you write
the value you want to append to the array. For example, Listing 7-3 shows a

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

128 Chapter 7

script that creates an empty array of animals and then appends elements to
the end of it.

<?php
$animals = [];
$animals[] = 'cat';
$animals[] = 'dog';

print "animals[0] = $animals[0] \n";
print "animals[1] = $animals[1] \n";

Listing 7-3: Appending elements to the end of an array

We declare an empty array called $animals by writing an empty set of
square brackets. Then we add two elements to the end of the array, one
at a time. For example, $animals[] = 'cat' adds the string value 'cat' to the
end of the array. PHP automatically gives the new element the next available
integer as a key. In this case, since $animals is empty when 'cat' is added, it
receives a key of 0. When we then use the same notation to add 'dog' to the
array, that element automatically gets a key of 1. To confirm this, we print
the individual values from the array at the end of the script, resulting in
this output:

animals[0] = cat
animals[1] = dog

The output indicates that 'cat' was successfully mapped to key 0 of the
array, and 'dog' to 1. The PHP engine was able to find the array’s highest
integer key, add 1 to it, and use the result as the next unique integer key
when appending to the array.

Adding an Element with a Specific Key
While it’s more common to append elements to an array and let PHP do the
work of automatically assigning the next available integer key, you can also
manually specify an element’s key when you’re adding it to an array. For
example, $heights[22] = 101 would add the value 101 to the $heights array and
give it the integer key 22. If a value already exists at that key, that value will
be overwritten. As such, this direct assignment technique is often used to
update an existing value in an array rather than add a completely new value.
Listing 7-4 expands our $animals array script to illustrate how this is done.

<?php
$animals = [];
$animals[] = 'cat';
$animals[] = 'dog';
$animals[0] = 'hippo';

var_dump($animals);

Listing 7-4: Directly assigning an array element with a specified key

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

Simple Arrays 129

As before, we append 'cat' and 'dog' to the $animals array. Then we
replace the value of the first array element with 'hippo' by directly assigning
this string to key 0 of the array. Here’s the output of running this script:

array(2) {
 [0]=>
 string(3) "hippo"
 [1]=>
 string(3) "dog"
}

Notice that 'hippo' is now mapped to key 0, indicating it has replaced
the original 'cat' value.

Be careful when adding a new array element with a specific key. This
action can break the sequence of integer keys if an array element doesn’t
exist for the key you provide. This would happen if you used a key beyond
the existing size of the array. Making an array with a break in the sequence
of integer keys is permissible, but it can cause issues if you’ve written code
elsewhere that relies on having a continuous sequence of keys. We’ll explore
nonsequential and non-integer keys when we look at sophisticated arrays
in Chapter 8.

Appending Multiple Elements
So far we’ve been able to add only one element to an array at a time, but
the built-in array_push() function can add several elements at once to the
end of an array. The function takes a variable number of parameters. The
first is the array you want to update, and the rest are the new values to be
appended, and you can append as many as you want. For example, Listing 7-5
revisits the script from Listing 7-3, where we first added elements to the
$animals array and then printed them, and uses array_push() to append two
more animals to the end of the array.

<?php
$animals = [];
$animals[] = 'cat';
$animals[] = 'dog';
array_push($animals, 'giraffe', 'elephant');

print "animals[0] = $animals[0] \n";
print "animals[1] = $animals[1] \n";
print "animals[2] = $animals[2] \n";
print "animals[3] = $animals[3] \n";

Listing 7-5: Using array_push() to append multiple values to the end of an array

We call array_push(), passing in the $animals array and the two string
values we want to add, 'giraffe' and 'elephant'. Since the new elements
are added to the end of the array, they’re automatically assigned the next
available integer keys, 2 and 3. We confirm this at the end of the script by

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

130 Chapter 7

accessing the two additional elements by their keys and printing them out,
along with the two original elements:

animals[0] = cat
animals[1] = dog
animals[2] = giraffe
animals[3] = elephant

The output indicates that 'giraffe' was successfully mapped to key 2 and
'elephant' to 3.

You may have noticed that when we called the array_push() function,
we didn’t do it as part of an assignment statement, with the function call
on the right side of an equal sign and a variable name on the left to capture
the function’s return value. This is because array_push() directly modifies
the array passed to it. In this sense, array_push() is quite different from the
string manipulation functions we looked at in Chapter 3, which created and
returned a new string rather than making changes directly to the original
string passed to them.

