
I N D E X

Page numbers referring to figures and tables are followed by an italicized f
or t, respectively.

A
A/B (blue/green) testing, 263
ACLU (American Civil Liberties

Union), 177
add_edge function, 33
add_node function, 33
AEQD (azimuthal equidistance), 152–153
aeqd_to_wgs84 function, 152–153
AGP. See art gallery problem

application
all_pairs_lowest_common_ancestor

function, 86
all_shortest_paths function, 118
alpha parameter, 120
Amazon Web Services (AWS), 261
American Civil Liberties Union

(ACLU), 177
Anaconda

installing, 4–8
Linux, 4–6
macOS, 8, 8f
Windows, 6–8, 6f, 7f

installing Spyder IDE with, 10
Jupyter Notebooks, 11–12
virtual environment setup, 9, 63

anomaly detection, 47, 53
application state planning, 235–236
apply function, 70, 168–169, 192
apt-get, 11
area metrics, 190
areas of responsibility (AORs)

art gallery problem, 219–223,
220f, 225

emergency service planning
scenario, 171, 173

art gallery problem (AGP) application,
209–232

advanced features, 233–256
graphics in Python, 245–250
process parallelism, 241–245
running example application,

254–255
saving and reloading data,

251–254
state manager development,

237–241
user interaction mapping,

234–237
algorithm and data structures,

216–231
area of responsibility,

219–223, 220f
complex polygons,

223–225, 224f
field of view and effective

range, 229–231, 230f
greedy coloring, 218, 218f
triangular tessellation,

216–217, 217f
weighted and budgeted

coverages, 225–229, 225f,
228f, 229f

delivery pipeline, 257–267
distributing with cloud

microservices,
260–264, 261f

licensing with PyArmor,
264–265

open source delivery, 265–266

276 Index

art gallery problem (AGP)
application (continued)

delivery pipeline (continued)
packaging with Python

interpreters, 259–260
setup scripts, 258–259

existing research on, 212–214,
213f, 214f

geometric and graph
representations, 214–216, 215f

premise of, 209–210
use cases, 211–212

assign_triangles function, 221
association function, 195
association matrices, 194–197, 194f
attribute characters, 22
authority score

HITS algorithm, 80–83
social network simulation, 104, 106
updating authority scores, 81

AWS (Amazon Web Services), 261
axis parameter, 71, 167
azimuthal equidistance (AEQD), 152–153
azimuth projection, 152

B
background variable, 246
bagging, 182
balanced exchange, 75
Baran, Paul, 121
base stations (towers)

defined, 142
gathering locations, 149–150
identifying, 144
rogue, 143

betweenness centrality, 35–38, 35f, 57
biased random walks (biased walks),

97, 100, 104, 111
BIM (building information modeling)

programs, 211
Bledsoe, Woodrow Wilson, 176, 179
blind spots, 211, 232
blit function, 247, 250
blue/green (A/B) testing, 263
Booleans

defined, 18
intersections, 153–154
notation, 18–19, 21t

branch nodes, 84–85
Brandes, Ulrik, 36
broadcast addresses, 60
building information modeling (BIM)

programs, 211

C
-c (--count) option, 63
C language, 92, 216
C++ language, 183
capacity attribute, 112, 114
capacity constraint, 121
cascaded_intersections function,

155, 157
cell IDs (CIDs), 146
cells, defined, 12
centrality, 35–38, 51f

betweenness centrality, 35–38,
35f, 57

defined, 35
degree centrality, 37–38
by protocol, 52–61

identifying unusual levels of
traffic, 54–57

neighbors and information
exchange ratio, 57–61

port numbers subgraphs, 52–54
centroid, defined, 136
centroid location, 136–137, 137f
check_clicked_existing_vertex

function, 240
check_clicked_within_room function, 240
choice function, 103–104, 116, 122, 193
chroma key filming (green-screen

filming), 249
Chvátal, Václav, 212
Chvátal AGP theorem, 212–213
Chvátal’s upper bound, 212–213
CIDs (cell IDs), 146
circle function, 247
city_gj variable, 167
city_shape variable, 167, 170
clear_surface function, 249
cliques

analysis, 39–40, 39f, 61
defined, 76
identifying, 76–78, 78f
maximal cliques, 40, 77

