
Now that you’ve learned how to use SQL 
to select and filter data from a table, you’ll 

see how to join database tables. Joining tables 
means selecting data from more than one table 

and combining it in a single result set. MySQL pro-
vides syntax to do different types of joins, like inner 
joins and outer joins. In this chapter, you’ll look at 
how to use each type.

Selecting Data from Multiple Tables
The data you want to retrieve from a database often will be stored in more 
than one table, and you need to return it as one dataset in order to view all 
of it at once.

5
J O I N I N G  D A T A B A S E  T A B L E S

A SQL query walks into a bar, approaches two tables, and asks, “May I join you?”
—The worst database joke in history

503007book.indb   51503007book.indb   51 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



52   Chapter 5

Let’s look at an example. This table, called subway_system, contains data 
for every subway in the world:

subway_system              city              country_code
------------------------   ----------------  ------------
Buenos Aires Underground   Buenos Aires      AR
Sydney Metro               Sydney            AU
Vienna U-Bahn              Vienna            AT
Montreal Metro             Montreal          CA
Shanghai Metro             Shanghai          CN
London Underground         London            GB
MBTA                       Boston            US
Chicago L                  Chicago           US
BART                       San Francisco     US
Washington Metro           Washington, D.C.  US
Caracas Metro              Caracas           VE
--snip--

The first two columns, subway_system and city, contain the name of the 
subway and the city where it’s located. The third column, country_code, stores 
the two-character ISO country code. AR stands for Argentina, CN stands for 
China, and so on.

The second table, called country, has two columns, country_code and 
country:

country_code   country
------------   -----------
AR             Argentina
AT             Austria
AU             Australia
BD             Bangladesh
BE             Belgium
--snip--

Say you want to get a list of subway systems and their full city and coun-
try names. That data is spread across the two tables, so you’ll need to join 
them to get the result set you want. Each table has the same country_code 
column, so you’ll use that as a link to write a SQL query that joins the tables 
(see Listing 5-1).

select subway_system.subway_system,
       subway_system.city,
       country.country
from   subway_system
inner join country
on     subway_system.country_code = country.country_code;

Listing 5-1: Joining the subway_system and country tables

In the country table, the country_code column is the primary key. In the 
subway_system table, the country_code column is a foreign key. Recall that a 
primary key uniquely identifies rows in a table, and a foreign key is used 
to join with the primary key of another table. You use the = (equal) symbol 

503007book.indb   52503007book.indb   52 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



Joining Database Tables   53

to specify that you want to join all equal values from the subway_system and 
country tables’ country_code columns.

Since you’re selecting from two tables in this query, it’s a good idea to 
specify which table the column is in every time you reference it, especially 
because the same column appears in both tables. There are two reasons for 
this. First, it will make the SQL easier to maintain because it will be imme-
diately apparent in the SQL query which columns come from which tables. 
Second, because both tables have a column named country_code, if you don’t 
specify the table name, MySQL won’t know which column you want to use and 
will give an error message. To avoid this, in your select statement, type the 
table name, a period, and then the column name. For example, in Listing 5-1, 
subway_system.city refers to the city column in the subway_system table.

When you run this query, it returns all of the subway systems with the 
country names retrieved from the country table:

subway_system               city                country
------------------------    ----------------    --------------
Buenos Aires Underground    Buenos Aires        Argentina
Sydney Metro                Sydney              Australia
Vienna U-Bahn               Vienna              Austria
Montreal Metro              Montreal            Canada
Shanghai Metro              Shanghai            China
London Underground          London              United Kingdom
MBTA                        Boston              United States
Chicago L                   Chicago             United States
BART                        San Francisco       United States
Washington Metro            Washington, D.C.    United States
Caracas Metro               Caracas             Venezuela
--snip--

Note that the country_code column does not appear in the resulting join. 
This is because you selected only the subway_system, city, and country col-
umns in the query.

N O T E  When joining two tables based on columns with the same name, you can use the 
using keyword instead of on. For example, replacing the last line in Listing 5-1 with 
using (country_code); would return the same result with less typing required.

Table Aliasing
To save time when writing SQL, you can declare aliases for your table 
names. A table alias is a short, temporary name for a table. The following 
query returns the same result set as Listing 5-1:

select  s.subway_system,
        s.city,
        c.country
from    subway_system s
inner join country c
on      s.country_code = c.country_code;

503007book.indb   53503007book.indb   53 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



54   Chapter 5

You declare s as the alias for the subway_system table and c for the country 
table. Then you can type s or c instead of the full table name when refer-
encing the column names elsewhere in the query. Keep in mind that table 
aliases are only in effect for the current query.

