
Exploring Divisibil ity 
and Primes

2

You can add, subtract, or multiply any
two integers and get an integer back.
But when you divide one integer by
another, the answer doesn’t have to

be an integer. The special case when the result of
the division is an integer is worth noticing. Also
notable are those rare cases where a number can’t
be cleanly divided by any numbers besides 1 and
itself. We call those prime numbers.

In this chapter, we’ll investigate these two interesting phenomena.
These concepts are fundamental to number theory, the study of the
properties and mathematics of integers. Number theory is used for
everything from random number generation in computer games and
simulations to designing error-correcting codes for data transmission
and storage. These real-world applications all start with divisibility and
primes.

The Divisibility Factor
We say that the integer d is a divisor of the integer n if the division
n / d results in an integer. We can say it with multiplication as well: the
number n is divisible by the number d if we can find an integer k so that
n = d · k. Another way to say the same thing is that d is a factor of n.



Here are some facts, observations, and vocabulary about divisibility:

J Every number is divisible by 1, because we can write n = n · 1.
J Every number n is a divisor (or factor) of itself. If we don’t want to include

n in the list of divisors, we can specify the others as proper divisors.

J Integers are even or odd depending on whether they’re divisible by 2.

J Every integer divisible by 5 is guaranteed to have a last digit of 0 or 5.

J Every integer divisible by 10 ends in a 0.

J The set of positive divisors of 6 is {1, 2, 3, 6}. The number 6 is considered
perfect because the sum of its proper divisors, 1 + 2 + 3, is 6 itself.

Programming Chal lenge

2.1 Fizz-Buzz is a game that can be played by any number of players
seated in a circle. Players take turns counting up from 1, but if the
number they’re supposed to say is divisible by 5, the player says “Fizz”
instead of the number. If the number is divisible by 7, the player says
“Buzz.” If the number is divisible by both 5 and 7, the player says “Fizz
Buzz.” If a player says the wrong thing, they’re out, and the last player
left wins. Write a program so Scratch Cat can play Fizz-Buzz with you.

Modular Arithmetic
Even though dividing one integer by another doesn’t necessarily result in another
integer, modular arithmetic gives us a way to express any division operation using
integers. The answer to a modular division problem is reported as two separate
integers: the quotient itself, with any decimal component removed, and an extra
part called the remainder. Symbolically, we say the integer b divided by the pos-
itive integer a gives a quotient q and a remainder r, where 0 ≤ r < a. The relation-
ship is given by the equation b = (q · a) + r.

Division is the process of determining a quotient and remainder given b and a.
The division algorithm identifies the quotient and remainder. Scratch has a built-in
operation to capture the remainder r, called mod. To find the quotient q, we do the
division using the / operator and indicate that we want to keep only the integer
part of the result by using the floor operation. Figure 2-1 gives an example.

Figure 2-1: Calculating the quotient and remainder
of 45/7

22 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Here, floor of 45 / 7 gives us a quotient of 6, and 45 mod 7 gives us a remainder
of 3. To check this is right, we can plug the results into our formula:

b = (q · a) + r
= (6 · 7) + 3
= 42 + 3

= 45

We say two numbers x and y are congruent modulo n if x mod n = y mod n. In
this case, when x and y are divided by n, they have the same remainder r. For ex-
ample, 7 and 19 are congruent mod 6, because 7 and 19 divided by 6 both yield a
remainder of 1. Congruence isn’t as strong as equality, in that equal numbers must
be congruent, but congruent numbers need not be equal. Instead of an equal sign
(=), we use the triple bar symbol (≡) for congruence, so we write 7 ≡ 19 mod 6.

Here are some facts connecting modular arithmetic to divisibility:

J We can test for divisibility of b by a using Scratch by seeing if b mod a is 0.

J Odd numbers are all congruent to 1 mod 2, and even numbers are congru-
ent to 0 mod 2.

J Numbers that end in 0 are congruent to 0 mod 10. They’re also divisible
by 10.

J Numbers that end in 0 or 5 are congruent to 0 mod 5. They’re also divisi-
ble by 5.

J When we represent b = (q · a) + r by the division algorithm, the set of all
possible remainders is {0, 1, 2, . . . , a – 1}, a set of a elements. Sometimes
it’s more useful to use another set of a elements where every integer is
congruent to one element of the set. Since Scratch numbers elements in
lists starting from 1, the set {1, 2, 3, . . . , a} is often a good choice.

We’ll explore a simple hack that uses modular arithmetic to help check the re-
sults of a calculation in the next project.