Index 277

closed chains, 129
closeness, 35, 38, 52
cloud microservices, distributing with,

260–264
co-location, 138–140, 139f
common ancestors, 84–86
complete subgraphs, 39
complex function, 150–151
computational geometry theory,

127–140. See also art gallery
problem application

common operations, 132–140, 133f
centroid location, 136–137, 137f
co-location, 138–140, 139f
perimeter length, 137–138
tessellation, 133–136, 134f

defined, 127
facial recognition, 175–205
location triangulation, 141–160
shapes, 128–132

line segments, 128–129
points, 128–129
polygons, 129–132, 130f, 131f
vertex order, 132

Voronoi diagrams, 161–174
computer vision, 179, 184. See also facial

recognition
concat function, 70–71
concert security scenario, 132–140, 133f

centroid location, 136–137, 137f
co-location, 138–140, 139f
perimeter length, 137–138
tessellation, 133–136, 134f

conda utility, 4–7, 9, 11
connected components, 41
connected graphs, 40–41
connectedness, 40–41, 41f
connections (edges), in graphs, 27
conservation constraint, 121
constrained Delaunay triangulation,

214, 216
contains function, 81, 138–139
continue keyword, 116, 118
controlled variable, 239–240
convex hulls, 187, 187f
coords parameter, 216
correlation ratio, 197–198

correlation_ratio function, 198
create_using function, 63
cross-validation, 188, 200
cross_val_score function, 200
cutset, 121–122
cv2 library, 184
cv parameter, 200
cycle of graphs, 32
cyclic graphs, 32

D
DAGs (directed acyclic graphs), 85
DataFrame objects, 69–73, 76, 81, 88, 107,

150, 167–170, 191–193, 195
Data Manager service, 261f, 262
DataSaver class, 227–228, 252
DDoS (distributed denial-of-service)

attacks, 38
decision trees, 179–182, 180f, 201
degree centrality, 37–38
Delaunay triangulation, 216
delivery pipeline, 257–267

distributing with cloud
microservices, 260–264, 261f

licensing with PyArmor, 264–265
open source delivery, 265–266
packaging with Python

interpreters, 259–260
setup scripts, 258–259

descriptive security analysis, 90
detector variable, 183, 186
deterministic FSMs, 95, 97
device tracking application,

148–159, 148f
geodesic polygons, 150–153
intersections, 153–157
mapping and comparing results,

157–159, 158f
reducing search area, 159
tower locations, 149–150

dictionary comprehensions, 15–17, 137
difference function, 144
DiGraph objects, 38, 42, 42f, 52, 63,

108, 115
Dijkstra’s algorithm, 77
dim parameter, 51
directed acyclic graphs (DAGs), 85

278 Index

directed graphs, 31–32
betweenness centrality, 36
cliques, 40, 76–77
creating in NetworkX, 33
degree centrality, 37–38
edge multiplicity, 43
HITS algorithm, 80
network analysis graphs, 63
port numbers subgraphs, 52
resource allocation, 108–109
social network analysis, 73
state machine graphs, 94, 94f

directed preferential attachment
(DPA), 114

disconnected graphs, 40–41, 41f
discrete classification, 176
DisplayAGP class, 242–243
Display class, 246–248, 247f
distance function, 138, 164, 222
distance metrics, 190
distributed denial-of-service (DDoS)

attacks, 38
division of labor, 241
.__doc__ attribute, 237
Docker, 262–263
docstrings, 236–237
DPA (directed preferential

attachment), 114
draw function, 34, 247
Drawn state, 235
dtypes property, 72
DummyClassifier class, 200
dummy classifiers, 199–202
dump function, 203
dumps (dump string) function, 147, 252

E
edge attributes, 32–33, 43, 50, 226
edge capacity, 112–113
edge multiplicity, 32, 42–43, 42f
edges (connections), in graphs, 27
edges (sides; faces), in polygons, 129
edge weight, 32–33, 43, 52–53, 62–63, 73
effective range

cellular networks, 144
security sensors, 211, 213, 229–230

Electronic Frontier Foundation, 177
eliminate_small_areas function, 155–156

emergency service planning scenario,
163–173

city shape, 164–167, 165f
distance function, 164
generators, 167–169, 169f
Voronoi tessellation, 170–173,

