
Graph theory is a powerful but often over-
looked tool in a security analyst’s arsenal. 

A graph is a mathematical structure that 
shows relationships (called edges or connections) 

between things (called nodes or vertices), and graph 
theory provides a suite of algorithms for analyzing the 
structure and importance of these different, often inter-
linked, relationships. As technical a topic as security  
is, at its core it’s about relationships: between computers and networks, 
users and systems, pieces of information, and so on. By modeling a com-
puter network or social network as a graph, you can examine the composi-
tion of the relationships to determine, for example, which computers are 
integral to a business’s communications, or which employees are most 
likely to forward a spam message, and to whom. Knowing which nodes 
(machines or employees) pose the greatest risk allows you to intelligently 
distribute your security resources.

3
S E C U R I N G  N E T W O R K S  W I T H 

G R A P H  T H E O R Y



28   Chapter 3

This chapter starts by discussing the diverse applications of graph 
theory to information security, then goes over the theory itself. We’ll cover 
types of graphs, how to create them efficiently in Python, and some inter-
esting measurements you can perform on them. Chapters 4 through 6 then 
walk you through applying what you’ve learned here to analyze computer 
and social networks, the two types of network you’ll face most often as a 
security engineer. We’ll answer questions like which computers in a network 
received the most data, which members in a group are most influential, and 
how quickly information is likely to spread through a social network.

Graph Theory for Security Applications
Before we discuss how we can apply graph theory in practice, let’s take a 
look at a simple travel graph example in Figure 3-1.
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Figure 3-1: A travel graph

As mentioned previously, a graph is defined by nodes and edges. In this 
example, the nodes (the circles) represent airports in major cities, and the 
edges (the arrows) represent the cost of a plane ticket between two cities. A 
graph like this could save you money as you plan a trip. For example, if you 
wanted to travel from Seattle to New York, you could fly from SEA to LAX, 
then to MIA, and finally to JFK for a total cost of $396.00. You could also fly 
from SEA to ORD and then to JFK for $198.00, or directly from SEA to JFK 
for $250.00. 
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I don’t know about you, but when I fly I don’t think just about the cost; 
I also consider the travel time. In addition to the cost of each potential 
trip, you can also use this graph to determine the smallest number of stops 
between any two cities. Fewer stops means shorter trips. As you can see, 
even a simple graph can contain a lot of information. 

When analyzing a computer network, the first step for both attackers 
and defenders is to get “the lay of the land.” That means they can’t start 
to attack or defend anything until they’ve built a graph of what’s available 
around them. One way to create such a graph is to define computers as 
nodes and the network connections as edges; this is typical of most network 
maps. In one of the upcoming projects, we’ll model a computer network 
from a raw packet capture. In this definition, the nodes will be the individ-
ual computers, and the edges will indicate when one machine sends packets 
to another. 

Similarly, analyzing a social network can reveal key people and relation-
ships, like the employees who will forward spam messages, or important 
members of a criminal organization. You can use that information to target 
or protect members of the network (depending on your job). For example, 
the FBI uses undercover agents to get information on organized crime 
families, then builds a social network graph, determines the key figures, 
and attempts to arrest them. Now, with the prevalence of social media, any 
amateur sleuth with a laptop can build an alarmingly accurate graph of an 
organization’s (or individual’s) social network and use that information to 
target key members for their own means.

Researchers also apply graph theory, using it to map technologies 
like cellular networks and cloud computing. For example, scholars have 
presented ways to apply shortest-path algorithms (similar to limiting the  
number of airport stops in Figure 3-1) to pick secure routes through graphs 
representing 5G cellular networks. The research analyzes how messages 
travel from point to point in the physical layer (OSI model) of the net-
work.1 We’ll use a similar analytical model in Chapter 4 when we graph 
a computer network from packet data. Other modern research has focused 
on graphing the logical relationship of components hosted in the cloud. 
By mapping code usage and typical hypervisor loading activities, scientists 
have presented a formal way to describe cloud security concerns for virtual-
ization platforms.2