Project #5: A Trick for Checking Your Math

Casting out nines is a trick for verifying the answer to a large addition or multipli-
cation problem. To see how it works, first notice that every power of 10 leaves a
remainder of 1 when it’s divided by 9. For example:

10 = 9 + 1

100 = 99 + 1 = (11 · 9) + 1
1,000 = 999 + 1 = (111 · 9) + 1

This points to a broader rule that when you divide a number n by 9, you get the
same remainder as when you divide the sum of the digits of n by 9. Take the case
of 347 divided by 9. To determine the remainder, we first sum the digits: 3 + 4 +
7 = 14. At this point, we could notice that 14 = (1 · 9) + 5, giving us a remainder

Exploring Divisibility and Primes 23

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



of 5. Or we could do the casting out nines trick a second time to get the result in
an easier way: 1 + 4 = 5. (In fact, 347 divided by 9 is 38 remainder 5.)

Casting out nines is a good way to check your work after a big addition or
multiplication operation, because it’s much easier to do arithmetic mod 9 (by sum-
ming a number’s digits) than to keep track of multidigit sums and products. Sup-
pose, for example, you calculate 347 + 264 and get the answer 601. We’ve already
seen that 347 mod 9 is 5. For 264, 2 + 6 + 4 = 12 and 1 + 2 = 3, so 264 mod 9 is 3.
That means (347 + 264) mod 9 should be 5 + 3 = 8. But 601 mod 9 is 6 + 0 + 1 = 7,
so something is wrong. It looks like somebody forgot to carry the 1 in the original
addition! When we fix the sum to be 611, casting out nines works as expected.

Even though adding up the digits of a number is pretty easy mental math, let’s
have Scratch Cat do the work for us. The program in Figure 2-2 uses the casting
out nines technique to find any number mod 9.

Figure 2-2: A program for finding x mod 9 by
calculating digit sums

24 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



The trick is to have Scratch see the number x as a string of digits. The length of

operator reports how many digits the number has, and the letter of operator lets
us pick off one digit at a time so we can add them up. The code is nested inside a
repeat until loop that makes it continue until the length of x is 1, meaning the num-
ber has only one digit. If that single digit is in the range 0 through 8, we have our
answer. The single digit could also be a 9, though, which is congruent to 0 mod 9.
In that case, the last if statement picks 0 as the answer to report instead of 9.

The Results
Figure 2-3 shows a sample run of the program, using 601 as the input.

Figure 2-3: Finding 601 mod 9

The last line of the program uses join operations to make the output pretty,
reminding us of the input number and the result of the casting out nines process.

Hacking the Code
We have the same problem here that we had in Chapter 1: Scratch is happy to run
the code on input that isn’t a number. The way the program is written, it even gets
in trouble with what ought to be perfectly allowable inputs, like negative integers.
For example, the number –3 interpreted as a string has a length of 2, and accord-
ing to Scratch, the first character, the minus sign, has a numerical value of 0. So
Scratch reports that the sum of the digits of –3 is 0 + 3 = 3. The trouble is that –3
mod 9 is equal to 6, not 3.

Because we’ll run into problems with negative integers and non-integer inputs,
before we put the code out for general use, we should make it safe by screening
possible inputs to allow only the ones we want: positive integers. We can create a
custom block to screen the input, as shown in Figure 2-4.

Exploring Divisibility and Primes 25

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Figure 2-4: Making sure the input is a positive integer

The Boolean statement round test = test is a hack that lets us kill a few birds
with one stone. It screens out non-numeric input (such as the word banana), since
trying to round a non-number in Scratch produces 0 as a result. It also screens
out numbers with nonzero decimal components, which will no longer be equal to
themselves after rounding. Combined with text > 0, our if statement is true if the
input test is a positive integer and false otherwise, so we can set the value of the
variable positive integer? to true if the two conditions are satisfied.

NO T E Some programming languages have special Boolean variables that can take on
only the values true or false, but Scratch doesn’t. Here, we simply use the words
true and false instead. Some programmers prefer to use the numerical values 1
and 0 to keep track of truth values.

Once we have a screening block, we can modify the code in Figure 2-2 to ex-
ecute for only appropriate values, as shown in Figure 2-5. Paste the original pro-
gram from the repeat until block onward into the empty slot after the if.

Figure 2-5: Don’t let Scratch Cat make a mistake!