171f, 172f
empirical mean (sample mean), 93
ensemble classifiers, 201
ethics

facial recognition, 178–179
social network analysis, 89
tracking, 144–145

Euclidean distance, 164
event class, 237–238
exchange_ratios function, 60
exploratory analysis (unsupervised

learning), 176

F
face detector component, 183
faces (edges), in polygons, 129
Facial Identification Scientific Working

Group (FISWG), 189
facial recognition, 175–205, 178

data loading, 191–193
data set, 177–178
decision tree classifiers,

179–182, 180f
defined, 175
ethics of, 178–179
facial statistics, 189–190, 189f
feature engineering, 193–198

association matrices,
194–196, 194f

correlation ratio, 197–198
mutual information

classification, 196–197
locating facial landmarks,

185–188, 187f
memory management, 190–191
model persistence, 203–204
model training, 198–203

establishing baseline, 199–200
random forest, 201–202
splitting data, 199
testing holdout images, 202–203

overview of, 176–177

Index 279

processing image data, 184–185, 185f
proof of concept, 188–204
representing facial geometry,

182–184, 182f
features, in databases, 71
field of view, 211, 213, 229–231, 230f
file_to_graph function, 62
find_cliques function, 40
finite state machines (FSMs), 93–95,

94f, 100–101
Fisk, Steve, 212
FISWG (Facial Identification Scientific

Working Group), 189
fitting classifiers, 200, 203
flip function, 247
Floor class, 234
flow functions, 109
font_color function, 34
format parameter, 165
freezing applications, 259–260
from_dict function, 253–254
FSMs (finite state machines), 93–95,

94f, 100–101
functools library, 150

G
GCP (Google Cloud Platform), 261
General Data Protection Regulation, 178
General Game Playing (GGP), 98
Generator objects, 40
generators (seeds)

defined, 162
gathering, 167–169, 169f
Voronoi tessellation, 162–163

geocoding, 145
GeoDataFrame class, 150
GeoDataFrame objects, 168–169
GeoJSON, 150, 165–167
geolocation, 145, 149–150, 159, 167
GeoPandas library, 150, 169–170
geovoronoi library, 163, 170
get_front_face_detector function, 183
get_image_files function, 191
get_mods function, 239
get_shapely_circle function, 153
GGP (General Game Playing), 98
Gini impurity coefficient, 181
GIS Stack Exchange, 151

GitHub, xxiv, 10, 48, 258, 265
goal-oriented planning, 98
Google Cloud Platform (GCP), 261
Graph builder service, 261f, 262
graphic elements, 245–250

Display class, 246–248, 247f
layers, 248–250
Sprite class, 248–250, 250f
Surface class, 246–248, 247f

graphs, defined, 27
graph theory, 27–44. See also art gallery

problem application
creating graphs in NetworkX,

32–34, 34f
graph properties, 34–43

centrality, 35–38
cliques, 39–40
closeness, 35
connectedness, 40–41
edge multiplicity, 42–43

graphs, defined, 27
overview of, 31–32
uses for, 28–31, 28f, 30f, 31f

Graphviz, 33
greedy_color function, 218
greedy coloring, 212–214, 213f, 218,

218f, 245
Greek letters and functions, 22, 22t
green-screen filming (chroma key

filming), 249
Guggenheim Museum, 214, 214f.

See also art gallery problem
application

H
-h (--help) option, 63, 254
handle_click function, 240–241
handle_keydown function, 238–239, 241
handle_keyup function, 239–241
hard classification, 203
hardware parallelism, 263
has_path function, 110
Hay, Andrew, 29
higher-order functions, 150
histogram of oriented gradients

(HOG), 183
HITS (Hyperlink-Induced Topic

Search), 80–83, 104, 109

280 Index

hits function, 81
HNIs (home network identities), 146
holdout sets

testing holdout images, 202–203
true, 192–193

hole_p variable, 224
holes. See linear ring polygons
home network identities (HNIs), 146
horizontal scaling, 262–263
hubs

defined, 80
HITS algorithm, 80–83
social network simulation, 104, 106
updating hub scores, 82

hub_send function, 106
Hyperlink-Induced Topic Search

(HITS; Hubs and Authorities),
80–83, 104, 109

hypothesis testing, 200

I
-i (--iface) option, 63
-i all option, 64
ICMP (Internet Control Message

Protocol) packets, 49–50
IER (information exchange ratio), 59–61
IFD (information flow distance), 100–104
imutils library, 184, 236
in-degree centrality, 37–38, 54–56,