Graph theory is also applied to open source intelligence (OSINT), which, 
in short, collates publicly available information to gain intelligence about 
a target. An application named Maltego crawls the public web for related 
terms, email addresses, places, machines, and other details, and creates a 
graph of where they appear online, like in Figure 3-2. In 2017 at DEF CON, 
the annual information security convention, Andrew Hay gave an excellent 
introductory presentation on applied graph theory for OSINT.
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Figure 3-2: An intelligence-gathering application of graph theory

Applications like Maltego blend these logically different types of 
networks together in one graph, leading to very interesting insights. In 
one example, my team was able to locate a covert communication chan-
nel between two users of different forums. Although the forums were 
run by different companies, they resided on a shared hosting server. 
User A joined site X while user B joined site Y. Then, by manipulating 
the forum software, the two users were able to use local file reads and 
writes to pass messages on the underlying server. Had my team exam-
ined only the social network connections, we would have been stumped, 
but when we combined information about the social networks and the 
underlying machine networks, we realized that both accounts could 
access the same hardware. Of course, you don’t need to rely on other 
people’s tools; once you know the inner workings, you can produce your 
own OSINT-gathering tools, complete with pretty, yet functional, graph 
displays.

Graphs can also be used to describe how you can go from one con-
dition to another by taking some action. For example, you can go from 
somewhat secure to completely unsecured by removing the locks from 
your doors. In this definition, secured and unsecured are called states, and 
removing the locks is the action that changes you from one state to another, 
known as a transition. Figure 3-3 shows such a graph, known as a state 
machine graph, that describes the potential for an attacker to move through 
an environment. Chapter 6 will cover state machines in detail.

You interpret the graph like so: if you’re on the internet, and you want 
to take over an employee’s system at your target organization, you can try 
phishing their customer service team. When you get a willing employee, 
you send them a remote-controlled malicious payload. You would then be 
on the employee system, but you might still need to perform some form of 
privilege escalation to completely take over the system. You can also see that 
this is just one path you could follow to achieve your objective. 
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Figure 3-3: A state machine graph

Now that you have an idea of what to do with graph theory, let’s discuss 
the math behind it.

Introduction to Graph Theory
A graph G comprises the set of nodes V and the set of edges E. Information 
travels between nodes along a set of nonrepeating edges that connect them, 
called a path. A node may forward information to any node it’s directly con-
nected to by an edge; the receiving node is the neighbor of the sending node. 
By convention I’ll denote an edge as a tuple (u, v) containing an origin 
node u and a terminal node v, where both u and v are in V and are unique 
(not equivalent). We can write this in set notation as follows:

E ⊆ ( u, v ) ∈ V 2 ∧ u ≠ v

Sometimes an edge in a graph points back to the same node (breaking 
my u ≠ v assumption); this is known as self-looping. For example, if you create 
a graph of function calls in a program that contains a recursive function, 
there will be an edge that leaves the recursive function and points directly 
back to it. Self-loops don’t show up too often, but when they do they compli-
cate the analysis and require specialized algorithms, so I recommend leaving 
them alone until you’re very comfortable with the basics of graph theory.

Depending on the type of graph, edges may be bidirectional (undirected 
graphs) or directional (directed graphs). If the direction of communication 
is important to the question at hand, use a directed graph. Otherwise, use 
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an undirected graph. In practical implementation, undirected graphs are 
usually faster to work with since you assume (u, v) = (v, u). A lot of prob-
lem descriptions require directed edges, though. In the travel graph from 
Figure 3-1, flying from LAX to MIA has a different cost than flying from 
MIA to LAX, so we need to use directed edges between those two nodes 
to capture the directional information.

An edge may contain edge attributes, additional pieces of information 
beyond the two nodes it connects. Nodes may also contain additional 
information called node attributes. When one of these attributes is used 
in ranking a node or edge, it’s referred to as the node’s or edge’s weight, 
and a graph with weights is called a weighted graph. In some cases you may 
even need to add more than one edge connecting two nodes (called edge 
multiplicity) to account for different edge attributes or weights. I’ll cover 
edge multiplicity in its own section later in the chapter, but for now we can 
extend the travel graph from Figure 3-1 for a simple example. Suppose we 
find out there are multiple flights leaving SEA for LAX. We may choose 
to add an edge for each additional flight, along with its cost as the weight. 
Adding these edges for all city pairs would give us a sense of which airports 
had the most travel options for our trip. We’ll use multiple edges, edge 
attributes, and weighted graphs to inform our investigations in meaningful 
ways in the following chapters.

