GRAPHS

The origins of graph theory are humble, even frivolous.
—Norman L. Biggs (1941-)

To many, the word graph implies the x ver-
sus y kind. This is not, as you’ll learn in this
chapter, what computer scientists mean when
they use the term.

Graph theory, the formal name for this chapter’s topic, has a long history
in mathematics stretching as far back as Euler. Modern graph applications
are legion because of a graph’s ability to represent relational knowledge
between entities. For example, a road map showing the distances between
cities is a graph, as are social networks showing who knows who. The inter-
net itself is a gigantic graph indicating how each computer is connected to
every other computer.

In this chapter, we focus on practical algorithms that a professional soft-
ware engineer will likely encounter. All functions and variables referenced
are in the graphs module, which you’ll find on the book’s GitHub site.

We begin with essential graph concepts and terminology, before inves-
tigating how graphs are represented in code. Elementary graph algorithms
come next, beginning with breadth-first and depth-first searches. We then
explore algorithms for finding the shortest path between two graph nodes.

We end the chapter by contemplating directed acyclic graphs (DAGs).
These popular graphs are usually known by another name: neural networks,

212

the backbone of modern Al systems. Because this use is sadly beyond our
scope, we conclude with a less society-altering use for DAGs: topological
sorting. This technique tells us the order in which tasks must be completed
to ensure that task outputs are available as inputs when needed. The schedul-
ing application is obvious.

Basic Graph Concepts

Chapter 9

A graph, G, is a set of vertices, V, connected by a set of edges, E; each edge
links a pair of vertices. A vertex (the singular of vertices) is also called a node,
and I’ll use both terms interchangeably throughout the chapter, favoring
node because it’s most often used in programming. Collectively, a graph is
denoted G(V, E). Small graphs are often visualized as in Figure 9-1.

Figure 9-1: A simple graph with six nodes (left) and a directed version

(right)

Each of these two graphs has six nodes, labeled 0 through 5. Edges are the
line segments between nodes. If two nodes have an edge between them, they
are adjacent.

Graphs are generic representations of relationships among entities.

For example, on the left-hand graph in Figure 9-1, the entity represented by
node 0 shares a relationship with nodes 1 and 2, as the edge between them
indicates. The right-hand graph shows that node 0 leads to node 1, while
node 2 leads to node 0 (follow the arrows).

The caption for Figure 9-1 states that the graph on the left is simple. A
simple graph has no self-loops, meaning no node is connected to itself. Ad-
ditionally, only one edge is between any pair of nodes, and the edges have
no direction; that is, a simple graph is an undirected graph. In a dirvected graph,
like the one on the right in Figure 9-1, edges have a direction indicated by
arrows.

Graphs are sets of nodes and edges. What are the sets for the graphs in
Figure 9-1? Let’s begin with the nodes common to both graphs:

V={0,1,2,3,4,5}

To represent the edges, we need a set of pairs that tells us which nodes go
together. For the undirected graph on the left, we write this:

E=1{{0,1}, {0,2}, {1,3}, {1,4}, {2,5}, {4,5} }

Notice that E is a set of sets. Edges in an undirected graph link vertices with-
out direction, so we write {0, 1} to indicate the edge between nodes 0 and 1.
Directed graphs use a different notation. For the right-hand side of Figure 9-
1, we get the following:

E=1{(0,1), (1,3), (2,0), (2,5), (4, 1), (4,5) }

Here we have a set of tuples, pairs showing the originating node followed by
the destination node.
The following are additional graph concepts that are worth remember-

ing:
* The degree of an undirected vertex is the number of edges connected
to it. For example, vertex 1 on the left in Figure 9-1 has degree three.

* For directed graphs, the degree can be in-degree (for arrows ending
at the vertex) or out-degree (for arrows originating with the vertex).
Vertex 1 on the right in Figure 9-1 has in-degree two and out-degree
one.

* A path is a sequence of nodes telling us how to get from node A to
node B, assuming such a sequence is possible.

* A ¢ycleis a path where node A and node B are the same; that is, the
path starts and ends at the same node.

* Undirected graphs are labeled connected if a path leads from any
node to any other node.

* Adirected graph is strongly connected if, for every pair, each of its ver-
tices is reachable from the other. It is possible to go from vertex A
to vertex B and from B to A for any pair of vertices in the graph.