59–60, 78, 85, 113, 115, 121
in_degree function, 55, 79
in_edges function, 59, 114
Indicators of Compromise (IoCs), 47
information entropy, 74
information exchange ratio (IER), 59–61
information flow distance (IFD),

100–104
information flow game, 110–124

edge capacity, 112–113
game phases, 113–117

message movement phase,
115–117

network disruption phase, 117
network evolution phase,

113–115
game simulation, 118–120
improvements to player 2,

120–124, 124f

source and sink node selection,
117–118

weighted random choice, 111–112
information propagation, 74–76
informed consent

facial recognition, 178
tracking, 145

__init__ function, 249
init function, 246
init_surface function, 250, 253
input alphabet, 94–96, 101–102, 113
instances, in decision trees, 180
Internet Control Message Protocol

(ICMP) packets, 49–50
interpreters

defined, xxiii
packaging with, 259–260

intersection function, 144, 154
intersections, finding, 153–157
intersects function, 138
IoCs (Indicators of Compromise), 47
isinstance function, 157
items function, 186

J
joblib library, 203
join function, 244
json library, 251
json parameter, 168
Jupyter Notebooks, 11–12

K
key_features variable, 196
key parameter, 53, 222, 239–240
key space, 111–112
kinetic information, 75–76, 78–79
Klee, Victor, 212
Kubernetes, 262–263, 266

L
-l (--load) argument, 63
labels function, 34
LACs (location area codes), 146
lambda functions, 53
landmark detector component, 183,

188, 191
layers, in graphics, 248–250
LCA (lowest common ancestor), 84–87

Index 281

leaf nodes, 85, 180–181, 201
leave one out (LOO) algorithm,

188–189, 199–200
left_click function, 241
len property, 50
libpcap library, 47
licensing, with PyArmor, 264–265
linchpin employees, 109–110, 112
linear ring polygons (rings; holes)

art gallery problem, 223–225, 224f
overview of, 130–131, 131f

line segments
AGP algorithm, 218
creating, 129
overview of, 128–129
perimeter length, 138
polygons, 129–132
Voronoi tessellation, 162–164

LineString class, 129
LineString objects, 129, 190
link prediction theory, 100
Linux

installing Anaconda, 4–6
installing IDE without Anaconda, 11
Jupyter Notebooks, 47
network card in promiscuous

mode, 63
open source delivery, 266
packet capture library, 11

list comprehensions
dictionary comprehensions vs.,

16–17
emergency service planning

scenario, 167, 170
facial recognition, 193, 197
finding intersections, 157
identifying cliques, 77
identifying most absorbent node, 59
identifying unusual levels of

traffic, 54
limitations of, 15
overview of, 14–15
port numbers subgraphs, 52

load function, 203–204, 227, 246
loads function, 70, 165, 253
locate_landmarks function, 186, 188, 191
location area codes (LACs), 146
locations variable, 169

location triangulation, 141–160
device tracking application,

148–159, 148f
geodesic polygons, 150–153
intersections, 153–157
mapping and comparing

results, 157–159, 158f
reducing search area, 159
tower locations, 149–150

ethics of, 144–145
network interface data, 142–144
OpenCellID API structure,

145–148, 147f
proof of concept, 148–159

loc function, 73
logical statements, 18–20
LOO (leave one out) algorithm,

188–189, 199–200
lookup_tower function, 146, 148–149
loose coupling, 253–254
lowest common ancestor (LCA), 84–87
LucidChart, 234

M
MAC (media access control) addresses,

48–50
machine learning (ML), 18, 176–204
macOS

installing Anaconda, 8, 8f
network card in promiscuous

mode, 63
packet capture library, 47

Maltego, 29–30
Markdown, 12
Mastodon data, analysis of, 67–90

converting data to graph, 69–73
building graphs, 72–73, 74f
examining data, 69
structuring data, 69–72

defined, 67
proof of concept, 87–88
research questions, 74–87

cliques and most influential
users, 76–78, 78f

information propagation,
74–76

most influenced users,
78–79, 79f

282 Index

Mastodon data, analysis of (continued)
research questions (continued)

node ancestry, 83–87, 84f, 86f
topic-based information

exchange, 79–83, 82f
math conventions. See programming

and math conventions
mathematical notation, 18–22

attribute characters, 22
Boolean notation, 18–20, 19t
Greek letters and functions, 22, 22t
overloaded symbols, 18f
set notation, 20–22, 21t