Simple graphs are unweighted, undirected graphs containing no self- 
looping or edge multiplicity. Nonsimple graphs (or, less commonly, pseudographs), 
those that do contain self-loops or multiple edges, comprise the vast majority  
of interesting graphs you’ll encounter in practice.

A cycle of a graph G is a nonempty subset of E that forms a path such 
that the first node of the path corresponds to the last, and no other node 
is repeated along the path. This is a fancy way of saying a path that forms 
a closed loop. A self-loop is a special case of a graph cycle with a strict path 
length of 1. A cyclic graph is one that contains at least one graph cycle. A 
graph that is not cyclic (has no loops) is acyclic.

Before we go any further into the theory, let’s walk through how to 
build one of these graph objects programmatically. In the next section we’ll 
go over the current de facto standard library for Python graphs, NetworkX. 
Having access to the tools in this library will help you construct the examples 
in this book and play around with the theory at your own pace. The docu-
mentation for NetworkX also serves as a great reference to the theory that 
underlies each function.

Creating Graphs in NetworkX
You can use NetworkX (which contains implementations of most graph 
algorithms) and Pyplot (a part of the Matplotlib library) to generate and 
display an undirected graph. Listing 3-1 creates a graph with seven nodes 
and six weighted edges, then displays it.
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1 import networkx as nx
from matplotlib import pyplot as plt

2 G = nx.Graph()  # Create the default Graph object
3 G.add_node('f') # Adds a node manually
G.add_node('g') # Adds another node manually
4 G.add_edge('a', 'b', weight=0.6) # Will add missing nodes
G.add_edge('a', 'c', weight=0.2) # and connecting edges
G.add_edge('c', 'd', weight=0.1) # Weight is one type of edge attribute
G.add_edge('c', 'e', weight=0.7)
G.add_edge('g', 'c', weight=0.8) 
G.add_edge('f', 'a', weight=0.5) 
5 pos = nx.layout.spring_layout(G, seed=42) # Try to optimize layout 
nx.draw(G, pos, with_labels=True, font_color='w')
plt.show()

Listing 3-1: Creating a basic weighted undirected graph

First, we import the two libraries required to build and display the 
graph 1. (Aliasing NetworkX as nx and Pyplot as plt is a common conven-
tion in examples online.) Then, we create a basic undirected graph with 
the NetworkX Graph constructor 2. Defining a graph in this way returns an 
empty graph (with no nodes or edges). 

To manually define the graph’s structure, or topography, we can add 
either nodes or edges. To add a node to the graph, we use the graph.add_node 
function 3 with an argument to use as an identifier (ID) for the node  
(during lookups, for example). In this case, the ID is the string literal f, but  
an ID can be any object that could act as a key to a Python dictionary (tuples,  
for instance). The graph.add_edge function, which takes two nodes and 
optional edge attributes as arguments, adds edges directly to the graph 4. 
If either a or b (or both, as in this case) doesn’t exist in the graph, NetworkX 
will helpfully add the missing node(s) before adding the edge. With 
directed graphs, the order in which you pass the nodes to graph.add_edge 
specifies the edge’s direction: the edge starts at the first node and concludes  
at the second.

The real strength of graphs lies in their visual interpretations, as 
humans very often can detect patterns in information visually that they 
wouldn’t have found otherwise. NetworkX supports several options for 
displaying graph information, including Matplotlib and Graphviz. For 
this example, we lay out the graph with one of NetworkX’s built-in layout 
functions, nx.layout.spring_layout 5, which uses a physics model of spring 
motion to position the nodes. The nodes’ initial positions are randomly 
generated, but you can pass in the seed argument to make the image 
reproducible, which can be important if you want to share the conclusions 
from your research with others. The resulting node positions are stored in 
the dictionary pos, with structure {node ID: (x-coordinate, y-coordinate)}. 
The function nx.draw creates a plot object using these node positions, 
and Matplotlib displays the resulting figure. The additional parameters 
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to nx.draw, labels and font_color, control the look of the graph, shown in 
Figure 3-4.