* Undirected graphs are labeled complete if each node is connected to
every other node.

* A subgraph of graph G is a graph formed from a subset of the ver-
tices of G and the edges from G that connect only those vertices.
For example, V = {1,2,4,5}and E = { {1,4}, {2,5}, {4,b} }isa
subgraph of the leftmost graph in Figure 9-1.

* A graph with no vertices or edges is a null graph.

The vertices of the graphs in Figure 9-1 have numeric labels as stand-ins
for more meaningful collections of data that the nodes would, in practice,
represent. The edges, however, are unlabeled. This need not be the case. If
a graph’s edges are labeled, typically with a number, this means we’re work-
ing with a weighted graph, which may be undirected or directed.

Figure 9-2 adds numbers to the edges of Figure 9-1. These are the weights.

Graphs 213

214

Chapter 9

Figure 9-2: A weighted version of Figure 9-1

What the weights represent is problem specific. For nodes that indicate
tasks, the weight might be the cost of a task or the time to finish it. Weights
could also represent distances between cities or the strength of connections
between nodes in a neural network.

Complete Graphs

A complete graph includes every possible edge between the vertices. When
the vertices are arranged equidistantly around a circle, the resulting graph
takes on the appearance of a regular polygon with a pleasing set of lines be-
tween the points. We call such graphs mystic roses.

The Python code in mystic.py first finds the coordinates of a user-supplied
number of points on the unit circle, then plots them along with every possi-
ble edge. The code isn’t difficult to follow, so I won’t list it here, but when
run with the number of points on the command line and an optional output
base filename for the plot, the result is similar to the graphs in Figure 9-3.

Figure 9-3: The complete graphs for 3, 5, 7, and 10 vertices

If a complete graph has n vertices, we denote it as K. Therefore, Fig-
ure 9-3 shows K3, K5, K7, and K7¢. A complete graph with n vertices has de-
gree n—1 and n(n-1)/2 edges. I can write that the graph has a degree in this
case because every vertex has the same degree. It is connected to the n — 1
vertices that are not itself.

A clique, C, of an undirected graph, G, is a subset of vertices, C C V,
such that every vertex in C is adjacent to every other vertex in C. In other
words, C is a complete subgraph of G. The K,, graphs are complete for all
vertices; therefore, they form a clique, specifically, an n-vertex clique. Decid-
ing whether a given graph has a clique of a given size is a difficult problem.

Graph Isomorphisms

Consider the three graphs in Figure 94, the leftmost of which is copied
from Figure 9-1. A few moments of contemplation using the labels should
convince you that all three represent the same graph; each has the same

set of vertices and edges. The three graphs are structurally the same, mean-
ing they are isomorphic and that there is an isomorphism mapping one to the
other. The word isomorphic comes from the Greek iso-, meaning equal, and
morphic, meaning shape.

Figure 9-4: Three isomorphic graphs

We can quickly determine that the graphs of Figure 9-4 are isomorphic—
doubly so because the nodes share the same labels. However, determining
whether two graphs are isomorphic is typically a hard problem, though per-
haps not as hard as deciding whether a specific-sized clique is present. For-
tunately, certain graph types have efficient, though nontrivial, isomorphism
algorithms. Two such graph types are trees, the subject of Chapter 10, and
planar graphs. A planar graph can be drawn in the 2D plane such that edges
do not cross. All the graphs in Figure 9-4 are planar. Graph K3 on the left of
Figure 9-3 is planar, but the other complete graphs are not.

Graph isomorphism separates the set of all graphs into equivalence
classes. We explored equivalence classes in Chapter 4 and again in Chap-
ter 7 when discussing congruence classes. Recall the definition of an equiva-

lence class:
a={beZ|a=0b(modn)}

Graph isomorphism places all graphs into disjoint sets where the graphs of
each set are isomorphic. Therefore, all the graphs in Figure 94 are in the
same equivalence class and are functionally identical.

