
1
Your First Spacewalk

Welcome to the space corps. Your mission
is to build the first human outpost on Mars.

For years, the world’s greatest scientists have
been sending robots to study it up close. Soon

you too will set foot on its dusty surface.
Travel to Mars takes between six and eight months, depending on how

Earth and Mars are aligned. During the journey, the spaceship risks hitting
meteoroids and other space debris. If any damage occurs, you’ll need to put
on your spacesuit, go to the airlock, and then step into the void of space to
make repairs, similar to the astronaut in Figure 1-1.

In this chapter, you’ll go on a spacewalk by using Python to move a
character around the screen. You’ll launch your first Python program and
learn some of the essential Python instructions you’ll need to build the
space station later in the book. You’ll also learn how to create a sense of
depth by overlapping images, which will prove essential when we create
the Escape game in 3D later (starting with our first room mock-up in
Chapter 3).

14 Chapter 1

Figure 1-1: NASA astronaut Rick Mastracchio on a 26-minute spacewalk in 2010, as
photographed by astronaut Clayton Anderson. The spacewalk outside the International
Space Station was one of a series to replace coolant tanks.

If you haven’t already installed Python and Pygame Zero (Windows
users), see “Installing the Software” on page 3. You’ll also need the Escape
game files in this chapter. “Downloading the Game Files” on page 7 tells
you how to download and unzip those files.

Starting the Python Editor
As I mentioned in the Introduction, in this book we’ll use the Python pro-
gramming language. A programming language provides a way to write
instructions for a computer. Our instructions will tell the computer how
to do things like react to a keypress or display an image. We’ll also be
using Pygame Zero, which gives Python some additional instructions for
handling sound and images.

Python comes with the IDLE editor, and we’ll use the editor to create
our Python programs. Because you’ve already installed Python, IDLE
should now be on your computer as well. The following sections explain
how to start IDLE, depending on the type of computer you’re using.

Starting IDLE in Windows 10
To start IDLE in Windows 10, follow these steps:

1.	 Click the Cortana search box at the bottom of the screen, and enter
Python in the box.

2.	 Click IDLE to open it.

Your First Spacewalk 15

3.	 With IDLE running, right-click its icon in the taskbar at the bottom
of the screen and pin it. Then you can run it from there in the future
using a single click.

Starting IDLE in Windows 8
To start IDLE in Windows 8, follow these steps:

1.	 Move your mouse to the top right of the screen to show the Charms bar.

2.	 Click the Search icon, and enter Python in the box.

3.	 Click IDLE to open it.

4.	 With IDLE running, right-click its icon in the taskbar at the bottom
of the screen and pin it. Then you can run it from there in the future
using a single click.

Starting IDLE on the Raspberry Pi
To start IDLE on the Raspberry Pi, follow these steps:

1.	 Click the Programs menu at the top left of the screen.

2.	 Find the Programming category.

3.	 Click the Python 3 (IDLE) icon. The Raspberry Pi has both Python 2
and Python 3 installed, but most of the programs in this book will work
only in Python 3.

Introducing the Python Shell
When you start IDLE, you should see the Python shell, as shown in
Figure 1-2. This window is where you can give Python instructions and
immediately see the computer respond. The three arrows (>>>) are called a
prompt. They tell you that Python is ready for you to enter an instruction.

Figure 1-2: The Python shell

So let’s give Python something to do!

16 Chapter 1

Displaying Text
For our first instruction, let’s tell Python to display text on the screen. Type
the following line and press enter:

>>> print("Prepare for launch!")

As you type, the color of your text will change. It starts off black, but as
soon as Python recognizes a command, like print, the text changes color.

Figure 1-3 shows the names of the different parts of the instruction you
just entered. The purple word print is the name of a built-in function, which
is one of many instructions that are always available in Python. The print()
function displays onscreen the information you place between the parentheses
(curved brackets). The information between a function’s parentheses is the
function’s argument.

print("Prepare for launch!")

function name argument

parentheses

Figure 1-3: The different parts of your first instruction

In our first instruction, the print() function’s argument is a string, which
is what programmers call a piece of text. (A string can include numbers,
but they’re treated as letters, so you can’t do calculations with numbers in
a string.) The double quotation marks (" ") show the start and end of the
string. Anything you type between double quotation marks will be green,
and so will the quotation marks.