Figure 3-4: An undirected graph

If you remove the seed parameter and rerun the code your graph may 
look different, but it’s guaranteed to be mathematically equivalent to the 
one in Figure 3-4. 

Now that we have a way to codify and visualize graphs, let’s look at some 
interesting measurements you can use in your analysis.

Discovering Relationships in Data
In this section, we’ll examine a few of the most-used graph properties that 
can give us insight into the underlying relationships in our data. These 
properties are expressed as statistical relationships, such as the ratio of the 
number of possible paths between two nodes to the total number of paths 
in the graph. Typically we’re interested in learning things like which nodes 
are isolated from other nodes, what are the shortest or longest possible 
paths between nodes, and how many different nodes can be reached from 
a particular starting node. There are dozens of possible graph properties 
to explore, but some are suitable only for certain types of graphs, while 
others are specialized use cases of these more general properties. The ones 
described here will give you everything you need to understand the projects 
in the next three chapters, but it’s by no means a complete list.
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Measuring Node Importance
A key concept in security is measuring the importance of different assets, 
be they human or machine, and the impact that compromising them may 
have on the operation of the organization as a whole. To do so, we need a 
way to measure which nodes are in critical positions. Closeness measures the 
connectivity of two nodes relative to the other connections in the graph. 

N O T E  Closeness can have many interpretations. In Chapter 11 we’ll look at how to use 
physical closeness (the distance between two objects in a physical space) to plan inci-
dent response. By selecting security personnel who are already in the vicinity of an 
incident, you can drastically reduce the reaction time in a lot of cases.

When you apply closeness across all nodes in the graph, you’re measur-
ing some type of centrality (roughly, “importance”) for each node. There 
are several types of centrality defined for graphs. The proper one to use 
depends on the behavior and structure of the network you’re trying to ana-
lyze.3 Sometimes you won’t know in advance which measure of centrality 
makes the most sense for your problem. In these cases, start with simpler 
metrics (like closeness centrality) and move on to testing with other, more 
complex ones. We’ll cover two types of centrality: betweenness centrality 
and degree centrality.

Finding Nodes That Facilitate Connections

Betweenness centrality considers nodes that connect other nodes together as 
more central to the graph. Consider a computer network like the one in 
Figure 3-5, where some systems act as proxies to connect users to databases.

Figure 3-5: A simple proxy network

Betweenness centrality rates the gray proxy nodes much higher than any 
of the other nodes (the users and databases), since five of the seven users 
must connect to one of the two proxies to reach either database. The light 
gray circle at the top is between six paths (3 users × 2 databases = 6 paths)  
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and the dark gray circle at the bottom is between four paths (2 users × 2 data-
bases = 4 paths). The centrality is further strengthened by the fact that these 
five users must pass through their respective proxy to reach the databases.

Formally speaking, betweenness centrality of a node u is the sum of 
ratios of all shortest paths from node s to node t, which pass through 
node u (noted as σ(s, t)(u)), compared to the total number of shortest paths 
between node s and node t (noted as σ(s, t)) for all paths where s ≠ u ≠ t. 
Putting it all together looks like this:

∑
s ≠ u ≠ t

σ(s,t) (u)
σ(s,t)

Betweenness (u) = 

The betweenness scores can be normalized to the number of nodes in 
G. The normalization function is 2 / ((n – 1)(n – 2)) for undirected graphs, 
and 1 / ((n – 1)(n – 2)) for directed graphs (where n is the number of nodes 
in the graph). The difference is due to the impact of directionality on the 
normalization. For undirected graphs, adding an edge between two nodes 
affects the betweenness score of both nodes and therefore carries twice as 
much influence as the same edge in a directed graph that impacts only one 
node (the source node). The normalization scores for both a directed and 
an undirected graph with five nodes each are calculated as follows:

undirected = 

directed = 

2 2
 = 0.166

 = 0.0831 1

 = 

 = 

((4)(3))