We can demonstrate that two graphs are isomorphic by a brute-force
relabeling of the nodes. Our graphs use integer labels, so if we can find a
permutation of the labels of one graph that match another, we know that
the graphs are isomorphic. Chapter 8 taught you that the number of per-
mutations of n things is n!, meaning a brute-force isomorphism algorithm
for graphs A and B must check up to n! label permutations to find one that
matches. A small graph with only six nodes requires up to 6! = 720 permu-
tations, but expand the graph to 40 nodes, and the number of permutations
explodes:

40! = 815,915, 283, 247,897,734, 345,611, 269, 596, 115, 894, 272, 000, 000, 000

Graphs 215

Clearly, brute force isn’t the way to go. The graphs module includes Isomorphic,
a brute-force function to determine whether two graphs are isomorphic. I
leave experimenting with the code as an exercise, but you’ll likely want to
review the following section before you do.

Graph theory’s long and rich history leaves many other terms and con-
cepts to learn, but we have what we need for our purposes. We’ll therefore
press on to consider representing graphs in code so we can implement and
understand fundamental graph algorithms. Graphs as images may look nice,
but computers can’t efficiently work with them in that form.

Representing Graphs in Code

We often represent graphs in code as adjacency lists or adjacency matrices.
We’ll explore both in Python, beginning with adjacency lists.

Adjacency Lists

Look again at the leftmost graph in Figure 9-1. It is an undirected graph that
we can represent as a list of sets:

[{1,2}, {0,3,4}, {0,5}, {1}, {1,5}, {2,4}]

The graph has six vertices labeled 0 through 5, so the list has six ele-
ments, and order matters. The first element represents the nodes that are
connected to the first node (node 0), the second element represents the
nodes that are connected to the second node (node 1), and so forth. For ex-
ample, node 0 connects to nodes 1 and 2; therefore, the first element of the
adjacency list is the set {1,2}. Similarly, node 1 connects to nodes 0, 3, and
4, making the second element of the adjacency list {0,3,4}. The pattern con-
tinues for all the vertices. Notice that node 0 lists node 1 as adjacent, while
node 1 lists node 0 as adjacent—both directions appear in the adjacency list
for an undirected graph.

The directed version on the right in Figure 9-1 is represented in much
the same way:

({1}, {3}, {0,5}, set(), {1,5}, set()]

Again, we use a list of sets to tell us that node 0 is connected to node 1, node
1 is connected to node 3, node 2 is connected to nodes 0 and 5, and node
4 leads to nodes 1 and 5. Nodes 3 and 5 lead nowhere, as indicated by the
empty set, set(). We must use set() because Python interprets {} as an empty
dictionary. Dictionaries are far more common in Python than sets, so the
concession is appropriate, if a little clunky, for us.

Weighted graphs require us to include the edge weight. Therefore, a
weighted undirected graph, like the one on the left in Figure 9-2, becomes
the following:

[{(1,3),(2,2)}, {(0,3),(3,2),(4,6)}, {(0,2),(5,5)}, {(1,2)}, {(1,6),(5,2)}, {(2,5),(4,2)}]

216

Chapter 9

The elements of a weighted graph use tuples to represent the node to which
the current node is connected, followed by the weight of that edge. There-
fore, node 0 is connected to node 1 by an edge with a weight of 3, and node
2 by an edge with weight 2, and so on.

Weighted directed graphs follow the natural extension of an unweighted
directed graph:

[{(1,3)},{(3,2)},{(0,2),(5,5)},set(),{(1,6),(5,2) },set()]

Nodes leading nowhere are represented by the empty set, set().

Adjacency Matrices

The algorithms we’ll discuss later in the chapter expect graphs as adjacency
lists, but storing a graph as a matrix can be helpful. For example, to know
whether node i is connected to node j, simply check whether the (7,) matrix
element is nonzero.

The matrix has as many rows as columns, one each for each node; there-
fore, adjacency matrices are square. If we have n nodes, the adjacency matrix
is nxn. For example, we represent the leftmost graph in Figure 9-1 as an ad-
jacency matrix like so:

[[o, 1, 1, 0, 0, 0],
[1) O) O) 1) 1J 0]}
[1, 0, 0, 0, O, 1],
[0, 1, 0, 0, O, O],
[0, 21, 0, 0, O, 1],
[0, 0, 1, 0, 1, 0]]

I'm showing the matrix as a list of lists arranged in 2D because we’re dis-
cussing graph representation in code.