You can also use the word as to define table aliases:

select  s.subway_system,
        s.city,
        c.country
from    subway_system as s
inner join country as c
on      s.country_code = c.country_code;

The query returns the same results with or without as, but you’ll cut 
down on typing by not using it.

Types of Joins
MySQL has several different types of joins, each of which has its own syntax, 
as summarized in Table 5-1.

Table 5-1: MySQL Join Types

Join type Description Syntax

Inner join Returns rows where both tables have a matching 
value.

inner join
join

Outer join Returns all rows from one table and the matching 
rows from a second table. Left joins return all rows 
from the table on the left. Right joins return all rows 
from the table on the right.

left outer join
left join
right outer join
right join

Natural join Returns rows based on column names that are the 
same in both tables.

natural join

Cross join Matches all rows in one table to all rows in another 
table and returns a Cartesian product.

cross join

Let’s look at each type of join in more depth.

Inner Joins
Inner joins are the most commonly used type of join. In an inner join, there 
must be a match in both tables for data to be retrieved.

You performed an inner join on the subway_system and country tables in 
Listing 5-1. The returned list had no rows for Bangladesh and Belgium. 
These countries are not in the subway_system table, as they don’t have sub-
ways; thus, there was not a match in both tables.

Note that when you specify inner join in a query, the word inner is 
optional because this is the default join type. The following query performs  
an inner join and produces the same results as Listing 5-1:

select  s.subway_system,
        s.city,

503007book.indb   54503007book.indb   54 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



Joining Database Tables   55

        c.country
from    subway_system s
join    country c
on      s.country_code = c.country_code;

You’ll come across MySQL queries that use inner join and others that 
use join. If you have an existing codebase or written standards, it’s best to 
follow the practices outlined there. If not, I recommend including the word 
inner for clarity.

Outer Joins
An outer join displays all rows from one table and any matching rows in a 
second table. In Listing 5-2, you select all countries and display subway sys-
tems for the countries if there are any.

select  c.country,
        s.city,
        s.subway_system
from    subway_system s right outer join country c
on      s.country_code = c.country_code;

Listing 5-2: Performing a right outer join

In this query, the subway_system table is considered the left table because 
it is to the left of the outer join syntax, while the country table is the right 
table. Because this is a right outer join, this query returns all the rows 
from the country table even if there is no match in the subway_system table. 
Therefore, all the countries appear in the result set, whether or not they 
have subway systems:

country                 city            subway_system
--------------------    ------------    ------------------------
United Arab Emirates    Dubai           Dubai Metro
Afghanistan             null            null
Albania                 null            null
Armenia                 Yerevan         Yerevan Metro
Angola                  null            null
Antarctica              null            null
Argentina               Buenos Aires    Buenos Aires Underground
--snip--

For countries without matching rows in the subway_system table, the city 
and subway_system columns display null values.

As with inner joins, the word outer is optional; using left join and right 
join will produce the same results as their longer equivalents.

The following outer join returns the same results as Listing 5-2, but 
uses the left outer join syntax instead:

select  c.country,
        s.city,
        s.subway_system

503007book.indb   55503007book.indb   55 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



56   Chapter 5

from    country c left outer join subway_system s
on      s.country_code = c.country_code;

In this query, the order of the tables is switched from Listing 5-2. The 
subway_system table is now listed last, making it the right table. The syntax 
country c left outer join subway_system s is equivalent to subway_system s 
right outer join country c in Listing 5-2. It doesn’t matter which join you 
use as long as you list the tables in the correct order.

Natural Joins
A natural join in MySQL automatically joins tables when they have a col-
umn with the same name. Here is the syntax to automatically join two 
tables based on a column that is found in both:

select  *
from    subway_system s
natural join country c;

With natural joins, you avoid a lot of the extra syntax required for an 
inner join. In Listing 5-2, you had to include on s.country_code = c.country_code 
to join the tables based on their common country_code column, but with a natu-
ral join, you get that for free. The results of this query are as follows:

country_code    subway_system               city                country
------------    ------------------------    ------------        --------------
AR              Buenos Aires Underground    Buenos Aires        Argentina
AU              Sydney Metro                Sydney              Australia
AT              Vienna U-Bahn               Vienna              Austria
CA              Montreal Metro              Montreal            Canada
CN              Shanghai Metro              Shanghai            China
GB              London Underground          London              United Kingdom
US              MBTA                        Boston              United States
US              Chicago L                   Chicago             United States
US              BART                        San Francisco       United States
US              Washington Metro            Washington, D.C.    United States
VE              Caracas Metro               Caracas             Venezuela
--snip--

Notice that you selected all columns from the tables using the select * 
wildcard. Also, although both tables have a country_code column, MySQL’s nat-
ural join was smart enough to display that column just once in the result set.