The array_push() function can directly modify the provided array because
its first parameter has been declared using a pass-by-reference approach. As
we discussed in Chapter 5, this means the function is given a direct reference
to the value of the argument passed in, as opposed to being given a copy of
the argument’s value via a pass-by-value approach. We can confirm this by
looking at the function’s signature in the PHP documentation:

array_push(array &$array, mixed ...$values): int

The ampersand (&) before the first parameter, &$array, indicates that this is
a pass-by-reference parameter.

Since array_push() is directly modifying the array, there’s no need for
it to return a copy of the array, or for us to use an assignment statement to
capture that return value when we call the function. In fact, array_push() does
have a return value, an integer indicating the new length of the array. This
can be useful if you need to keep track of the array’s length as you’re updat-
ing it; we didn’t need this return value in Listing 7-5, so we simply made a
stand-alone call to the function, without assigning the result to a variable.

Removing the Last Element
The built-in array_pop() function returns the last item of an array while also
removing that item from the array. This is another example of a pass-by-
reference function that changes the provided array. In Listing 7-6, we use
array_pop() to retrieve and remove the last element of our $animals array.

<?php
$animals = [];
$animals[] = 'cat';
$animals[] = 'dog';

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

Simple Arrays 131

$lastAnimal = array_pop($animals);
print "lastAnimal = $lastAnimal\n";
var_dump($animals);

Listing 7-6: Using array_pop() to retrieve and remove the last array element

We call array_pop(), passing the $animals array as an argument, and we
store the function’s return value in the $lastAnimal variable. We then print
out $lastAnimal, as well as the $animals array, to see which elements remain.
Here’s the result:

lastAnimal = dog
array(1) {
 [0]=>
 string(3) "cat"
}

The string in variable $lastAnimal is 'dog', since this was the last of the
elements appended to the array. The var_dump of $animals shows that the
array contains only 'cat' after the call to array_pop(), demonstrating how
this pass-by-reference function was able to change the array passed into it.

A R R AYS A S S TACKS

One of the classic data structures for solving some types of computer tasks is
the stack. It treats data like a stack of items, such as a pile of books or blocks.
You can push an element onto the stack by adding it on top of the existing ele-
ments, or pop the last (topmost) element off the stack.

If you push A, then B, then C, for example, you have a stack with A on the
bottom, B in the middle, and C on top. If you then start popping items, you first
get C, then B, then A. The most recent item added to the stack is always the first
item to be removed. The PHP functions array_push() and array_pop() mirror
these operations, making it easy to create scripts that solve problems by using
simple arrays as stacks.

Retrieving Information About an Array
We’ve considered some functions for modifying an array, but other func-
tions can return useful information about an array without changing it at
all. For example, count() returns the number of elements in an array. This
can be useful if you want to check whether an array contains anything at
all (a count of zero might indicate that a shopping cart is empty or that
no records were retrieved from a database), or whether it has more items
than expected (perhaps a customer has more than one address on file).

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

132 Chapter 7

Sometimes knowing the number of items in an array can be helpful in
order to control a loop through that array. In Listing 7-7, we use count() to
print the total number of items in the $animals array.

<?php
$animals = ['cat', 'dog', 'giraffe', 'elephant'];

print count($animals);

Listing 7-7: Counting the number of elements in an array

We call the count() function, passing the name of the array we want it to
count up, and print the result. Since $animals has four elements, this script
should output the integer 4.

N O T E 	 The sizeof() function is an alias of count(). If you see a script that uses sizeof(),
know that it works the same way as count().

Another analytical array function is array_is_list(). PHP distinguishes
between arrays that are lists and arrays that aren’t. To be considered a list,
an array of length n must have consecutively numbered keys from 0 to n – 1.
The array_is_list() function takes in an array and returns true or false
based on whether the array meets that definition. All the arrays discussed
in this chapter qualify as lists, since they rely on PHP’s default behavior
of assigning keys sequentially from 0. In the next chapter, however, we’ll
explore arrays with non-integer keys as well as the unset() function, which
can remove an element of an array with a given key, potentially breaking
the consecutive chain of numeric keys and disqualifying an array as a list.
Thus, array_is_list() could be useful for evaluating an array before passing
it along to code that expects the array to be structured as a list.

The array_key_last() function returns the key for the last element of
the given array. Assuming the array is a proper list with consecutively num-
bered keys, the return value of array_key_last() should be one less than
the return value of count(). For example, calling array_key_last($animals) at
the end of Listing 7-7 would return the integer 3, since that’s the key of the
fourth (and final) element of the array.