The first row indicates the nodes to which node 0 is connected. We
know that node 0 connects to nodes 1 and 2, and we see this in the matrix
as a 1in columns 1 and 2. (Recall that we index matrices from zero in this
book, following typical programming convention.) Similarly, according to
the matrix, node 2 is connected to nodes 0 and 5, and so on.

If 1 indicates a connection and 0 indicates no connection, we might rep-
resent a weighted graph by using the weight as the value, reserving o for no
connection. This convention implies positive weights only, which works for
us in this chapter. For example, the unweighted and weighted versions of
the left-hand side of Figure 9-1 are as follows:

[[o, 1, 1, 0, 0, 0], [[o, 3, 2, 0, 0, O],
[1) 0) O) 1) 1J O]} [3} 0} 0, 2) 6) O]J
[1, 0, 0, 0, 0O, 1], ==> [2, 0, 0, 0, O, 5],
[0, 1, 0, 0, 0O, O], [o, 3, 0, 0, O, O],
[0, 21, 0, 0, O, 1], [0, 6, 0, 0, O, 2],
[0, 0, 1, 0, 1, 0]] [0, 0, 5, 0, 2, 0]]

Graphs 217

For directed graphs, the right-hand side of Figure 9-1 becomes the fol-
lowing:

[[o, 1, 0, 0, 0, 0], ([0, 3, 0, 0, 0, O],
[0, 0, 0, 1, 0, O], [o, 0, 0, 2, 0, O],
[1, 0, 0, 0, 0O, 1], ==> [2, 0, 0, 0, O, 5],
[0, 0, 0, 0, O, O], [0, 0, 0, 0, O, O],
[o, 21, 0, 0, O, 1], [0, 6, 0, 0, 0, 2],
[0, 0, 0, 0, 0, 0]] [0, 0, 0, 0, 0, 0]]

A few details are worth noting about these adjacency matrices. First,
for undirected graphs, the matrices are symmetric along the main diagonal.
Imagine a line running along the diagonal from the upper left to the lower
right. If you fold the matrix along this line, the corresponding elements of
the matrix on either side will line up. Alternatively, imagine flipping the
matrix so that row 0 is now column 0. This is a matrix transpose, which we’ll
encounter again in Chapter 13. The transpose of a symmetric matrix is the
same as the original matrix.

It makes sense that the adjacency matrix of an undirected graph is sym-
metric. After all, I emphasized that the adjacency list contains the edges
twice, from node A to node B and again from B to A. This requirement makes
the adjacency matrix symmetric. Finally, notice that the weighted and un-
weighted versions of the matrix are the same in shape and in which elements
are nonzero, with the only difference that the weights are used in place of 1
to indicate an edge between two nodes.

Now consider the adjacency matrices for the directed graphs. The weights
are handled in the same manner as for an undirected graph, but the ma-
trices are no longer symmetric. This also makes sense, because while the
matrix might indicate a connection of weight 3 between nodes 0 and 1, the
arrow doesn’t go the other way, so node 1 isn’t connected to node 0. There-
fore, the matrix element at (0, 1) is 3 and the element at (1, 0) is 0.

The graphs module contains several example graphs as global variables.
For example, A is the undirected graph on the left in Figure 9-1:

O =

++

#

Three isomorphic graphs, first is left of Figure 9-1
[{1,2},{0,3,4},{0,5},{1},{1,5},{2,4}]
[{3},{4,5},13,4},{0,2,5},{1,2},{1,3}]
[{1,2,5},{0,3},{0},{1,4},{3,5},{0,4}]

A graph with the same number of nodes that is not isomorphic to A,B,C

= [{1},{0,4},1{4,5},{4},{1,2,3},{2}]

A directed graph (right of Figure 9-1)

= [{1},{3},{0,5},set(),{1,5},set()]

Weighted undirected graph (weighted version of A)

F = [{(1,3),(2,2)}, {(0,3),(3,2),(4,6)}, {(0,2),(5,5)}, {(1,3)}, {(1,6),(5,2)}, {(2,5),(4,2)}]

218

Weighted directed graph (weighted version of E)
G = [{(1,3)},{(3,2)},{(0,2),(5,5)},set(),{(1,6),(5,2) },set()]

We’ll use these graphs from time to time throughout the chapter.
The graphs module also includes two utility functions to map between
adjacency lists and adjacency matrices. For example:

>>> from graphs import *

>>> A

({1, 2}, {o, 3, 4}, {o, 5}, {1}, {1, 5}, {2, 4}]

>>> ListToMatrix(A)

[[o, 1, 1, 0, O, 0], [1, 0, O, 1, 1, O], [1, O, O, O, O, 1],
(o, 1, o, o, o, 0], [0, 1, 0, 0, 0, 1], [0, O, 1, O, 1, O]]
>>> MatrixToList(ListToMatrix(A))

({1, 2}, {o, 3, 4}, {0, 5}, {1}, {1, 5}, {2, 4}]

Use the ListToMatrix function to turn an adjacency list graph into an ad-
jacency matrix presented as a list of lists. The MatrixToList function undoes
the process. Both functions are straightforward passes through the respec-
tive representations to reconstruct the other with necessary checks to handle
all four graph formats: undirected/directed and unweighted/weighted.

Now that you know how to represent graphs in code, let’s use this knowl-
edge to understand breadth-first and depth-first search, two foundational
graph algorithms.

Breadth-First and Depth-First Traversal and Searching

Many advanced graph algorithms are enhancements or variations of one of
two fundamental algorithms: breadth-first traversal or depth-first traversal.

For example, minor tweaks turn the traversal algorithms into graph search

algorithms, as you’ll discover in this section. Let’s dive in.

Breadth-First Traversal

Breadth-first traversal, often called breadth-first search (BFS), regardless of whether
it’s searching, accepts a graph and a starting node. It then follows a simple
algorithm to move through the graph until all nodes that can be reached
from the starting node have been visited. We’ll denote the algorithm as BFS,
knowing that, at least initially, we won’t be using it to search a graph. BFS is
best understood in code, so we begin there. Then we’ll walk through exam-
ples using the graphs of Figure 9-1.

At its simplest, BFS is only a few lines of code, assuming graphs are
stored as adjacency lists (see Listing 9-1).

def BreadthFirst(graph, start):
visited, queue = [start], [start]
while queue:
node = queue.pop(0)
for neighbor in graph[node]:

Graphs 219

220

Chapter 9

if neighbor not in visited:
visited.append(neighbor)
queue.append(neighbor)
return visited

Listing 9-1: Breadth-first traversal

This version of BreadthFirst works with undirected and directed graphs.
If the graphs are weighted, the for line becomes

for neighbor, weight in graph[node]:

to account for the weight stored along with the edge endpoint for a node.
The weight is ignored but must be read.

The code accepts the adjacency list (graphs) and the starting node, which
is an integer label. The starting node label initializes two lists: visited and
queue. The visited list contains the nodes in the order BFS visits them. It’s
what BreadthFirst returns. The queue list is just that, a queue, which is a first-
in, first-out (FIFO) data structure.

The body of BreadthFirst loops until queue is empty. Python considers
a non-empty list to be True. The while loop extracts the first element of the
queue list with the call to pop. Typically, pop removes and returns the last ele-
ment of a list, but supplying a specific index—here, zero—removes and then
returns the first element.

Because graph is an adjacency list, graph[node] returns the set of nodes
that are neighbors of node. BFS wants to look at these neighbors one by one.
If the current neighbor isn’t already in visited, it is added to visited and pushed
onto the end of the queue.

Repeating this process until the queue is empty eventually reaches every
node that can be accessed from the starting node. Exploring all the neigh-
bors of a node before moving on to those neighbors that haven’t been pre-
viously encountered gives the BFS algorithm its name. The current node’s
breadth is explored instead of diving deep along a particular path. (Diving
deep implies a depth-first search.)

BFS looks first at the current node’s neighbors, adding new ones to the
visited list and pushing them on the queue so that the neighbors are visited
in turn. BFS expands in a wave from the current node, like a ripple growing
in all directions from a stone dropped in a pond.

For example, consider the following, where I apply BreadthFirst to the
leftmost graph in Figure 9-1, which the graphs module stores in list A:

>>> A

[{1, 2}, {o, 3, 4}, {0, 5}, {1}, {1, 5}, {2, 4}]
>>> BreadthFirst(A,3)

[3, 1, 0, 4, 2, 5]

The returned path through the graph begins with node 3, as it must,
then proceeds to nodes 1, 0, 4, 2, and ends with 5. Figure 9-5 visualizes this
process beginning in the upper left and running left to right, top to bottom.