The colors do more than brighten up the screen: they highlight the
different parts of the instruction to help you find mistakes. For example, if
your final parenthesis is green, it means you forgot the closing double quote
on the string.

If you entered the instruction correctly, your computer will display
this text:

Prepare for launch!

The string that was shown in green is now displayed onscreen in blue.
All output (information the computer gives to you) appears in blue. If your
command didn’t work, check that you did the following:

1.	 Spelled print correctly. If you did, it will be purple (see Figure 1-3).

2.	 Used two parentheses. Other bracket shapes won’t work.

Your First Spacewalk 17

3.	 Used two double quotes. Don’t use two apostrophes ('') instead of a
double quote ("). Although the double quote includes two marks, it’s
just one symbol on the keyboard. On a US keyboard, the double quote
is in the middle row of letters, on the right, and must be used with the
shift key. On a UK keyboard, the double quote is on the 2 key.

If you make a mistake typing the text between the double quotes, the
instruction will still work, but the computer will display exactly what you
typed. For example, try this:

>>> print("Prepare for lunch!")

It doesn’t matter if you mistype the string now, but be careful when you
type a string or an instruction later in the book. Mistakes often prevent a
program from working correctly, and it can be hard to track down a mis-
take in a longer program, even with the color coding.

Training Mission #1

Can you enter a new instruction to output your name? (You’ll find the answers to
the Training Missions in the “Mission Debrief” section at the end of each chapter.)

Outputting and Using Numbers
So far you’ve used the print() function to output a string, but it can also do
calculations and output a number. Enter the following line:

>>> print(4 + 1)

The computer should output the number 5, the solution to 4 + 1.
Unlike with a string, you don’t use quotes around numbers and calcula-
tions. But you still use the parentheses to mark the start and end of the
information you want to give the print() function.

What happens if you do put quotes around 4 + 1? Try it! The result is
that the computer outputs "4 + 1" because it doesn’t treat 4 and 1 as num-
bers. Instead, it treats the argument as a string. You ask it to output "4 + 1",
and it does exactly that!

>>> print(4 + 1)
5
>>> print("4 + 1")
4 + 1

Python does the calculation only when you don’t include the quotes.
You’ll use the print() function a lot in your programs.

18 Chapter 1

Introducing Script Mode
The shell is great for quick calculations and for short instructions. But for
longer sets of instructions, like games, it’s much easier to create programs
instead. Programs are repeatable sets of instructions that we save so we can
run them whenever we want and change them whenever we need to without
retyping them. We’ll build programs using IDLE’s script mode. When you
enter instructions in script mode, they don’t run immediately as they do in
the shell.

Using the menu at the top of the shell window, select File and then
select New File to open a blank new window, as shown in Figure 1-4. The
title bar at the top of the window displays Untitled until you save your file
and name it. Once you’ve saved your file, the title bar will display the file’s
name. From now on, we’ll use script mode nearly all the time when we’re
creating Python code.

Figure 1-4: Python script mode

When you enter instructions in script mode, you can change, add, and
delete instructions using the mouse or the arrow keys, so it’s much easier to
fix mistakes and build your programs. Starting from Chapter 4, we’ll build
the Escape game by adding to it piece-by-piece in script mode and testing
each new section as we go.

Tip

If you’re not sure whether you’re in the shell or the script mode window, look at the
title bar at the top. The shell displays Python Shell. The script mode window dis-
plays either Untitled or the name of your program.

Creating the Starfield
The first program we’ll write will display the starfield image that we’ll use
as the space background for our Spacewalk program. This image is in the
images folder within the escape folder. Start by entering Listing 1-1 into the
new blank window in IDLE.

Your First Spacewalk 19

N o t e 	 In this book, I’ll use numbers in circles (like this: ) to refer to different bits of code in
the explanations so it’s easier for you to follow along. Don’t type these numbers in
your program. When you see a number in a circle in the text, refer back to the pro-
gram listing to see which part of the program I’m talking about.