Earlier I mentioned that trying to access an array key that doesn’t exist
triggers a warning. To avoid this, use the isset() function to test whether
an array key exists before trying to access it. Listing 7-8 shows the function
in action.

<?php
$animals = ['cat', 'dog', 'giraffe', 'elephant'];

1 if (isset($animals[3])) {
 print "element 3 = $animals[3]\n";
} else {
 print "sorry - there is no element 3 in this array\n";
}

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

Simple Arrays 133

print "(popping last element [3])\n";
2 array_pop($animals);

if (isset($animals[3])) {
 print "element 3 = $animals[3]\n";
} else {
 print "sorry - there is no element 3 in this array\n";
}

Listing 7-8: Using isset() to test the existence of an array key

First, we create our four-element $animals array. Then we use an if...
else statement with isset() to access only the element with key 3 if that ele-
ment exists (at this point, it should) 1. We next use array_pop() to remove
the last element from $animals (the one at key 3) 2. Then we repeat the
same if...else statement. Now no element has key 3, but since we’re testing
for the element with isset() before attempting to access it, we shouldn’t get
a warning. Take a look at the output of the script:

element 3 = elephant
(popping last element [3])
sorry - there is no element 3 in this array

The first line of the output indicates the first call to isset() returned
true, triggering the if branch of the conditional. The last line shows the
second isset() call returned false, triggering the else branch and saving us
from trying to access a nonexistent array element.

Looping Through an Array
It’s common to have to access the elements of an array, one at a time, and
do something with each one. Assuming the array is a list, you can do this
with a for loop that uses a counter variable as the key for the current array
element. By starting the counter at 0 and incrementing it up to the length
of the array, you can access each element in turn. Listing 7-9 uses a for loop
to print each element of our $animals array.

<?php
$animals = ['cat', 'dog', 'giraffe', 'elephant'];

$numElements = count($animals);
for ($i = 0; $i < $numElements; $i++) {
 1 $animal = $animals[$i];
 print "$animal, ";
}

Listing 7-9: Using a for loop to loop through an array

We use count() to look up the length of the array, storing the result into
the $numElements variable. Then we declare a for loop that increments coun-
ter $i from 0 up to but not including the value of $numElements. (We could

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

134 Chapter 7

hardcode the stopping condition as $i < 4, but using a variable makes the
code more flexible in case the length of the array changes.) In the loop
statement group, we use $animals[$i] to retrieve the element whose key is
the current value of loop variable $i, storing it in $animal 1. Then we print
out this $animal string, followed by a comma and a space. The output when
we run this script in a terminal is as follows:

cat, dog, giraffe, elephant,

Each of the array elements is printed out in sequence. (Don’t worry,
we’ll fix that final comma shortly.)

Using a foreach Loop
This for loop approach works, but cycling through the elements of an array
is such a common task that PHP provides another type of loop, the foreach
loop, to do it more efficiently. At the core of a foreach loop is the foreach
($array as $value) syntax; $array is the name of an array to loop over, and
$value is a temporary variable that will be assigned the value of each ele-
ment in the array, one at a time. Listing 7-10 shows an updated version of
Listing 7-9, using a foreach loop rather than a for loop.

<?php
$animals = ['cat', 'dog', 'giraffe', 'elephant'];

foreach ($animals as $animal) {
 print "$animal, ";
}

Listing 7-10: Using a foreach loop to elegantly loop through an array

We declare this loop by using foreach ($animals as $animal). Here, $animal
is a temporary variable that takes on the value of each array element in
turn, which we then print in the body of the loop. Notice that we no longer
have to worry about determining the length of the array to set the loop’s
stopping condition, nor do we need to manually access each array element,
as we did in the for loop version with $animals[$i]. The foreach loop retrieves
each element automatically. The result is the same as the for loop version,
but the foreach loop’s syntax is much more elegant and concise.

The foreach loop has the added benefit that we don’t need to care whether
the provided array is a true list. With the for loop version, we’re relying on
the consecutive integer numbering of the array keys; if a key is missing, we’ll
get a warning when we try to access that key. By contrast, the foreach loop sim-
ply accesses each element in the array, no matter what the keys are.

Accessing Keys and Values
An alternative syntax for foreach loops allows you to access both the key and
the value of each array element, instead of just the value. For this, declare

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

Simple Arrays 135

the loop in the format foreach ($array as $key => $value). Here, $array is the
array you want to loop through, $key is a temporary variable that will hold
the current element’s key, and $value is a temporary variable that will hold the
current element’s value. The => operator connects a key to a value. We’ll
use it more extensively in Chapter 8 when we work with sophisticated arrays
whose keys can be strings and other data types.