Figure 9-5: A breadth-first traversal beginning with node 3 (left to right, top to bottom)

Each graph shows the current node, whose neighbors are being ex-
plored, in thick bold. Visited nodes are bold, as are the edges connecting
them to parts of the graph that have been explored.

Therefore, the upper-left graph shows node 3 in thick bold. The neigh-
bor of node 3 is node 1, which is pushed on the queue because it hasn’t yet
been visited. The next graph over to the right shows node 1 as the current
node. Its neighbors will be explored. This includes node 3, but node 3 is
already on the visited list, so BFS moves on to nodes 0 and 4, the two right-
most graphs in the top row of Figure 9-5. The process repeats, neighbor by
neighbor of the current node, until, ultimately, all nodes have been visited.

Tracing the iterations of the while loop (Listing 9-1) gives us another
approach to BFS if we track the state of the queue and visited lists, as Table 9-
1 shows.

Table 9-1: Tracing BFS

lteration | Queue | Visited

0 & 3

1 1 3,1

2 0 3,1,0

3 0,4 3,1,0,4

4 4 3,1,0,4,2

5 5 3,1,0,4,2,5
6 - 3,1,0,4,2,5

The structure of graph A is such that only node 1 has three neighbors,
0, 3, and 4. Because the test case begins with node 3, when node 1 is the
current node (graph[node]), neither node 0 nor node 4 have been explored,
which is why iteration 3 in Table 9-1 shows both nodes in the queue waiting
for their turn. Every other node has, at most, only one node that hasn’t al-
ready been visited.

Graphs 7

222

Chapter 9

The BFS algorithm is just as happy to traverse directed graphs. The
rightmost graph in Figure 9-1 is a directed version of A. It’s in E, as this ex-
ample demonstrates:

>>> E

({1}, {3}, {0, 5}, set(), {1, 5}, set()]
>>> BreadthFirst(E,3)

(3]

Here, BreadthFirst returns a single visited node, the node we started
with. This makes sense because node 3 has no outgoing arrows, so BFS has
nowhere to go. Let’s see what happens if we start with other nodes:

>>> [BreadthFirst(E,i) for i in range(6)]
(lo, 1, 3], [1, 3], [2, 0, 5, 1, 3], [3], [4, 1, 5, 3], [5]]

Take a moment to convince yourself that these results make sense. The
longest path is the one that begins on node 2 because from node 2, it’s pos-
sible to get to every node except 4, as the left-hand side of Figure 9-6 illus-
trates.

Figure 9-6: BFS for a directed graph beginning with node 2 (left] and
node 4 (right)

Node 4 has no inbound arrows, meaning there’s no way to get to node 4
without beginning the traversal there (the right-hand side of Figure 9-6).
Now that you have a handle on BFS, let’s move on to DFS.

Depth-First Traversal

While breadth-first traversal’s motto is “visit all the neighbors, then their
neighbors” (Listing 9-1 does this via the loop over a current node’s neigh-
bors and the queue of who to visit next), depth-first traversal, or DFS, follows
the motto of “go as deep as you can, then back up and repeat.” The code
illustrates the process nicely, so let’s begin there with Listing 9-2.

def DepthFirst(graph, node, visited=None):
if visited is None:
visited = []

visited.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
DepthFirst(graph, neighbor, visited=visited)
return visited

Listing 9-2: Depth-first traversal of an undirected, unweighted graph

As with BFS, this version of DFS is simplified somewhat from that in the
graphs module, primarily to ignore edge weights that don’t alter the traversal
order.

Note that DepthFirst is recursive, which makes sense since the inten-
tion is to dive as deeply as possible along a path. The code includes a loop
over neighbors of a current node, as in BFS, but unlike BFS, DFS follows
each neighbor all the way down before returning to consider the next neigh-
bor. The recursive call to DepthFirst will return after it has applied the same
logic to every neighbor of a current node, and their neighbors, relying on
the Python call stack to manage the process. That this approach limits the
complexity of the graph because of Python’s finite recursion stack depth is
merely an implementation detail.