26 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Of course, you don’t actually have to go through the casting out nines process
to perform this calculation. You can just use Scratch’s mod block! Still, writing the
program is good practice for figuring out how to solve a problem and how to an-
alyze a number, one digit at a time. The program also generalizes to other cases,
such as the one in Challenge 2.2.

Programming Chal lenges

2.2 Casting out nines gives a test for divisibility by 9, since if the sum of
the digits is 0 or 9, the number is divisible by 9. A test for divisibility
by 11 works similarly, except instead of adding all the digits, you alter-
nately subtract and add them. For example, 1,342 is divisible by 11
because 1 – 3 + 4 – 2 = 0. Program Scratch to calculate the –/+ digit
sum for a given number to see if it’s divisible by 11.

2.3 Scratch has an operator that lets you pick a random number in a spe-
cified range. Write a program to pick 10 random numbers between 1
and 100. Predict how many are likely to be divisible by 9, then use
Scratch to check if your prediction was right.

2.4 Sometimes when you have to enter a number into a computer form
(like a credit card number or a book’s ISBN code), the number in-
cludes a check digit to make sure you haven’t made a mistake. One
way to implement this is to add an extra digit at the end that’s derived
from the original number. For example, the extra digit could be the
original number mod 9, found by casting out nines as in the program
in Figure 2-2. Extend this program to give the original number with its
check digit added.

2.5 When copying numbers we sometimes make transposition errors,
where two digits are switched. For example, we might miswrite 1,467
as 1,647. Could you use the casting out nines trick to help catch this
kind of mistake?

Prime Numbers
Some integers have many divisors, and some have only a few. The integer 1 is a
special case, in that it’s divisible only by itself. For any other number, the smallest
number of divisors is two: 1 and the number itself. As mentioned at the beginning
of this chapter, numbers with only two divisors are called prime numbers. Num-
bers with more than two divisors are called composite numbers.

The first few prime numbers are 2, 3, 5, 7, 11, 13, and 17. To find more, we’ll turn
to Scratch.

Exploring Divisibility and Primes 27

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Project #6: Is It Prime?

One way to determine if a number is prime is to try out possible factors one by
one, a process called trial division. If there aren’t any other divisors between 1 and
the number, then the number is prime. For the number 5, for example, we would
try dividing 5 by 2, then 3, then 4. None of those numbers divide evenly into 5, so
5 is prime.

Doing trial division manually quickly gets tedious, so we’ll write a program
to make Scratch do it for us. Figure 2-6 shows a simple version of the code that
doesn’t worry about improper inputs that could cause incorrect answers (for ex-
ample, strings or numbers that aren’t positive integers).

1

2

Figure 2-6: Checking for primes by trial division

28 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



The code prompts for a number to test and decides if the number is prime
by working with the Boolean prime? variable. We perform the trial division in a
repeat until loop ¶ by calculating answer mod trial ·, where the variable trial is the
trial divisor. If the result is 0, we know that we have a divisor and that answer isn’t
prime, so we exit the loop. Otherwise, we add 1 to trial and try again. At the end,
we report an answer based on whether prime? is true or false.

The Results
Figure 2-7 shows some sample runs of the trial division program.

Figure 2-7: Sample runs of the trial division program

The program correctly identifies 29 as prime and 30 as not prime.

Hacking the Code
We should screen the input so Scratch is considering only positive integers. A cus-
tom block like the one we made for the casting out nines program (see Figure 2-4)
would work, put into an if statement (as in Figure 2-5). There are a few more con-
ditions to put into the screening code, though. First, the integer 1 is neither prime
nor composite, but 1 would survive the repeat until loop in our trial division pro-
gram and be labeled as prime. The custom block in Figure 2-8 includes an initial if
test to disallow an input of 1.

Exploring Divisibility and Primes 29

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Figure 2-8: Limiting the input for the trial division program

A more subtle problem is that, as we saw in Chapter 1, integer arithmetic is ex-
act only up to flintmax. That means the divisibility test works only for numbers up
to 9,007,199,254,740,992. After that, Scratch Cat thinks every number is compos-
ite! The check code in Figure 2-8 accounts for this as well by verifying that test is
less than flintmax. The block also returns a message variable giving more informa-
tion for the program to report when the input can’t reliably be tested.