Cross Joins
MySQL’s cross join syntax can be used to get the Cartesian product of two 
tables. A Cartesian product is a listing of every row in one table matched with 
every row in a second table. For example, say a restaurant has two database 
tables called main_dish and side_dish. Each table has three rows and one 
column.

503007book.indb   56503007book.indb   56 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



Joining Database Tables   57

The main_dish table is as follows:

main_item
---------
steak
chicken
ham

And the side_dish table looks like:

side_item
----------
french fries
rice
potato chips

A Cartesian product of these tables would be a list of all the possible 
combinations of main dishes and side dishes, and is retrieved using the 
cross join syntax:

select     m.main_item,
           s.side_item
from       main_dish m
cross join side_dish s;

This query, unlike the others you’ve seen, doesn’t join tables based on 
columns. There are no primary keys or foreign keys being used. Here are 
the results of this query:

main_item   side_item
---------   ----------
ham         french fries
chicken     french fries
steak       french fries
ham         rice
chicken     rice
steak       rice
ham         potato chips
chicken     potato chips
steak       potato chips

Since there are three rows in the main_dish table and three rows in the 
side_dish table, the total number of possible combinations is nine.

Self Joins
Sometimes, it can be beneficial to join a table to itself, which is known as a 
self join. Rather than using special syntax as you did in the previous joins, 
you perform a self join by listing the same table name twice and using two 
different table aliases.

503007book.indb   57503007book.indb   57 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



58   Chapter 5

For example, the following table, called music_preference, lists music fans 
and their favorite genre of music:

music_fan   favorite_genre
---------   --------------
Bob         Reggae
Earl        Bluegrass
Ella        Jazz
Peter       Reggae
Benny       Jazz
Bunny       Reggae
Sierra      Bluegrass
Billie      Jazz

To pair music fans who like the same genre, you join the music_preference 
table to itself, as shown in Listing 5-3.

select a.music_fan,
       b.music_fan
from   music_preference a
inner join music_preference b
on (a.favorite_genre = b.favorite_genre)
where  a.music_fan != b.music_fan
order by a.music_fan;

Listing 5-3: Self join of the music_preference table

The music_preference table is listed twice in the query, aliased once as 
table a and once as table b. MySQL will then join tables a and b as if they are 
different tables.

In this query, you use the != (not equal) syntax in the where clause to 
ensure that the value of the music_fan column from table a is not the same 
as the value of the music_fan column in table b. (Remember from Chapter 3 
that you can use a where clause in your select statements to filter your results 
by applying certain conditions.) This way, music fans won’t be paired up 
with themselves.

N O T E  The != (not equal) syntax used here and the = (equal) syntax you’ve been using 
throughout this chapter are what’s known as comparison operators, as they let 
you compare values in your MySQL queries. Chapter 7 will discuss comparison 
operators in more detail.

Listing 5-3 produces the following result set:

music_fan  music_fan
---------  ---------
Benny      Ella
Benny      Billie
Billie     Ella

503007book.indb   58503007book.indb   58 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



Joining Database Tables   59

Billie     Benny
Bob        Peter
Bob        Bunny
Bunny      Bob
Bunny      Peter
Earl       Sierra
Ella       Benny
Ella       Billie
Peter      Bob
Peter      Bunny
Sierra     Earl

A music fan can now find other fans of their favorite genre in the right 
column next to their name.

N O T E  In Listing 5-3, the table is joined to itself as an inner join, but you could have used 
another type of join, like an outer join or a cross join.

Variations on Join Syntax
MySQL allows you to write SQL queries that accomplish the same results in 
different ways. It’s a good idea to get comfortable with different syntaxes, 
as you may have to modify code created by someone who doesn’t write SQL 
queries in quite the same way that you do.

Parentheses
You can choose to use parentheses when joining on columns or leave them 
off. This query, which does not use parentheses

select  s.subway_system,
        s.city,
        c.country
from    subway_system as s
inner join country as c
on      s.country_code = c.country_code;

is the same as this query, which does:

select  s.subway_system,
        s.city,
        c.country
from    subway_system as s
inner join country as c
on      (s.country_code = c.country_code);

Both queries return the same result.