Also note that visited is initialized if not explicitly supplied, then ex-
panded to include the current node as the last element of the list, meaning
each call to DepthFirst visits one, and only one, node. Passing visited as a
keyword argument ensures that the same Python list is used on every recur-
sive call because Python passes lists by reference, not by value (that is, not a
copy).

Chapter 6 taught us that recursive algorithms must have a base case,
some way to end the recursion. DFS’s base case is that the for loop will exit
because the current node will, eventually, run out of neighbors. When that
happens, visited is returned, having been updated by the deep dives over
the neighbors of the current node. When all nodes that are reachable by DFS,
as dictated by the structure in the adjacency list, have been visited, the ini-
tial call to DepthFirst returns visited, which now contains every node in the
order visited. The recursive calls to DepthFirst within the for loop discard
return values.

Let’s give DepthFirst a go using undirected graph A:

>>> A

[{1, 2}, {o, 3, 4}, {0, 5}, {1}, {1, 5}, {2, 4}]
>>> DepthFirst(A,3)

[3, 1, 0, 2, 5, 4]

>>> BreadthFirst(A,3)

[3, 1, 0, 4, 2, 5]

I included the output of BreadthFirst for comparison.

Both functions traversed the entire graph, which either will do if every
graph node is accessible from the beginning node. What changes is the or-
der in which the nodes are visited. The example graph is small, so the differ-

Graphs 223

224

Chapter 9

ence between BFS and DFS isn’t dramatic but should be explainable from
the algorithm. Figure 9-7 displays the path taken by DFS.

\

3 4 5

Figure 9-7: A depth-first traversal
beginning with node 3

DFS goes deep, visiting a new node on every recursive call. It won’t visit
another neighbor of a node until it’s gone as deep along the first neighbor
as possible. Therefore, beginning with node 3, DFS dives down all the way
to node 0. Then, it tries to visit node 1 from node 0, but node 1 is already
in the visited list. DFS then moves to node 2 and dives along it, eventually
reaching node 4 from node 5.

Node 4’s neighbors are nodes 1 and 5, both already visited, so each re-
cursive call to DepthFirst returns, backing up to node 1. The first neighbor of
node 1 was node 0, which started the entire chain leading to node 4. Node
4 is the next neighbor of node 1, but it’s already on the visited list, so the
DepthFirst call with node 1 exits back to the initial call using node 3. Node 3
has no additional neighbors beyond node 1, so the initial call ends, and the
complete visited list is returned in the order marked in Figure 9-7.

DFS is similarly happy to traverse directed graphs. Consider graph E:

>>> E

[{1}, {3}, {0, 5}, set(), {1, 5}, set()]

>>> [DepthFirst(E,i) for i in range(6)]

([0, 1, 3], [1, 3], [2, 0, 1, 3, 5], [3], [4, 1, 3, 5], [5]]
>>> [BreadthFirst(E,i) for i in range(6)]

[fo, 1, 3], [1, 3], [2, 0, 5, 1, 3], [3], [4, 1, 5, 3], [5]]

As with graph A, I include the output of BreadthFirst for every node in
E. Four of the traversals are identical between BFS and DFS, a consequence
of the simplicity of graph E. However, the traversals for nodes 2 and 4 differ
between BFS and DFS, but only in the order in which the nodes are visited.
Therefore, Figure 9-6 remains relevant regarding the nodes visited by DFS,
but the order is slightly different.

BFS, beginning on node 2, looks at node 0 and node 5, neighbors of
node 2, then proceeds to node 1 and finally to node 3. DFS moves as far
as possible along the path, beginning with node 0 before backing up to the
second neighbor of node 2 to grab node 5. A similar difference in traversal
leads to the ordering beginning at node 4.

The graphs we’ve explored so far are quite simple and don’t illustrate
the distinction between BFS and DFS as nicely as they could. To drive the
point home, consider BFS and DFS applied to graph S as Figure 9-8 shows.

@
®
D
-O-(D-0-@-1 @O~
©
@
(D

Figure 9-8: BFS (left) and DFS (right] using arrows to show the traversal path from node
0

CRORC,

B

Graph S is undirected and in a cross shape. The arrows in Figure 9-8
display the path followed by BFS (left) and DFS (right). The distinction be-
tween the two traversals is now plain to see. BFS first visits all nodes a dis-
tance 1 away from the beginning node, then all nodes a distance 2 away, and
so on, until all nodes have been visited. This behavior isn’t restricted to this
example; it’s fundamental to the way BFS operates.