Another consideration with this program is that trial division on large numbers
potentially takes many steps—so many that even on a fast computer you might
have to wait a long time to get an answer. The test in the repeat until loop ¶ in
Figure 2-6 is a hack to speed up the process: we really have to consider only trial
divisors up to the square root of the input number. This works because if a num-
ber n isn’t prime, it must have a factorization n = a · b other than the trivial factor-
ization 1 · n. Since n =

√
n ·

√
n, one of a or b must be bigger than

√
n and one must

be smaller than
√
n. We have to do trial division only up to

√
n to find the smaller

one, if it exists.
This hack provides a huge savings! We can test numbers up to 1,000,000 with

no more than
√
1,000,000 = 1,000 trial divisions. To speed up the code even fur-

ther, once we’ve checked on divisibility by 2, we could test only for divisibility by
odd numbers. This is because if a number n is divisible by any even number, it will
also be divisible by 2.

All these improvements allow for shorter runtimes, but they also make for a
longer, more complicated program. Whether the trade-off is worth it will depend

30 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



on who will be using your work, and for what. Improvements that make the pro-
gram easier to use are usually worth it. Improvements that speed up runtime have
to be dramatic to be noticeable, but they may be worthwhile if users will be look-
ing for quick results.

Project #7: The Sieve of Eratosthenes

Trial division isn’t the only way to find prime numbers. In this project, we’ll explore
a different technique: looking at a list of all numbers up to some limit and throw-
ing away the numbers that are composite. This approach sifts, or sieves, out the
primes and is called the sieve of Eratosthenes after the Greek mathematician who
first used it. Scratch Cat uses sieving in Figure 2-9, where the numbers 1 through
120 have been arranged in a grid.

Figure 2-9: Sieving out the primes by throwing away non-primes

First, we cross out 1, which is neither prime nor composite, in red. Then, we
cross out all multiples of 2 in green, as shown on the left side of Figure 2-10, and
see what’s left. We continue by identifying the next few primes after 2 (3, 5, and 7)
and crossing out any multiples of them, as shown on the right side of Figure 2-10.

Exploring Divisibility and Primes 31

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Figure 2-10: Eliminating all the even numbers after 2 (left) and all
multiples of 3, 5, and 7 (right)

Notice that multiples of 2 and 3 are crossed out with vertical lines down the
columns of the grid. This works because the grid is set up to be 6 numbers wide,
and 6 is divisible by both 2 and 3. Multiples of 5, crossed out in pink, step back-
ward on the diagonal. This is because to get from one multiple of 5 to the next
multiple we add 5, which is 6 – 1. So to find the next multiple of 5, we go down
one row for the 6 and back one column for the –1. Similarly, to find multiples of
7, crossed out in yellow, we go down one row and step one column to the right
(because 7 = 6 + 1), giving us lines along the other diagonal.

Figure 2-11: All the primes up
to 120, after sieving

Here’s the payoff of sieving: if a num-
ber n is composite and has a factorization
n = a · b where 1 < a ≤ b < n, then a ≤

√
n. In

our example, n = 120, so any composite num-
ber in the grid must have a prime factor less
than

√
120, or approximately 10.95. Once we’ve

sieved up to 7, the next number that hasn’t al-
ready been crossed out is 11, which is greater
than

√
120, so 7 is as far as we need to sieve.

Every number that remains, meaning it hasn’t
been crossed off as a multiple of 2, 3, 5, or 7,
must be a prime number (see Figure 2-11).

This is the second time the square root
hack has been useful. First, it made the trial
division program in Figure 2-6 run faster. Now,
it’s telling us when to stop sieving, allowing us
(in this example) to find all primes less than 120
just by sieving up to 7.

We could use the same technique to sieve
up to a much higher bound. All we have to do

32 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



is get rid of all the multiples of each prime as they’re discovered, up to the square
root of the bound. That’s what we do in the Scratch program in Figure 2-12.

1

2

3

Figure 2-12: The sieve program

We start by asking how far to go, then seeding the list primes with that many
entries ¶. (Since we’re using a list, our upper bound is limited by the maximum list
size that Scratch supports, which is 200,000.) Scratch indexes lists starting with
1, so the list entry at index n will keep track of whether n is a prime. Initially we set
each entry to true, but we’ll change non-prime entries to false as we sieve.

Exploring Divisibility and Primes 33

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



First, we handle the special case of 1, which is neither prime nor composite ·.
Then, we look for the next number not crossed out by sieving so far. We leave that
number as true but set all multiples of that number to false ¸. We repeat this pro-
cess until the next number not crossed out is greater than the square root of the
limit.

Once we have a complete list, we can access it and answer questions about
the prime numbers we’ve found. Figure 2-13 has a little piece of code to count how
many primes there are up to the sieve limit.

Figure 2-13: Counting primes with the sieve program

Here, we step through the list we’ve built and count how many true entries
there are, incrementing the variable primecount each time. Figure 2-14 shows an-
other extra piece of code that lists the primes we’ve found.