Listing 1-1 is a short program, but there are a couple of details that
you should pay attention to while you’re typing: the def statement  needs
a colon at the end of its line, and the next line  needs to start with four
spaces. When you add the colon to the end of the def line and press enter,
IDLE automatically adds the four spaces at the beginning of the next line
for you.

 # Spacewalk
by Sean McManus
www.sean.co.uk / www.nostarch.com

 WIDTH = 800
HEIGHT = 600

 player_x = 600
player_y = 350

 def draw():
 screen.blit(images.backdrop, (0, 0))

Listing 1-1: See the starfield in Pygame Zero.

Select the File menu at the top of the screen and then select Save
(from now on, we’ll use a shorthand for menu selections that looks like this:
File4Save). In the Save dialog, name your program listing1-1.py. You need
to save your file in the escape folder you set up in the Introduction. This way,
it’s in the same folder as the book’s images folder, and Pygame Zero can find
the images when you run the program. After you save the file, your escape
folder should now contain your listing1-1.py file and the images folder, as
shown in Figure 1-5 (along with the listings and sounds folders).

Figure 1-5: Your new Python program and the images folder should be stored in the same
place.

listing1-1.py

20 Chapter 1

I’ll explain how the listing1-1.py program works shortly, but first let’s
run the program so we can admire the starfield. The program needs
some instructions from Pygame Zero to manage the images, so to use those
instructions, we need to run the program using a pgzrun instruction. When-
ever we use any instructions from Pygame Zero in a Python program, we
need to run it using pgzrun.

We’ll type this on the computer’s command line, just like we did in the
Introduction to run the Escape game. First, look back at “Running the Game”
on page 9, and follow the directions there to open your computer’s com-
mand line terminal from your escape folder. Then run the following instruc-
tion from the command line:

pgzrun listing1-1.py

R e d A l e r t 	 Don’t type this instruction in IDLE: be sure to type it in your Windows or Raspberry
Pi command line. The Introduction shows you how.

If all went according to plan, you should be looking at the majesty of
space, as shown in Figure 1-6.

y = 0

y = 599

x = 0 x = 799

close
button

Figure 1-6: The starfield. The starfield image is courtesy of NASA/JPL-Caltech/
UCLA and shows star cluster NGC 2259.

Your First Spacewalk 21

Using My Example Listings

If you can’t get a program in this book to work, you can use my example program
instead. For instance, you can use my listing1-1.py example and modify it to make
your own listing1-2.py shortly so you can continue following along.

You’ll find my programs in the listings folder, which is in the escape folder.
Simply open the listings folder in Windows or the Raspberry Pi desktop, find the
listing you need, copy it, and then paste it into the escape folder. Then open the
copied listing in IDLE and follow along with the next step in the book. When you
look at the folder, you should be able to see your Python file and the images folder
are in the same place (see Figure 1-5).

Understanding the Program So Far
Most of the instructions you’ll see in this book will work in any Python pro-
gram. The print() function, for example, is always available. To make the
programs in this book, we’re also using Pygame Zero. This adds some new
functions and capabilities to Python for creating games, especially for the
screen display and sound. Listing 1-1 introduces our first instructions from
Pygame Zero, used to set up the game window and draw the starfield.

Let’s take a closer look at how the listing1-1.py program works.
The first few program lines are comments . When you use a # symbol,

Python ignores everything after it on the same line, and the line appears in
red. The comments help you and other people reading the program under-
stand what a program does and how it works.

Next, the program needs to store some information. Programs almost
always need to store information that the program uses or needs to refer
back to at a later time. For example, in many games, the computer needs
to keep track of the score and the player’s position on the screen. Because
these details can change (or vary) as the program runs, they’re stored in
something called a variable. A variable is a name you give to a piece of infor-
mation, either a number or some text.

To create a variable, you use an instruction like this:

variable_name = value

N o t e 	 Code terms shown in italics are placeholders that would be filled in. Instead of
variable_name, you would enter your own variable name.

For example, the following instruction puts the number 500 into the
variable score:

score = 500

You can name your variables almost anything you want. However,
to make your program easy to write and understand, you should choose

22 Chapter 1

variable names that describe the information inside each variable. Note
that you can’t use names for your variables that Python uses for its lan-
guage, such as print.