((4)(3))

12

12

Unlike some other measures of centrality (such as closeness centrality), 
normalizing betweenness centrality is optional in NetworkX, and is speci-
fied by the Boolean keyword argument normalized=True. Listing 3-2 shows 
how we can retrieve the betweenness centrality scores for the map gener-
ated in Listing 3-1.

b_scores = nx.betweenness_centrality(G, normalized=True)
nx.set_node_attributes(G, name='between', values=b_scores)
print(G.nodes["c"]["between"])

Listing 3-2: Betweenness centrality for the graph created in Listing 3-1

The normalized result for the example graph should be approximately 0.8.  
There are a total of 15 shortest paths between all node pairs in Figure 3-4 
(excluding pairs with c as the start or end node). Of those 15, 12 paths pass 
through c at some point (12 / 15 = 0.8). The Jupyter notebook for this example 
shows how you can manually calculate the betweenness score by looping over 
the node pairs and counting the number of shortest paths that contain the 
target node.

N O T E  The mathematical definition of betweenness centrality just shown and the algorithm 
used by NetworkX to compute the betweenness centrality score are both from a paper by 
mathematician Ulrik Brandes, which has a lot of useful information on the theory of 
closeness and betweenness.
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Betweenness centrality has many applications within information 
security and network analysis because it represents the degree to which a 
node facilitates communication between other nodes. For example, a node 
in a computer network with high betweenness centrality would have more 
control over the network traffic, because more packets will eventually pass 
through it. For this reason, betweenness centrality can also be used to  
identify good places to perform inspections on network traffic. Another 
application is understanding critical points of failure in social networks, 
which we’ll discuss more in Chapter 6.

Measuring the Number of Node Connections

Centrality can also be measured by how many neighbors a node has; this 
is known as degree centrality. Intuitively, degree centrality favors nodes 
that have a larger number of connections to other nodes in the graph. 
(Betweenness centrality can be seen as a specific measure of degree 
centrality.) 

For undirected graphs, degree centrality is calculated as the fraction of 
all nodes that are connected directly to a node u. You’ll commonly see the 
neighbors of a node u annotated as Γ(u).

Degree(u) = |Γ(u)|
|V|−1

Remember from the math primer at the start of the book that the abso-
lute value of a set of nodes (|V |, for example) is the same as the number of 
nodes in the set. We subtract 1 from the length of V to account for the fact 
that node c cannot be a neighbor of itself. Undirected degree centrality 
is calculated using nx.degree_centrality, as shown in Listing 3-3. The bold 
areas show the few changes required from Listing 3-2.

d_scores = nx.degree_centrality(G)
nx.set_node_attributes(G, name='degree', values=d_scores)
print(G.nodes["c"]["degree"])

Listing 3-3: Degree centrality with changes from Listing 3-2 in bold

The output of this code should be approximately 0.66, meaning node c  
is neighbors with two-thirds of the total number of nodes in the graph. In 
Figure 3-4 you can see that node c has four neighbors and, excluding c, 
there are a total of six nodes that could be neighbors of c. That gives us  
4 / 6 = 2 / 3 = 0.66, which matches the nx.degree_centrality result.

For directed graphs, the degree centrality measure gets split in two 
pieces. The first deals with edges leading into a node, aptly named in-degree 
centrality. The second measure deals with edges leading out of a node, 
called out-degree centrality. The calculation for each is the same as for degree 
centrality, except that it considers only the subset of edges matching the 
specified direction. We denote these sets of edges as

( u → )  =  E( u, )
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for out-degree and

( u ← )  =  E( ,u )

for in-degree. Listing 3-4 creates a directed version of the graph from 
Listing 3-1, then calculates in-degree and out-degree centrality for each 
node in the graph. 