Matplotlib library, 32–34
max-flow, min-cut theorem, 112, 121–122
maximal cliques, 40, 77
maximum area threshold, 219
max_iter parameter, 81
MCCs (mobile country codes), 146
media access control (MAC)

addresses, 48–50
membership rules, 20, 21t
meshes, 218, 220, 220f, 225–229,

225f, 229f
metric space, 163–164, 167
MI (mutual information) classification,

196–197
microservices, 261–264, 261f
Milgram, Stanley, 68
minimum_cut function, 122
minimum viable product (MVP),

210, 257
min_samples_leaf parameter, 201
min_samples_split parameter, 201
ML (machine learning), 18, 176–204
mobile country codes (MCCs), 146
mobile network codes (MNCs), 146
model persistence, 203–204
model training, 198–203

establishing baseline, 199–200
random forest, 201–202
splitting data, 199
testing holdout images, 202–203

monetization, 258–259, 263–266
Monte Carlo simulations, 91–125

information flow game, 110–124
overview of, 92–93
proof of concept, 109–124

random walks and, 95–97, 96f, 99f
simulations, defined, 92
social network simulation, 100–109

most influenced users, identifying,
78–79, 79f

most influential users, identifying,
76–78, 78f

mp_agp_floorplan function, 245
mp_agp_solver function, 244
mp_solve_floors function, 244
multiclass classification, 179
MultiDiGraph objects, 38, 42, 42f,

49–50, 53, 58, 62
multiprocessing (processor

parallelism), 243–245
mutual information (MI) classification,

196–197
MVP (minimum viable product),

210, 257

N
names parameter, 167
neighbors, 31, 57–61, 58f
nested objects, 70, 251
n_estimators parameter, 201
NetGear Ocuity cameras, 229
net_graph objects, 50, 58, 60
network analysis graphs, 45–65

building, 47–51, 51f
centrality, 52–61

examining neighbors,
57–61, 58f

identifying unusual levels of
traffic, 54–57, 56f

port numbers subgraphs, 52–54
identifying data for, 48–49
network topology, 46, 46f
packet analysis, 46–51, 51f
proof of concept, 61–64

network interface cards (NICs), 48
NetworkX library

art gallery problem application, 236
betweenness centrality, 36
centrality by protocol, 52–53, 58–59
creating graphs in, 32–34, 34f
degree centrality, 38
greedy coloring, 212, 214–215
network analysis graphs, 62–63
packet analysis, 50

Index 283

social network analysis, 70, 75,
80–81, 86–88

social network evolution, 93, 95,
109, 118

NICs (network interface cards), 48
node ancestry, 83–87, 84f, 86f
node attributes, 32
nodes. See vertices
Nominatim, 164–165
non_edges function, 118
nonsimple graphs (pseudographs), 32
normalized argument, 36
Npcap library, 47
number_of_cliques function, 40
NumPy library, xxiii, 55–56, 80, 103,

170, 186

O
obfuscation, 264–265
Obstacle class, 235
Obstacle objects, 251, 253
obstacles attribute, 253
only_poly1 variable, 155
OpenCellID, 141–160

API structure, 145–148, 147f
device tracking application,

148–159, 148f
geodesic polygons, 150–153
intersections, 153–157
mapping and comparing

results, 157–159, 158f
reducing search area, 159
tower locations, 149–150

network interface data, 142–144
proof of concept, 148–159

open source delivery, 265–266
open source intelligence (OSINT),

29–30, 30f
OpenStreetMap, 163–164, 168
optparse library, 62–63
osm function, 168
out-degree centrality, 37–38, 51–54,

57–59, 77, 85, 101–103, 113, 121
out_degree function, 53
out_edges function, 59
outliers, 55–56, 60, 181
overlaps function, 138
overloaded symbols, 18, 18f

P
packaging, 259–260
packet analysis, 46–51, 51f
packet capture (pcap) files, 47–48, 50,

61–63
packet objects, 50
packets, defined, 121
packets variable, 50
Pålsson, Mikael, 213
pandas library, 5, 69–72, 81, 88, 150,