R e d A l e r t 	 Python is case-sensitive, which means it is strict about whether variables use upper-
case or lowercase letters. In fact, it treats score, SCORE, and Score as three completely
different variables. Make sure you copy my example programs exactly, or they might
not work properly.

Listing 1-1 begins by creating some variables. Pygame Zero uses the
WIDTH and HEIGHT variables  to set the size of the game window on the
screen. Our window is wider than it is tall because the WIDTH value (800) is
bigger than the HEIGHT value (600).

Notice that we’ve spelled these variables with capital letters. The capital
letters in variable names tell us that they’re constants. A constant is a particu-
lar kind of variable with values that aren’t supposed to change after they’ve
been set up. The capital letters help other programmers who are looking
at the program understand that they shouldn’t let anything else in the pro-
gram change these variables.

The player_x and player_y variables  will store your position on the
screen as you carry out your spacewalk. Later in the chapter, we’ll use these
variables to draw you on the screen.

We then define a function using the def() statement . A function is a
group of instructions you can run whenever you need them in your pro-
gram. You’ve already seen one built-in function called print(). We’ll make
our own function in this program called draw(). Pygame Zero will use it to
draw the screen display whenever the screen changes.

We define a function using the keyword def , followed by the function
name we choose, empty parentheses, and a colon. Sometimes you’ll use a
function’s parentheses to contain information for that function, as you’ll
see later in this book.

We then need to give the function instructions for what it should do.
To tell Python which instructions belong to the function, we indent them
by four spaces. The screen.blit() instruction  from Pygame Zero draws an
image on the screen. In the parentheses, we tell it which image to draw and
where to draw it, like this:

screen.blit(images.image_name, (x, y))

From the images folder, we’ll use the backdrop.jpg file, which is the
starfield. In our listing1-1.py program, we refer to it as images.backdrop. We
don’t have to use the file’s .jpg extension, because we’re using Pygame Zero
to handle the images, and Pygame Zero doesn’t require the extension.
Also, the program knows where the image is because all the images must
be in the images folder so Pygame Zero can find them.

We put the image on the screen at position (0, 0) , which is the top-
left corner of the screen. The first number, known as the x position, tells the
screen.blit() instruction how far from the left edge we want our image to

Your First Spacewalk 23

be; the second number, known as the y position, describes how far down we
want it to be. The x positions go from 0 on the left edge of the window to
799 on the right edge because our window is 800 pixels wide. Similarly, the
y positions run from 0 at the top of the window to 599 at the bottom (see
Figure 1-6).

For positions onscreen, we use a tuple, which is just a group of numbers
or strings in parentheses, such as (0, 0). In a tuple, the numbers are sepa-
rated with a comma, plus an optional space for readability.

The most important thing you need to know about tuples is that you
have to take care with the punctuation. Because the tuple uses parentheses,
and we put this tuple inside the parentheses for screen.blit(), there are two
sets of parentheses here. So you need parentheses around the tuple values,
but you also need to close the parentheses for screen.blit() after the tuple.

Stopping Your Pygame Zero Program
Similar to space, your Pygame Zero program will go on forever. To stop
it, click the game window’s close button at the top right (see Figure 1-6).
You can also close the program from the command line window where
you entered the pgzrun instruction by pressing ctrl-C.

R e d A l e r t 	 Don’t close the command line window itself. Otherwise, you’ll have to open it again
to run another Pygame Zero program. If you do close it by mistake, refer back to
“Running the Game” on page 9 to open it again.

Adding the Planet and Spaceship
Let’s bring Mars and the spaceship into view. In IDLE, add the last two lines
in Listing 1-2 to your existing listing 1-1.py program.

N o t e 	 I’ll use --snip-- in code listings to show you where I’ve left out some code, usually
because the code is repeated from before. I’ll also show any repeated code in gray so
you can see the new code you need to add more clearly. Don’t add in the repeated
code again!