Gaining access to keys as well as values allows us to eliminate that pesky
final comma from the output after the last element in the $animals array.
Recall that the array_key_last() function returns the key of the last element
in an array. By comparing the value from this function with the current key
in the foreach loop, we can decide whether to print a comma after each ele-
ment. Listing 7-11 shows how.

<?php
$animals = ['cat', 'dog', 'giraffe', 'elephant'];

foreach ($animals as $key => $animal) {
 print "$animal";
 if ($key != array_key_last($animals)) {
 print ", ";
 }
}

Listing 7-11: A revised foreach loop that accesses the key and value of each array element

We declare a foreach loop by using foreach ($animals as $key => $animal).
Each cycle through the loop, $key will be the key and $animal will be the
value of the current array element. Inside the loop, we first print out the
string in $animal. Then we use an if statement to also print a comma and
a space if the current element’s key is not equal to the last key of the array
(identified with the array_key_last() function). This should produce the fol-
lowing output:

cat, dog, giraffe, elephant

We’ve successfully eliminated the comma after the last element in the array.

Imploding an Array
The code in Listing 7-11 is essentially printing a string containing the ele-
ments in an array with a separator (in this case, a comma and a space)
between them. This is a common task, so PHP provides a built-in function
called implode() to do it automatically, without the need for any kind of loop.

The function takes two arguments: a string to use as a separator and
an array to implode into a string. The separator goes between elements,
not after each element, so the code won’t place an extra separator after the
last array element. Listing 7-12 shows an updated script that uses implode()
rather than a foreach loop.

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

136 Chapter 7

<?php
$animals = ['cat', 'dog', 'giraffe', 'elephant'];

print implode(', ', $animals);

Listing 7-12: Using implode() to convert an array into a string

Here we print the result of calling implode() on the $animals array. We use
the string ', ' as a separator to put a comma and a space between the array
elements. The output should be exactly the same as that of Listing 7-11, but
implode() makes the code much more efficient to write.

The implode() function may have rendered our foreach loop unnecessary
in this case, but don’t let that fool you. A foreach loop is the right tool to use
in plenty of scenarios. In general, when the code you want to apply to each
element in an array is more sophisticated than simply printing out that ele-
ment’s value, a foreach loop is likely appropriate.

Functions with a Variable Number of Arguments
One important application for arrays is that you can use them to declare
functions that accept a variable number of arguments. When we created
custom functions in Chapter 5, we needed to know exactly how many argu-
ments each function would take in so we could define the function with the
corresponding number of parameters. This isn’t always possible, however.

For example, say we want to declare a sum() function that takes in an
unspecified quantity of numbers, adds them all up, and returns the result.
We don’t know whether the user will pass two numbers, three numbers, or
more as arguments, so we can’t create a separate parameter for each num-
ber. Instead, we use a single parameter to represent all the numbers, and
we write an ellipsis, or three dots (...), before the parameter name. This
syntax tells PHP to treat the parameter as an array and to fill it with all the
arguments provided, however many there are.

Listing 7-13 shows how this approach works by declaring the sum()
function just described. Remember that functions should be declared in a
separate file from the code that calls them, so create a my​_functions​.php file
containing the contents of this listing.

<?php
function sum(...$numbers): int
{
 $total = 0;

 foreach ($numbers as $number) {
 $total += $number;
 }

 return $total;
}

Listing 7-13: A function to take in a variable number of integer arguments and return their sum

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

Simple Arrays 137

We declare the sum() function, which returns an integer. It has a single
parameter, ... $numbers. Thanks to the ellipsis, any arguments the function
receives will be assigned as elements to a local array called $numbers. Notice
that we don’t specify a data type for the parameter when using the ellipsis
notation; we know the overall $numbers variable will be of the array type,
although the individual elements of the array can be of any type. Inside the
function body, we initialize $total to 0. Then we use a foreach loop to cycle
through the elements of the $numbers array, adding the value of each ele-
ment to $total. Once the loop has finished, we return $total, which holds
the sum of the arguments.

N O T E 	 Our sum() function doesn’t include any logic to confirm that the elements in $numbers
are actually numbers. A real-world function would need some form of data valida-
tion and would perhaps return NULL or indicate invalid data some other way if the
arguments provided aren’t all numbers. Also note that PHP already has a built-in
array_sum() function that totals up the numbers in an array. We’ve implemented our
own version for demonstration purposes.