167–169, 191–192
parallel development, 263–264
parallelism

hardware parallelism, 263
process parallelism, 241–245

processor parallelism, 243–245
threading parallelism, 241–243

partial function, 151–152
partial functions, 151
partition function, 155
path lengths

lowest common ancestor, 85
returning list of average, 117–119
self-loops, 32
small-world phenomenon, 68

paths, defined, 31
PBX (Private Branch Exchange), 54
pcap (packet capture) files, 47–48, 50,

61–63
pcap_graph function, 62
perimeter length, 137–138
personally identifiable information, 178
Phil’s Game Utilities (PGU) library, 250
physical penetration testing, 212
pickled objects, 203–204
pickle library, 203–204, 251
Pinellas County Sheriff’s Office, 177
pip tool, 10–12, 258
planar straight-line graphs, 216
player_one_turn function, 115–116
png library, 236
points, defined, 128–129
Polygon class, 129
polygon_geojson parameter, 165
polygons, 129–132, 130f, 131f

complex, 130, 132, 134–135, 138,
214, 223–225, 224f

concave, 130, 130f

284 Index

polygons (continued)
converting Point objects to

geodesic polygons, 150–153
convex, 130, 130f, 132, 136, 187
irregular, 130, 133–136
linear ring, 130–131, 131f,

223–225, 224f
orthogonal, 213–214
regular, 130
simple, 130–131, 134f, 210

poly_shapes variable, 170, 172
polytrees, 85
population mean, 120, 123–124
port numbers subgraphs, 52–54
post_df objects, 71–73, 76, 107
potential information, 75–76, 78
predict function, 200, 202
predictive analytics, 91
predict_proba function, 203
preferential attachment, 68, 113–114
preventative security analysis, 90
Private Branch Exchange (PBX), 54
process_jpg function, 184, 186
processor parallelism

(multiprocessing), 243–245
process parallelism, 241–245

processor parallelism, 243–245
threading parallelism, 241–243

programming and math conventions,
13–23

mathematical notation, 18–22
attribute characters, 22
Boolean notation, 18–20, 19t
Greek letters and functions,

22, 22t
overloaded symbols, 18, 18f
set notation, 20–22, 21t

syntactical constructs, 13–18
dictionary comprehensions,

15–17
list comprehensions, 14–15
zipping and unpacking, 17–18

Proj class, 151–152
project managers, 264
proof of concept, ix

facial recognition, 188–204
location triangulation, 148–159
minimum viable product vs., 210

network analysis graphs, 61–64
social network analysis, 87–88
social network evolution, 109–124
Voronoi diagrams, 163–173

protocol_subgraph function, 52–55
protocol subgraphs, 54–56, 56f
proxy networks, 35–36, 35f
pseudographs (nonsimple graphs), 32
purity, 181
PyArmor, 264–265
PyGame library, 236–240, 246–250

events, 237–239
graphic elements, 246–247, 247f

PyInstaller, 259–260
PyPi, 258–259, 266
Pyplot library, 32–33
pyproj library, 150–152
Pythagorean theorem, 18, 18f, 164
Python

environment setup, 3–12
hardware requirements, 3
installing Anaconda, 4
Jupyter Notebooks, 11–12
Spyder IDE, 10–11
virtual environment setup, 9
virtualenv package manager,

10–11
interpreters, packaging with,

259–260
reasons for using, xxii–xxiii
shortcomings of, xxiii

Q
Queue class, 244

R
-r (--raw-out) parameter, 63
RA (resource allocation), 108–109
randint function, 201
RandomForestClassifier class, 201
RandomForestClassifier objects,

202–203
random forests, 179, 182, 201–203
random_layout function, 51
random walks, 95–104, 117–119, 125

biased, 97, 100, 104, 111
Monte Carlo simulations and,

97–99, 99f

Index 285

social network simulation, 100–104
state machines and, 96–97, 96f, 99f
uniformly, 96–97, 96f, 101–104, 117

range function, 16–17, 22
RangeIndex property, 71
ratios

correlation ratio, 197–198
facial recognition, 190
information exchange ratio, 59–61

rdpcap function, 50, 62
read_csv function, 167, 192
read_weighted_edgelist function, 63
recursive functions, 31
Red Hat, 266
regression problems, 176
repeated-sampling algorithms, 98
representative_point function, 223
residual information (RI) score, 75–76
resize function, 184
resource allocation (RA), 108–109
resource planning problems. See art

gallery problem application;
emergency service planning
scenario

return_results parameter, 195
reverse option, 53
reverse parameter, 59, 137
RI (residual information) score, 75–76
right_click function, 241
rings. See linear ring polygons
Room class, 249, 251, 253–254
root node, 84–85, 180–181
row_to_str function, 167
r_posts objects, 76