In the following code, I’ve excluded the comments and variable setup
to save space and make it easier for you to see the new code. But make sure
you keep those instructions in your program. Just add the two new lines at
the end.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))
 screen.blit(images.mars, (50, 50))
 screen.blit(images.ship, (130, 150))

Listing 1-2: Adding Mars and the ship

listing1-2.py

24 Chapter 1

Save your updated program as listing1-2.py by selecting File4Save As.
Run your program by switching back to the command line window and
entering the command pgzrun listing1-2.py. Figure 1-7 shows how the
screen should now look, with the red planet and the spaceship above it.

Figure 1-7: Mars and the spaceship. The Mars image was taken by the Hubble
Space Telescope in 1991.

N o t e 	 If your program doesn’t work as expected, check that all your screen.blit() instruc-
tions have exactly four spaces before them and are lined up with each other.

The first of the new instructions places the image mars.jpg at the posi-
tion (50, 50), which is near the top-left corner of the screen. The second
new instruction positions the ship at (130, 150). In each case, the coordi-
nates used are for the top-left corner of the image.

Changing Perspective:
Flying Behind the Planet
Now let’s look at how we can make the ship fly behind the planet. Swap the
order of the last two instructions in IDLE, as shown in Listing 1-3. To do
this, highlight one of the lines, press ctrl-X to cut it, click on a new line,
and press ctrl-V to paste it in place. You can also use the cut and paste
options in the Edit menu at the top of the screen.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))

listing1-3.py

Your First Spacewalk 25

 screen.blit(images.ship, (130, 150))
 screen.blit(images.mars, (50, 50))

Listing 1-3: Swapping the order of the planet and ship instructions

If the previous version of your program is still running, close it now.
Save your new program as listing1-3.py and run it from the command line
by entering pgzrun listing1-3.py. You should see that the spaceship is now
behind the planet, as shown in Figure 1-8. If not, make sure you ran the
right file (listing1-3.py), and then check that the instructions in the program
are correct.

The ship goes behind the planet because the images are added to the
screen in the order they are drawn in the program. In our updated pro-
gram, we draw the starfield, draw the ship, and then draw Mars. Each new
image appears on top of the previous one. If two images overlap, the image
that was drawn last appears in front of the one drawn earlier.

Figure 1-8: The spaceship is now behind the planet.

Training Mission #2

Can you move just one drawing instruction in your program to make the planet
and the spaceship disappear? If you’re not sure what to do, experiment by moving
the drawing instructions to see what effect it has when you save the program and
run it again.

Make sure you keep the drawing instructions aligned and indented with four
spaces inside the draw() function. When you’re done experimenting, match the
instructions in Listing 1-3 again to bring the ship and Mars back into view.

26 Chapter 1

Spacewalking!
It’s time to climb out of the underside of the spaceship and begin your
spacewalk. Edit your program so it matches Listing 1-4. But be sure to
keep the variable instructions that aren’t shown here the same as they
were before. Save the updated program as listing1-4.py.

--snip--
def draw():
 screen.blit(images.backdrop, (0, 0))
 screen.blit(images.mars, (50, 50))

 screen.blit(images.astronaut, (player_x, player_y))
 screen.blit(images.ship, (550, 300))

 def game_loop():
 global player_x, player_y
y if keyboard.right:
 player_x += 5
 elif keyboard.left:

 player_x -= 5
 elif keyboard.up:

 player_y -= 5
 elif keyboard.down:
 player_y += 5

 clock.schedule_interval(game_loop, 0.03)

Listing 1-4: Adding the spacewalk instructions

In this listing, we add a new instruction  to draw the astronaut image
at the position in the player_x and player_y variables, which were set up at
the start of the program in Listing 1-1. As you can see, we can use these
variable names in place of numbers for the astronaut’s position. The pro-
gram will use the current numbers stored in these variables to figure out
where to put the astronaut every time it is drawn.

Note that the order of drawing the images has changed in the program
and is now backdrop, Mars, astronaut, and ship. Make sure you change the
order of your screen.blit() instructions to match this listing.

The astronaut starts off overlapping the ship. Because the astronaut
is drawn before the ship, the astronaut will appear to emerge from under-
neath (behind) the spaceship. We also changed the position of the ship 
to the bottom-right area of the screen. This gives the astronaut space to fly
toward the planet.