Figure 2-14: Listing primes with the sieve program

This block finds the true items in the list and stores their corresponding index
numbers in a separate list.

34 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Hacking the Code
Sometimes it’s useful to have the data that Scratch generates as a separate file so
you can import it into a text editor or a spreadsheet. Fortunately, Scratch gives
us the option to import and export lists by right-clicking the list in the graphics
window (see Figure 2-15). This way, you can take your sieved list of primes out of
Scratch to play with it further.

Figure 2-15: Saving the list to
work on later

Text editors, word processors, and spreadsheet programs are happy to work
with the text output from Scratch. Try importing your data into a spreadsheet pro-
gram such as Excel, Numbers, or Open Office. If you want several entries per row,
make sure you have Scratch insert commas separating the entries in your text file
(using the join block), and then use the CSV format, short for comma separated
values, to import it. The default carriage returns in the file that Scratch produces
will list the entries in separate rows in the spreadsheet.

Programming Chal lenges

2.6 Use the sieve program to find how many primes there are between
1 and 10, 100, 1,000, 10,000, and 100,000. Keep track of the ratio
between the number of primes and the size of the list, and display
your results in a table. How does the relative number of primes ap-
pear to be changing as the upper bound increases?

2.7 Write a block to scan the list of integers that the sieve program pro-
duces, looking for long sequences of consecutive composite numbers.
What’s the longest sequence you can find?

(continued)

Exploring Divisibility and Primes 35

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



2.8 Twin primes are pairs of primes that differ by exactly 2; for example,
3 and 5 or 11 and 13. Write a block to scan the sieve program’s output
and count how many pairs of twin primes there are up to the sieving
limit.

2.9 Rewrite the sieve program in Figure 2-12 so it displays the results in a
table six entries wide, like the table in Figure 2-9. Use the language of
congruences to explain why the only prime numbers that appear after
the first row of the table are in columns 1 and 5.

Nothing Common About Common Divisors
Given two integers a and b, the set of common divisors refers to all the integers
that evenly divide both a and b. There will always be at least one common divi-
sor, the number 1, since 1 is a factor of all integers. But larger common divisors
might exist as well. Of particular interest is the greatest common divisor (GCD),
the largest number that evenly divides a and b. If this largest common divisor is d,
we write GCD(a, b) = d.

As with identifying primes, there are several methods for finding the GCD of
two numbers, with varying degrees of efficiency. We’ll explore two such tech-
niques in the next two projects.

Project #8: Greatest Common Divisors the Slow Way

Here’s one way to find the greatest common divisor between two integers a and b.
Starting from 1, try dividing a and b by every number. If it divides evenly into both
of them, you’ve found a common divisor. Stop once you reach a or b, whichever
comes first. The highest common divisor you’ve found is the GCD. The program in
Figure 2-16 uses this approach.

We use a custom block to identify the minimum of the two input values, a and
b. Then we count up from 1 to the minimum, checking if the mod of both a and b is 0.
If it is, we store the current divisor in the variable gcd, which holds our answer when
the program finishes running.

This technique of testing every number as a possible common divisor is known
as a brute-force approach. It’s like trying to guess someone’s computer password
by testing out every possible sequence of letters and numbers. For our GCD pro-
gram, brute force is fast enough for smaller values of a and b, say up to 1 million,
but it’s noticeably slower for larger numbers. As the numbers being screened get
closer to flintmax, it becomes especially annoying to wait. Luckily, there’s a bet-
ter way.

36 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Figure 2-16: Finding the GCD the slow way

Project #9: Greatest Common Divisors the Fast Way

The Greek mathematician Euclid described a more efficient method for calculating
the greatest common divisor of two numbers in his textbook The Elements, which
was written around 300 BCE. The Elements covers topics in several different areas
of mathematics, focusing on geometry and number theory. The book was so influ-
ential that Euclid’s organization of the material was used to teach mathematics for
centuries, and it continues to be used today.

Euclid’s approach to calculating greatest common divisors is based on the ob-
servation that for two positive integers a and b where a < b, any common divisor
of a and b is also a divisor of b – a. For example, say a = 330 and b = 876. A com-
mon divisor of 330 and 876 is 6, and 6 is also a divisor of 876 – 330 = 546.