S
-s (--graph-out) option, 63
sample mean (empirical mean), 93
sample size determination, 98
Saved state, 235
save_file function, 227
save_graph function, 62
save_packet function, 62
save_project function, 227–228
saving and reloading data, 251–254

loading from JSON files, 252–254
saving to dictionaries, 251–252

scan codes, 239–240

Scapy library, 47, 50, 62–63
scikit-learn, xxiii, 196–197, 199–201, 203
SciPy library, 55, 80, 170
scored_neighbor_select function, 106
scores parameter, 111
screen attribute, 249–250
seed argument, 33–34
seeds. See generators
select_dtypes function, 192
self-looping, 31–32
Series objects, 71, 191, 198
setattr function, 253
set_colorkey function, 249
set_file method, 242
set generator notation (SGN), 22
set_mode function, 246
set notation

overview of, 20–22, 21t
reserved sets, 21, 21t
set generator notation, 22

set_region_areas function, 227
setup scripts, 258–259
setuptools library, 258
7Zip, 252
SGN (set generator notation), 22
Shapely library

art gallery problem application,
216, 219, 222–223, 235

computational geometry theory,
128–129, 131–132, 134, 138

emergency service planning
scenario, 164, 170

facial recognition, 183, 188, 190
location triangulation, 144,

148–150, 152, 154
shape_to_np function, 186
shell layout, 58, 58f
Shewchuk, Jonathan, 216
shifted variable, 239, 241
shoelace algorithm, 136
shortest_path_scores function, 117–119
sides (edges), in polygons, 129
signature detection, 47
simple function, 151
simple graphs, 32, 85
single point of failure, 109–110
sink node, 110, 113, 117–119, 121
six degrees of separation, 68

286 Index

small_area parameter, 157
small-world experiments, 68
Snort, 48
Snow, John, 163
social network analysis (SNA), 67–90

cautions regarding, 89
converting data to graph, 69–73

building graphs, 72–73, 74f
examining data, 69
structuring data, 69–72

defined, 67
proof of concept, 87–88
research questions, 74–87

cliques and most influential
users, 76–78, 78f

information propagation, 74–76
most influenced users,

78–79, 79f
node ancestry, 83–87, 84f, 86f
topic-based information

exchange, 79–83, 82f
small-world phenomenon, 68

social network evolution, 91–125
finite state machines, 93–95, 94f
information flow game, 110–124

edge capacity, 112–113
game phases, 113–117
game simulation, 118–120
improvements to player 2,

120–124
source and sink node

selection, 117–118
weighted random choice,

111–112
Monte Carlo simulations, 92–93,

97–100, 99f
proof of concept, 109–124
random walks, 95–97, 96f, 99f
simulations, defined, 92

social network graphs, 29, 39–40, 39f
social network simulation, 100–109

information flow distance, 100–104
resource allocation, 108–109
topic-based influence, 104–108

soft classifiers, 203
sorted function, 53, 137, 198
source node, 36, 73, 78, 110, 113,

117–119, 121

spaghetti models (storm path maps), 93
sparse adjacency matrices, 80
spring_layout function, 33, 82–83
Sprite class, 248–250, 250f
sprites, 248–250, 250f
Spyder IDE, 4, 10–11
Stack Overflow, 153
Ståhl, Joachim, 213
Stanford University, 98, 125
Started state, 234–235
Start state, 234–235
state machines

finite state machines, 93–95, 94f,
100–101

state machine graphs, 30, 31f
state managers

application state planning, 235
development of, 237–241
event driven nature of, 237
purpose of, 235, 237

Steiner points, 219, 228–229
stochastic FSMs, 95, 97
storm path maps (spaghetti models), 93
strip function, 70
substates, 238
sum function, 59
Super Bowl XXXV, 176–177
supervised learning, 176, 179
Surface class, 246–248, 247f
surface_size attribute, 249
sweep line algorithms, 154–155
syntactical constructs, 13–18

dictionary comprehensions, 15–17
list comprehensions, 14–15
zipping and unpacking, 17–18