1 G = nx.DiGraph() # Create the default Graph object
G.add_edge('a', 'b', weight=0.6)
G.add_edge('a', 'c', weight=0.2)
G.add_edge('c', 'd', weight=0.1)
G.add_edge('c', 'e', weight=0.7)
G.add_edge('g', 'c', weight=0.8) 
G.add_edge('f', 'a', weight=0.5) 
2 i_scores = nx.in_degree_centrality(G)
3 o_scores = nx.out_degree_centrality(G)
nx.set_node_attributes(G, name='in-degree', values=i_scores)
nx.set_node_attributes(G, name='out-degree', values=o_scores)
print(G.nodes["c"]["in-degree"], G.nodes["c"]["out-degree"])

Listing 3-4: Creating a directed graph to measure in-degree and out-degree centrality

To make the graph directed, we replace the generator nx.Graph with  
nx.DiGraph 1. Then, we use nx.in_degree_centrality 2 and nx.out_degree 
_centrality 3 to get their respective measures. The result of the code should 
be 0.33 for both values. If you examine the data, you’ll see that node c has 
two incoming edges and two outgoing edges of the six total edges we defined. 
For each measure, then, the math works out to be 2 / 6 = 1 / 3 = 0.33. If you 
try running Listing 3-4 against an undirected graph, you’ll get an error of 
the type NetworkXError, because in-degree and out-degree are specific to the 
nx.DiGraph and nx.MultiDiGraph objects.

N O T E  Several algorithms are implemented only for directed or undirected graphs in 
NetworkX, so if you use a statistical measurement that isn’t supported for the type  
of edges in your graph, you’ll need to implement the statistic for the other graph  
type yourself. We’ll see an example of this in Chapter 6.

The family of degree metrics allows us to specify the direction of 
information flow while calculating the scores, whereas both the closeness 
and betweenness measures make assumptions about the directionality. To 
understand why this matters, consider analyzing network traffic related to 
a distributed denial-of-service (DDoS) attack. A DDoS attack floods a network 
or specific target machine with more traffic than it is capable of processing, 
thereby blocking legitimate users’ access. As packets travel from one system 
to the next, they create directed edges on the graph. A sudden increase of 
in-degree centrality would be seen at the target nodes, which could allow a 
script to automatically detect and respond to this threat. By including the 
direction of information flow, you can often provide more meaningful con-
text to your graphs.
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Analyzing Cliques to Track Associations
Investigators use clique analysis to track the associations of different groups 
who aren’t kind enough to hand out membership lists. By collecting a list of 
who is talking to whom (and sometimes when), you can find interconnected 
clusters, or cliques. In theory, a clique β in graph G is any subset of V in which 
each node is adjacent to each other node in the set. Think of this as a group 
of friends who have all met each other, or a cluster of computers that are all 
connected. Some material may refer to these constructs as complete subgraphs. 
Figure 3-6 shows an undirected graph containing different cliques.

Figure 3-6: A cartoon character graph

A node may be in zero or more cliques. In the graph in Figure 3-6, for 
example, Tom is in three cliques: Tom, Spike, and Jerry; Tom, Butch, and 
Jerry; and Tom, Squeek, and Butch. Listing 3-5 creates the graph from 
Figure 3-6 and calculates a clique membership score for each node.

clique_graph = nx.Graph()
clique_graph.add_edges_from(
    [
        ("Tom", "Jerry"),("Butch", "Jerry"),("Spike", "Jerry"),
        ("Spike", "Tom"),("Tom", "Squeek"),("Tom", "Butch"),
        ("Squeek", "Butch")
    ]
)
clq = nx.algorithms.number_of_cliques(clique_graph)
tot = nx.algorithms.graph_number_of_cliques(clique_graph)
for m in clq:
    print(m, (clq[m]/tot))

Listing 3-5: Creating the cartoon clique graph in Figure 3-6
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The call to nx.algorithms.number_of_cliques tallies the number of cliques 
each node belongs to, which you can use to easily find the node in the 
most cliques. To find the total number of cliques in the graph, we use  
nx.graph_number_of_cliques. We can then combine the number of cliques for 
each node and the total number of cliques to create a normalized score 
to determine which members of a network are key facilitators. The output 
from running this example code should be:

{'Tom': 1.0, 'Jerry': 0.66, 'Butch': 0.66, 'Spike': 0.33, 'Squeek': 0.33}

Tom is in every clique, Jerry and Butch are each in two-thirds of the 
possible cliques, and Spike and Squeek are only in one-third of the possible 
cliques. Clearly, Tom is the best-known member of this network. In social 
networks, like a company or an organized crime syndicate, the members in 
the most cliques are key to facilitating the operations. If we wanted to dis-
rupt the activities of this organization, removing Tom would go a long way 
toward achieving that. You can also measure clique membership in your 
network to identify nodes that act as gateways between otherwise separate 
parts of the network. 

The function nx.algorithms.number_of_cliques finds the number of 
maximal cliques to which each node belongs—that is, the largest group of 
nodes that are all connected to one another. In undirected graphs, any two 
adjacent nodes could be considered a clique, and, in any graph, cliques of 
four or more nodes contain cliques of three and two nodes, so working with 
maximal cliques takes those subcliques into account.

You can enumerate all the maximal cliques in a graph with the nx.find 
_cliques function, as shown in Listing 3-6.

cliques = list(nx.find_cliques(clique_graph))
print(cliques)

Listing 3-6: Creating a list of cliques from a directed graph

The result is a Generator object, which is a built-in object type in Python 3.  
You can either use it directly or cast it to a list. We’ll see a practical applica-
tion of finding cliques using nx.find_cliques in Chapter 5 when we build a 
social network graph from posts. 

Determining the Connectedness of the Network
Graphs can be connected or disconnected. A connected graph is one where 
every node pair (u, v) has some connecting path (ρ). Therefore, a graph G 
is disconnected if any pair of nodes (u, v) doesn’t have a connecting path (ρ) 
using any subset of edges in E. The only way to know whether or not a graph 
is connected is to check every pair of nodes to see if they’re disconnected. 
We can write this out neatly using set notation and Boolean algebra:

∑
(u,v)

Disconn(G) = ( )ρ(u,v)⊄ E  > 0
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A Boolean statement such as ρ(u, v) ⊄ E returns 1 if it is true and 0 
otherwise, so this equation technically counts all pairs of disconnected 
nodes. In practical implementations, we don’t need to continue searching 
all remaining pairs of G because once we discover a missing edge, we know 
it’s a disconnected graph. We can only say a graph is connected, however, 
once we’ve checked every pair of nodes and found no disconnected pairs. 
You can go through this exercise yourself with the graph from Figure 3-1  
to determine if it’s a connected or disconnected map. 

Figure 3-7 shows the graph from Figure 3-6 extended to be a discon-
nected graph.

Figure 3-7: A disconnected graph

A disconnected graph is made up of two or more disparate sections 
called connected components (or just components). Formally speaking, a con-
nected component of an undirected graph G (ϕi(G)) is a subgraph in which 
every pair of nodes (u, v) is connected by a path ρ(u, v) ∈ E (annotated 
ρ(ϕi, u, v) for a path in the ith component subgraph). Additionally, none of 
the nodes in ϕ may be connected to any additional nodes in the superset V.  
For example, the graph shown in Figure 3-7 has two connected compo-
nents: one comprising cartoon characters, and the other comprising former 
bandmates. 

N O T E  A clique can never extend beyond a single component, so you’ll often care which 
component a clique is formed in, especially when performing social network 
analysis.
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Using Graph Edges to Capture Important Details
The final graph property we’ll examine is one I mentioned earlier, edge 
multiplicity. This property is powerful once you know how to leverage the 
flexibility it brings to your analysis. In many practical instances, like the 
packet analysis project in the next chapter, there may be multiple edges 
between nodes that contain valuable information we want to keep for 
analysis. 