By extension, if we divide the larger of the two numbers, b, by the smaller, a,
and keep track of the division with a quotient and remainder, b = q · a + r, then any

Exploring Divisibility and Primes 37

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



common divisor of b and a is also a divisor of a and r. Then we can repeat the pro-
cess with a and r, and so on until there’s a last remainder of 0. At this point, the
next-to-last remainder is the greatest common divisor of a and b. The sequence of
divisions looks like this:

b = q1 · a + r1
a = q2 · r1 + r2
r1 = q3 · r2 + r3

...

rk – 2 = qk · rk–1 + rk
rk – 1 = qk+1 · rk + 0

The remainders decrease, so a > r1 > r2 > . . . > rk , with rk = GCD(b, a) and
rk+1 = 0.

Here are the steps to calculate that 6 is the greatest common divisor of b =
876 and a = 330, interpreted both with the division algorithm and with modular
arithmetic. Notice how the values shift positions from right to left as we move
from one line to the next:

876 = 2 · 330 + 216 876 mod 330 = 216

330 = 1 · 216 + 114 330 mod 216 = 114

216 = 1 · 114 + 102 216 mod 114 = 102

114 = 1 · 102 + 12 114 mod 102 = 12

102 = 8 · 12 + 6 102 mod 12 = 6

12 = 2 · 6 + 0 12 mod 6 = 0

The Scratch program in Figure 2-17 implements Euclid’s algorithm.

1

2

3

Figure 2-17: Finding the GCD with Euclid’s algorithm

38 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



The program is organized so all the work of the repeated division occurs in the
custom gcd block ¶. The block’s definition is surprisingly short compared to our
brute-force GCD program (Figure 2-16). Inside a repeat until loop, we keep taking
b mod a · and shuffling the values of a and r back into b and a until we finally get
down to a remainder of 0. That’s where the loop stops, and the last value of a can
be reported as the GCD ¸.

The Results
Figure 2-18 shows a sample run of the GCD program with two very large numbers
as inputs.

Figure 2-18: A calculation with Euclid’s algorithm

Unlike our brute-force approach, the code works very quickly, even for num-
bers close to flintmax.

Hacking the Code
So far, the language we’ve used to talk about how efficient an algorithm is has
been pretty general. We talk about a program running quickly or slowly, but it
would be good to know just how quickly or slowly that turns out to be on your
computer. It would also be useful to see how the program’s performance changes
as we go from working with numbers in the tens or hundreds to numbers in the
thousands or millions.

Scratch has a built-in timer that measures elapsed time in seconds from the
moment a program starts executing. It’s accessible via the timer block in the Sens-
ing section of the block menu. We can take any program and wrap it in a few lines
of code to time how long an algorithm takes to run, as shown in Figure 2-19.

Figure 2-19: Timing how fast a program runs

Exploring Divisibility and Primes 39

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays



Here, the initialize block would contain any setup code that you don’t want to
time, such as prompting the user for input, while the run code block would contain
the code for the algorithm you want to time. We record the value of timer before
and after executing run code, then take the difference between the two times to see
how long the execution took.

Figure 2-20: Testing a big prime
number

Figure 2-20 shows the result of wrapping
the trial division prime testing program from
Figure 2-6 in the timer code, including the
value of elapsed time when the program fin-
ishes. For a prime close to flintmax, it takes
my computer a little over a minute to report.

For many programs with small test values,
the elapsed time will show as 0, since the algo-
rithm takes only a fraction of a second to run.
The reported time might also vary across runs
because your computer is doing other things
in the background, which limits the amount of
resources Scratch has available to do its job. To
get an accurate time, run the program lots of
times in a row and keep track of the cumulative
runtime, then divide by the number of times
you ran the program to find the average time for each run.

Programming Chal lenges

2.10 Use timing loops to compare the runtimes for the two GCD calculating
programs (the brute-force version in Figure 2-16 and the Euclidean
version in Figure 2-17).

2.11 Program a counter to count how many steps Euclid’s algorithm takes.
Experiment to see what numbers make the algorithm take the highest
number of steps to run.

Conclusion
Computations involving divisibility are much easier and faster to do with com-
puter assistance. If I had to work out if a number was prime by doing trial division
by hand, I would probably give up after a few dozen calculations. Even if I were
punching possible divisors into a calculator, I would get bored pretty quickly and
probably start making mistakes (“trial and error” is mostly error!). But Scratch Cat
is eager to help out for as long as I want. Scratch is a telescope that lets us look
deeper into the universe of numbers than we could ever do ourselves. All we have
to do is ask.

40 Chapter 2

Math Hacks for Scratch (Sample Chapter) © 2024 by Michael Mays