503007book.indb   59503007book.indb   59 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



60   Chapter 5

Old-School Inner Joins
This query, written in an older style of SQL, is equivalent to Listing 5-1:

select  s.subway_system,
        s.city,
        c.country
from    subway_system as s,
        country as c
where   s.country_code = c.country_code;

This code doesn’t include the word join; instead, it lists the table names 
separated by a comma in the from statement.

When writing queries, use the newer syntax shown in Listing 5-1, but 
keep in mind that this older style is still supported by MySQL and you might 
see it used in some legacy code today.

Column Aliasing
You read earlier in the chapter about table aliasing; now you’ll create aliases 
for columns.

In some parts of the world, like France, subway systems are referred to 
as metros. Let’s select the subway systems for cities in France from the subway 
_system table and use column aliasing to display the heading metro instead:

select  s.subway_system as metro,
        s.city,
        c.country
from    subway_system as s
inner join country as c
on      s.country_code = c.country_code
where   c.country_code = 'FR';

As with table aliases, you can use the word as in your SQL query or you 
can leave it out. Either way, the results of the query are as follows, now with 
the subway_system column heading changed to metro:

metro           city        country
-----           --------    -------
Lille Metro     Lille       France
Lyon Metro      Lyon        France
Marseille Metro Marseille   France
Paris Metro     Paris       France
Rennes Metro    Rennes      France
Toulouse Metro  Toulouse    France

When creating tables, try to give your column headings descriptive 
names so that the results of your queries will be meaningful at a glance. In 
cases where the column names could be clearer, you can use a column alias.

503007book.indb   60503007book.indb   60 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



Joining Database Tables   61

Joining Tables in Different Databases
Sometimes there are tables with the same name in multiple databases, so 
you need to tell MySQL which database to use. There are a couple of differ-
ent ways to do this.

In this query, the use command (introduced in Chapter 2) tells MySQL 
to use the specified database for the SQL statements that follow it:

use subway;

select * from subway_system;

On the first line, the use command sets the current database to subway. 
Then, when you select all the rows from the subway_system table on the next 
line, MySQL knows to pull data from the subway_system table in the subway 
database.

Here’s a second way to specify the database name in your select 
statements:

select * from subway.subway_system;

In this syntax, the table name is preceded by the database name and a 
period. The subway.subway_system syntax tells MySQL that you want to select 
from the subway_system table in the subway database.

Both options produce the same result set:

subway_system       city                        country_code
-----------------   -------------------------   ------------
Buenos Aires        Underground Buenos Aires    AR
Sydney Metro        Sydney                      AU
Vienna U-Bahn       Vienna                      AT
Montreal Metro      Montreal                    CA
Shanghai Metro      Shanghai                    CN
London Underground  London                      GB
--snip--

Specifying the database and table name allows you to join tables that 
are in different databases on the same MySQL server, like so:

select  s.subway_system,
        s.city,
        c.country
from    subway.subway_system as s
inner join location.country as c
on      s.country_code = c.country_code;

This query joins the country table in the location database with the  
subway_system table in the subway database.

503007book.indb   61503007book.indb   61 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva



62   Chapter 5

T RY IT YOURSEL F

In the solar_system database, there are two tables: planet and ring. The planet 
table is as follows:

planet_id  planet_name
---------  ---------
    1      Mercury
    2      Venus
    3      Earth
    4      Mars
    5      Jupiter
    6      Saturn
    7      Uranus
    8      Neptune

The ring table stores only the planets with rings:

planet_id   ring_tot
---------   --------
    5           3
    6           7
    7          13
    8           6

5-1. Write a SQL query to perform an inner join between the planet and the 
ring tables, joining the tables based on their planet_id columns. How many 
rows do you expect the query to return?

5-2. Write a SQL query to do an outer join between the planet and the ring 
tables, with the planet table as the left table. 

5-3. Modify your SQL query from Exercise 5-2 so that the planet table is the 
right table. The set returned by the query should be the same as the results of 
the previous exercise.

5-4. Modify your SQL query from Exercise 5-3 using a column alias. Make the 
ring_tot column display as rings in the heading of the result set.

Summary
In this chapter, you learned how to select data from two tables and display 
that data in a single result set using various joins offered by MySQL. In 
Chapter 6, you’ll build on this knowledge by performing even more com-
plex joins involving multiple tables.

503007book.indb   62503007book.indb   62 12/5/22   11:53 AM12/5/22   11:53 AM

MySQL Crash Course (Sample Chapter) © 12/5/22 by Rick Silva