Listing 7-14 shows a main​.php script to read in the sum() function decla-
ration and test it out with a variable number of arguments.

<?php
require_once 'my​_functions​.php';

print sum(1, 2, 3) . "\n";
print sum(20, 40) . "\n";
print sum(1, 2, 3, 4, 5, 6, 7) . "\n";

Listing 7-14: A main script that calls sum() with different numbers of arguments

After reading in and executing my​_functions​.php with require_once, we
make three calls to sum(), each with a different number of arguments, and
print the results. The script produces this output:

6
60
28

The three printed sums have been correctly calculated. This indicates
that our sum() function has successfully collected the variable number of
arguments in an array.

Array Copies vs. Array References
Say you have a variable containing an array, and you assign it as the value
of a second variable. In some languages, such as Python and JavaScript, the
second variable would be assigned a reference to the original array. The two
variables would then refer to the same array in the computer’s memory, so
a change to one variable would apply to the other variable as well. In PHP,

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

138 Chapter 7

however, the default is to assign the second variable a copy of the array.
Because the two variables have their own separate arrays, a change to one
won’t impact the other. Listing 7-15 returns to our $animals array to illus-
trate this point.

<?php
$animals = ['cat', 'dog', 'giraffe', 'elephant'];

$variable2 = $animals;
array_pop($variable2);
var_dump($animals);

Listing 7-15: Copying an array

We declare our usual $animals array, then assign $animals to $variable2.
This creates a separate copy of the array in $variable2, so anything we do to
one array should have no effect on the other. To prove it, we use array_pop()
to remove the last element from the $variable2 array, then print the original
$animals array. Here’s the result:

array(4) {
 [0]=>
 string(3) "cat"
 [1]=>
 string(3) "dog"
 [2]=>
 string(7) "giraffe"
 [3]=>
 string(8) "elephant"
}

All four animal strings are still present in the $animals array, even though we
deleted the final element ('elephant') from the $variable2 array, so the vari-
ables indeed hold separate arrays.

If you want to assign the second variable a reference to the original
array, as is customary in other languages, rather than a copy of the array,
then use the reference operator (&) at the time of assignment. Listing 7-16
updates the code from Listing 7-15 to show the difference.

<?php
$animals = ['cat', 'dog', 'giraffe', 'elephant'];

$variable2 = &$animals;
array_pop($variable2);
var_dump($animals);

Listing 7-16: Using the reference operator when assigning an array

This time we prefix the $animals array with the reference operator (&)
when assigning it to $variable2. This means a change to one variable will
now apply to the other variable as well, since both refer to the same array in
memory. The updated script results in this output:

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

Simple Arrays 139

array(3) {
 [0]=>
 string(3) "cat"
 [1]=>
 string(3) "dog"
 [2]=>
 string(7) "giraffe"
}

The output reveals that popping element 3 from the $variable2 array
also removed element 3 from the $animals array. This confirms that both
$variable2 and $animals refer to the same array in memory.

One of these approaches to array assignment isn’t inherently better
than the other; they’re just different. Sometimes it’s best to copy an array
before manipulating it. For example, a web page might offer the user a
chance to edit a shopping list, while providing a Cancel button to undo
those edits. In this case, you’ll want to work with a copy of the shopping list
array until the changes are confirmed, since you may need to revert to the
original array if the user clicks Cancel. Other times, it’s preferable to have
multiple variables referencing the same array in memory. Perhaps the code
contains logic that chooses one of several arrays and so needs to set a vari-
able to be a reference to the chosen array.

The key point to take away from this section is that PHP defaults to
copying the array unless you use the reference operator (&). If you’ve learned
a different programming language before PHP, or if you learn another lan-
guage in the future, it’s important to understand the difference between
assignment of a copy and assignment of a reference, and to know which
behavior the language uses by default.

Treating Strings as Arrays of Characters
In a way, you can think of a string as an array of individual characters. This
can be useful since you may sometimes want to “navigate” through the
string character by character for tasks such as encryption, spellchecking,
and so on, just as you’d traverse the elements of an array.

As you saw in Chapter 3, the characters in a string are numbered from 0,
just like the elements in a simple array. In fact, you can use the same square-
bracket notation for accessing an array element to also access a specific char-
acter from a string. For example, if $name held the string 'Smith', $name[0] would
return 'S', $name[1] would return 'm', and so on. Strings also support negative
integer keys for counting characters backward from the end of the string:
$name[-1] returns 'h' (the last character), $name[-2] returns 't', and so on.