T
target parameter, 244
TCP handshake graphs, 42, 42f
TCP packets, 49–50, 61
terminal states, 96, 99–100
term_subgraph function, 106–107
tessellation, 133–136, 134f

art gallery problem, 214, 216–219,
223–224, 226–228, 245, 252

facial recognition, 189–190
Voronoi tessellation, 162–173

theil_u parameter, 195

Index 287

Theil’s U, 195
Thread class, 242
threading parallelism, 241–243
three-color problem, 212–213
tiles, 133
timeline function, 88
to_dict function, 251, 253–254
tol parameter, 81
topic-based influence, 104–108
topic-based information exchange,

79–83, 82f
topography, 33, 113
topological ordering, 85
touches function, 138
towers (base stations). See base stations
transform function, 151–153
transitions, 31f, 94–96, 99–101
travel graphs, 28–29, 29f, 32
Triangle library, 216, 219, 223–229,

236, 245, 252, 262
Triangle Solver service, 261f, 262
triangulate function, 134, 136,

216–217, 219, 221, 223–224,
226–227

truth tables, 19
ttest_ind function, 123
Twitter, 80
two-sample t-testing, 123, 124f
type function, 203

U
UDP packets, 49–50
UML (Unified Modeling Language), 234
unbalanced exchange, 75
undirected graphs, 31–32

betweenness centrality, 36
cliques, 39–40, 39f, 76–77
connected components, 41
creating in NetworkX, 33, 34f
degree centrality, 37

undirected preferential attachment
(UPA), 114

unicode attribute, 239
Unified Modeling Language (UML), 234
uniform argument, 200
uniformly random walks, 96–97, 96f,

101–104, 117

uninstall functions, 257–259
unique function, 103
University of Essex, 177
University of Washington, 212
unsupervised learning (exploratory

analysis), 176
unweighted graphs, 32, 43, 214
Unwired Labs, 142, 147
UPA (undirected preferential

attachment), 114
urlencode function, 165
user interaction mapping, 234–237, 234f

application state planning, 235–236
documentation, 236–237

User Interface service, 261f, 262–263
user_to_series function, 70

V
vertex-coloring problem, 212
vertex_list attribute, 249
vertices (nodes)

defined, 129
graph theory, 27
vertex order, 132

VirtualBox, 260
virtual environment setup, 9, 63
virtualenv package manager, 10–11
Voice over IP (VoIP), 54, 57
Voronoi diagrams, 161–174

emergency service planning
scenario, 163–173
city shape, 164–167, 165f
distance function, 164
generators, 167–169, 169f
tessellation, 170–173, 171f, 172f

limitations of, 173–174
proof of concept, 163–173
tessellation, 162–163, 162f

voronoi_regions_from_coords
function, 170

Voronoi tessellation, 162–163, 162f,
170–173, 171f, 172f

W
weighted_choice function, 106, 111–112,

114, 118
weighted graphs, 32–33, 52–53, 55,

62–63, 77

288 Index

weighted random choice, 95, 97, 106,
111–115

weight parameter, 53, 77
WGS (world geodesic system), 152
wgs84_to_aeqd function, 152
where function, 55, 60
WiGLE, 144, 159
Windows

frozen delivery, 260
installing Anaconda, 6–8, 6f, 7f
Jupyter Notebooks, 11–12
network card in promiscuous

mode, 63–64
packet capture library, 47
setting up virtualenv, 10
Spyder IDE, 11
temp directory, 252

WinPcap library, 47
WinPython, 11
WireShark, 46–47
world geodesic system (WGS), 152
write once, read many (WORM)

workflow, 62

write_weighted_edgelist function,
62–63

wrpcap function, 62
wrs_connect function, 114, 116
wrs_disconnect function, 115–116

X
X_test variable, 200
X_train variable, 200

Y
y_test variable, 200
y_train variable, 200

Z
Zenmap, 46, 46f
zero-sum games, 98
ZipFile class, 252
zip function, 17, 197, 202
zipf variable, 252
zipping and unpacking, 17–18
zscore function, 55–56
Zychlinski, Shaked, 195