Run the program by entering pgzrun listing1-4.py. You should now be
able to use the arrow keys to move freely through space, protected by your
spacesuit, as shown in Figure 1-9. You’ll see that you fly behind the space-
ship but in front of Mars and the starfield. The order in which we draw
the images creates a simple illusion of depth. When we draw the space
station beginning in Chapter 3, we’ll use this drawing technique to create
a 3D perspective of each room. We’ll draw the rooms from back to front to
create a sense of depth.

listing1-4.py

Your First Spacewalk 27

Figure 1-9: You emerge from the ship for your spacewalk.

Training Mission #3

Can you edit the code to move the spaceship and the astronaut to the top-right
corner of the screen? You’ll need to change the starting values for player_x and
player_y, as well as where the spaceship is drawn. Make sure the player is “inside”
(actually underneath) the ship at the start of the program. Experiment with other
positions, too. This is a great way to get familiar with screen positions. Refer back
to Figure 1-6 if you need to.

Understanding the Spacewalk Listing
The spacewalk listing, Listing 1-4, is interesting because it lets you control
part of the program from the keyboard, which will be crucial in the Escape
game. Let’s look at how our final spacewalk program works.

We build on our earlier listings and add a new function called game
_loop() . This function’s job is to change the values of the player_x and
player_y variables when you press the arrow keys. Changing the variables
enables you to move the astronaut character because those variables posi-
tion the astronaut when it’s drawn.

Before we go on, we need to look at two different types of variables.
Variables that are changed inside a function usually belong to that func-
tion and can’t be used by other functions. They’re called local variables,
and they make it harder for bits of the program to interfere with other
bits accidentally and cause errors.

28 Chapter 1

But in the spacewalk listing, we need both the draw() and game_loop()
functions to use the same player_x and player_y variables, so they need to
be global variables, which any part of the program can use. We set up global
variables at the start of the program, outside of any functions.

To tell Python that the game_loop() function needs to use and change
the global variables we set up outside of this function, we use the global
command . We put it at the beginning of the function and list the vari-
ables we want to use as global variables. Doing this is like overriding the
safety feature that stops you from changing variables that weren’t created
inside the function. We don’t need to use global in the draw() function,
because the draw() function doesn’t need to change those variables. It only
needs to look at what those variables contain.

We tell the program to use keyboard controls using the if command.
With this instruction, we tell Python to do something only if certain condi-
tions are met. We use four spaces to indent the instructions that belong
to the if command. That means these instructions are indented by eight
spaces in total in Listing 1-4 because they are also inside the game_loop()
function. These instructions run only if the statement after the if com-
mand is true. If not, the instructions that belong to the if command are
skipped over.

It might seem odd to use spaces like this to show which instructions
belong together, especially if you’ve used other programming languages,
but it makes the programs easy to read. Other languages often need brackets
around sets of instructions like this. Python keeps it simple.

We use the if command to check whether the right arrow key is
pressed . If it is, we change the value of player_x by adding 5 , moving
the astronaut image to the right. The symbols += mean increase by, so the
following line increases the number in the player_x variable by 5:

player_x += 5

Similarly, -= means decrease by, so the following instruction reduces the
number in player_x by 5:

player_x -= 5

If the right arrow key is not pressed, we check whether the left key is
pressed. If it is, the program subtracts 5 from the player_x value, moving
the astronaut’s position left. To do that, we use an elif command , which
is short for “else if.” You can think of else as meaning otherwise here. In plain
English, this part of our program means, “If the right arrow key is pressed,
add 5 to the x position. Otherwise, if the left key is pressed, subtract 5 from
the x position.” We then use elif to check for up and down keypresses in the
same way, and change the y position to move the astronaut up or down. The
draw() function uses the player_x and player_y variables for the astronaut’s
position, so changing the numbers in these variables makes the astronaut
move on the screen.

Your First Spacewalk 29

Tip

If you change the elif command at  to an if command, the program allows
you to move up or down at the same time as moving left or right, letting you walk
diagonally. That’s fun in the spacewalk program, but we’ll use code similar to this
to move around the space station later, and it doesn’t look natural there.