N O T E 	 Unlike strings, arrays themselves don’t interpret negative integer keys as counting
backward from the end of the array. Instead, $animals[-1] would be interpreted as
an element of the $animals array with an actual key of -1. While you can manually
assign negative integers as keys to array elements, I personally can’t remember ever
needing to do so.

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

140 Chapter 7

Listing 7-17 shows an example of using array key syntax to access indi-
vidual characters from a string.

<?php
$name = 'Smith';

$firstChar = $name[0];
$secondToLastChar = $name[-2];

print "first character = '$firstChar'\n";
print "second to last character = '$secondToLastChar'\n";

Listing 7-17: Using square-bracket notation to access string characters

We assign the string 'Smith' to the $name variable. Next, we copy the
string’s first character ($name[0]) to the $firstChar variable and its second-to-
last character ($name[-2]) to $secondToLastChar. We then print out messages
with the values of these variables, producing the following output:

first character = 'S'
second to last character = 't'

Unlike with arrays, we can’t pass a string to a foreach loop to cycle
through all its characters. However, we can use PHP’s built-in str_split()
function to convert a string into an actual array of individual characters,
then pass that array to a foreach loop, as shown in Listing 7-18.

<?php
$name = 'Smith';

$characters = str_split($name);
foreach ($characters as $key => $character) {
 print "character with key $key = '$character'\n";
}

Listing 7-18: Using str_split() and foreach to loop over the characters in a string

We pass the same $name string to str_split(). By default, this function
breaks the string into individual characters, assigns them as elements of an
array, and returns the result, which we store in the $characters variable. We
then use a foreach loop to access each key and value in the array version of
the string and print them out. Here’s the result:

character with key 0 = 'S'
character with key 1 = 'm'
character with key 2 = 'i'
character with key 3 = 't'
character with key 4 = 'h'

The output shows that we’ve successfully looped through the characters
from the original string after first converting the string to an array with
str_split().

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

Simple Arrays 141

The str_split() function has an optional second argument controlling
the number of characters for each string element in the resulting array. The
argument defaults to 1, splitting the string into individual characters, but if
we’d called str_split($name, 2), for example, then the resulting array would
contain two-character strings: ['Sm', 'it', 'h'].

Other Array Functions
We’ve discussed some built-in functions for working with arrays in this
chapter, but PHP has many more. Other useful functions that apply to
arrays include the following:

sort() ​  ​Sorts an array’s values in ascending order (alphabetical for
string values, numerical order for number values)

usort() ​  ​Sorts the values into a custom order based on a user-defined
function

array_flip() ​  ​Swaps the keys and values for each array element

array_slice() ​  ​Returns a new array containing a subsequence of elements
from an existing array

array_walk() ​  ​Calls a user-defined function on each element of an array

array_map() ​  ​Calls a user-defined function on each element of an array
and returns a new array of the results

array_rand() ​  ​Returns random keys from an array

For a full list of array functions, see the PHP documentation at https://
www​.php​.net​/manual​/en​/ref​.array​.php.

Summary
In this chapter, we’ve begun exploring arrays, a compound data type that
stores multiple values under a single variable name, with each value hav-
ing its own identifying key. For now, we’ve focused on simple arrays, whose
keys are integers. The chapter introduced various techniques for adding,
subtracting, and accessing array elements, as well as functions for obtaining
information about an array, such as count() and isset(). You also learned
how to work with each array element in sequence by using a foreach loop.
In some cases, PHP provides built-in functions for handling common array
tasks, such as the implode() function that joins all the elements of an array
into a single string. These functions sometimes allow you to replace com-
plete loops and conditional statements with a single function call.

Exercises
	 1.	Create a $colors array containing the string names of five colors. Print a

random color from the array.
Hint: You can get a valid random key by calling array_rand($colors).

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

142 Chapter 7

	 2.	Write a foreach loop to print each of the colors from your array in
Exercise 1 on a new line, in the following form:

color 0 = blue
color 1 = red
...

	 3.	Use array_pop() to print the last element of your array of colors from
Exercise 1. Then use var_dump() to show that this item has been removed
from the array.

	 4.	Create an array containing integer ages 23, 31, and 55. Use built-in func-
tions to calculate and print out the number of items in the array and
their average.

PHP Crash Course (Sample Chapter) © 11/04/2024 by Matt Smith