For example, graphing the TCP handshake requires multiple directed 
edges between two nodes. The connecting machine (also called the client) 
sends a synchronization request to the target machine (a SYN packet), which 
creates one directed edge from u to v in the graph. The target machine 
then responds with an acknowledgment as well as a request of its own to 
synchronize (a SYN-ACK packet), which creates a directed edge from v back 
to u. (In an undirected graph, this response would count as a duplicate of 
the first edge.) Finally, the connecting machine sends the target machine 
its own acknowledgment packet (an ACK packet), which creates a second 
directed edge from u to v in the graph. Figure 3-8 shows two versions of the 
same graph data containing TCP handshakes between two different groups 
of systems.

Figure 3-8: Comparing single- and multi-edge graphs

On the left is a standard DiGraph representation, which treats repeated 
communications between two nodes as a single directed edge. Examining 
this graph alone, you couldn’t determine which nodes participated in 
a TCP handshake. On the right is a MultiDiGraph representation of the 
same data, which retains an edge for each occurrence of communication. 
Examining this graph, you can easily see that node c initiated a handshake-
like exchange with node d. Node a also initiated a handshake with node b.

There are two schools of thought for dealing with edge multiplicity. 
The first school says you should summarize multiple edges based on their 
weight ω (and potentially other attributes) into a singular edge, like so:

∑
∀(u→v)

(u→v) = ω
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If the constituent edges are unweighted, the weight is the number of edges 
making up the composite:

( u → v ) ω  =  | ( u → v ) | ∈ E

This summation must take into account the directionality of edges when  
dealing with directed graphs. (If you’re using complex values for edge  
attributes—such as ranges, which require specialized processing to  
summarize—you’ll be better off implementing your own definition of edge  
summation in a function within your code.)

The second school of thought is to graph each edge individually and 
summarize edges only when it comes time to analyze them. Doing so allows 
you to retain more of the underlying structure. As an example, consider 
timestamp information on network packets. If you sum the edges into a 
single edge like the preceding example, you can’t see the order in which the 
edges are created. Retaining each edge allows you to order their creation by 
timestamp and look for interesting patterns, like call and response pairs in 
edges. 

There’s no generally right or wrong way to handle edge multiplicity in a 
graph. The correct approach is often a little of both schools of thought, as 
we’ll see in the next chapter.

Summary
The power of graph theory lies in the flexible interpretation of nodes and 
edges. Do nodes represent people, computers, cities, or something else 
entirely? Do edges measure physical distances or intangible relationships? 
The answer to all these questions is yes. Be warned, though: this freedom of 
perception is a double-edged sword. Because there are no strict definitions 
of what a node or edge represents, you can create a graph whose edges and 
analysis have no meaningful relationship to reality. An example would be 
using nodes that represent computers and edges that represent the physical 
distance between two cities where the computers are located. We typically 
don’t think about how far a message travels on the internet in terms of physi-
cal distance, but rather in terms of the number of network “hops” it has 
to make before reaching its destination. Over the next three chapters, I’ll 
explain the justification for different interpretations of information in more 
depth, because the meaning of a result, such as closeness centrality, relies on 
the meaning of an edge’s weight and needs a bit of context to make sense. 

There’s a lot more useful theory than what I’ve covered here. The book 
Introduction to Graph Theory by Richard Trudeau (Dover, 2001) is an excel-
lent resource.4 If you’re looking for a more advanced discussion, check 
out Graph Theory and Complex Networks: An Introduction by Maarten van 
Steen (author, 2010).5 Both books make the topics easy to understand and 
the math easy to follow. For something more security focused, check out 
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the paper “Applied Graph Theory to Security: A Qualitative Placement 
of Security Solutions within IoT networks,” published in the Journal of 
Information Security and Applications in December 2020, which uses graph 
theory to analyze the security of IoT network devices and determine suit-
able locations for monitoring device traffic.6

In the next two chapters, we’ll put these theoretical concepts to work 
by examining both a computer network and a human social network to 
learn which nodes are important to the network, what information is being 
exchanged, and other important insights about the underlying graph struc-
ture. The final graph theory project, in Chapter 6, will give you the tools 
you need to simulate changes to a network over time. Once you understand 
the concepts and interpretations, the insights you can gain will make graph 
theory one of the most powerful and versatile weapons in your analytical 
arsenal.