The final instruction  sets the game_loop() function to run every
0.03 seconds using the clock in Pygame Zero, so the program keeps check-
ing for your keypresses and changing your position variables frequently.
Note that you don’t put any parentheses after game_loop here. This instruc-
tion isn’t indented, because it doesn’t belong to any function. When the
program starts, it runs the instructions that aren’t in any function in the
order they are in the listing, from top to bottom. Therefore, the last line of
the program is one of the first to run after the variables are set up. This last
line starts the game_loop() function running.

The draw() function runs automatically whenever the screen needs
updating. This is a feature of Pygame Zero.

Training Mission #4

Let’s fit some new thrusters to the spacesuit. Can you work out how to make the
astronaut move faster in the up and down directions than it does in the left and
right directions? Each keypress in the up or down direction should make the space
suit move more than a keypress in the left or right direction.

Enjoy the breathtaking views as you take your spacewalk and conduct
any essential repairs to your ship. We’ll reconvene in Chapter 2, where
you’ll learn some procedures that will help you stay safe in space.

Are You Fit to Fly?
Check the following boxes to confirm that you’ve learned the key lessons
in this chapter. If you’re not sure about something, flip back through the
chapter and give the topic another look.

�� You use IDLE’s script mode to create a program that you can save, edit,
and run again. Enter script mode by selecting File4New File or edit an
existing file by selecting File4Open.

�� Strings are pieces of text in code. Double quotes mark the start and end
of a string. A string can include numbers, but they’re treated as letters.

�� Variables store information, either numbers or strings.

�� The print() function outputs information on the screen. You can use it
for strings, numbers, calculations, or the values of variables.

30 Chapter 1

�� The # symbol in a program marks a comment. Python ignores anything
on the same line after a #, and comments can be a handy reminder for
you and anyone you share your code with.

�� Use the WIDTH and HEIGHT variables to set the size of your game window.

�� To run a Pygame Zero program, open the command line from the
folder your Python program is in, and then enter pgzrun filename.py
in the command line to run it.

�� A function is a group of instructions you can run whenever you want
your program to use the instructions. Pygame Zero uses the draw()
function to draw or update the game screen.

�� Use screen.blit(images.image_name, (x, y)) to draw an image at position
(x, y) on the screen. The x- and y-axes are numbered starting at 0 in the
top-left corner.

�� A tuple is a group of numbers or strings in parentheses, separated by a
comma. The contents of a tuple can’t be changed by the program after
they’ve been set up.

�� To end your Pygame Zero program, click the window’s close button or
press ctrl-C in the command line window.

�� If images overlap, the image you drew last in the program appears at
the front.

�� The elif command is short for “else if.” Use it to combine if conditions
so that only one set of instructions can run. In our program, we use it
to stop the player from moving in two directions at the same time.

�� If we want to change a variable inside a function and use it in a differ-
ent function, we need to use a global variable. We set it up outside of the
functions and use the global keyword inside a function when we plan to
change the variable there.

�� We can set a function to run at regular intervals using the clock feature
in Pygame Zero.

Your First Spacewalk 31

Mission Debrief
Here are the answers for the training missions in this chapter.

Training Mission # 1

This answer will vary, depending on your name, but it should look something like this:

>>> print("Neil Armstrong")

Training Mission # 2

If you draw the starfield last, it will hide the planet and the spaceship. Cunning!
Place the images in this order:

--snip--
def draw():
 screen.blit(images.mars, (50, 50))
 screen.blit(images.ship, (130, 150))
 screen.blit(images.backdrop, (0, 0))

Training Mission # 3

Change the value of player_y at the start of the program from 350 to a lower
number, such as 150. Change the second number in the tuple for the screen.blit()
instruction for the ship image to a lower number, such as 50. Other numbers will
also work as long as the ship is in the top right and the astronaut starts behind
the ship.

Training Mission # 4

To make the player move faster up and down than left and right, change how much
the player_y variable changes by each time the key is pressed. If you change the
fives to a higher number, the player will move a greater distance up or down the
screen for each up or down keypress. As a result, the astronaut will appear to move
faster. But if you make the value too high, the illusion of animation will be lost, and
the suit will seem to just teleport through space. Experiment with a few values to
see what works.

--snip--
 elif keyboard.up:
 player_y -= 15
 elif keyboard.down:
 player_y += 15
--snip--