DFS, as we expect, dives as far as possible from node 0 along the path
of node 1, the first neighbor of node 0, until hitting node 9. It then backs
up from node 9 to nodes 5 and 1, looking for unvisited neighbors along the
way. There are none, so DFS backs up to node 0 and repeats with its next
neighbor, node 2. The process continues until all nodes are visited.

Traversals as Searches

I've used the acronyms BFS and DFS to refer to breadth-first and depth-first
traversals of a graph, where the § means search, though we’ve yet to do any
searching. Let’s now use the traversals to search a graph for a key—in this
case, a string representing a name. If the name exists in the graph, and it
can be reached from the starting node, then return the data associated with
the name; otherwise, indicate that the name isn’t found.

We’ve been using adjacency lists to represent graphs. We could alter the
adjacency list structure to keep associated data with each node, but that’s
cumbersome and mixes node data with node relationships. Instead, we’ll
use an ancillary Python dictionary to store the node data. The dictionary key
is the node number, and the data is a two-element list of the name followed
by its associated data (here, a string identifying the type of being with that
name). For example, you'll find the people dictionary in the graphs module:

people = {

Graphs 225

['Drofo', 'halfing'l],
['Aranorg', 'human'],
['Yowen', "human'],
['Fangald', 'wizard'],
['Lelogas', 'elf'],
['Milgi', 'dwarf'],

Ui A W N R O

There are six nodes in people corresponding to the six nodes in the adja-
cency lists for graphs A through E. In other words, graphs A through E encode
relationships between the entities in the people dictionary.

The elegance of the BFS and DFS traversal algorithms must be slightly
diminished to enable the search, but the violence is minimal. For BES, we
get Listing 9-3.

def BreadthFirstSearch(graph, start, name=None, data=None):
visited, queue = [start], [start]
while queue:
node = queue.pop(0)
if data[node][0] == name:
return True, data[node][1]
for neighbor in graph[node]:
if neighbor not in visited:
visited.append(neighbor)
queue.append(neighbor)
return False, None

Listing 9-3: Breadth-first search
DFS becomes Listing 9-4.

def DepthFirstSearch(graph, node, visited=None, name=None, data=None):
if (visited is None):
visited= []
if data[node][0] == name:
return True, data[node][1]
visited.append(node)
for neighbor in graph[node]:
if neighbor not in visited:
found, type = DepthFirstSearch(graph, neighbor, visited=visited, name=name, data=data)
if (found):
return found, type
return False, None

Listing 9-4: Depth-first search

Both BreadthFirstSearch and DepthFirstSearch accept a graph and starting node
along with the target name and the associated data.

BFS remains closest to the traversal-only algorithm, but after pulling node
from the front of the queue, we check whether that node’s name element is

226 Chapter 9

the one we’re looking for. If so, we’re done and return True along with the
associated data. Should we ever exit the while loop, the graph has been tra-
versed without locating the target, so False and None are returned.

DEFS is recursive, so care is necessary. As with BFS, if the current node—
now an argument to the function—holds the name we seek, we return True and
the associated data. However, the caller isn’t necessarily the initial caller.
Therefore, the for loop, which calls DepthFirstSearch, receives the returned
data in found and type. If found, immediately return to the previous caller.

Checking found ensures that the call stack will be traversed after the tar-
get name is located, ultimately leading to the initial caller. Should name never
be discovered, False and None will be returned and passed up the call stack.

The search functions work with undirected and directed graphs. For
convenience, and to eliminate further violence to the initially elegant imple-
mentations, weighted graphs of any kind are not supported, though you’re
invited to make the necessary adjustments.

Let’s take these new functions out and see if they work. First, we’ll use
an undirected graph:

>>> BreadthFirstSearch(A, 1, name="Milgi", data=people)
(True, 'dwarf')

>>> BreadthFirstSearch(A, 4, name="Yowen", data=people)
(True, "human')

>>> BreadthFirstSearch(A, 5, name="Nauros", data=people)
(False, None)

>>> DepthFirstSearch(A, 4, name="Yowen", data=people)
(True, "human')

>>> DepthFirstSearch(A, 4, name="Fangald", data=people)
(True, 'wizard')

So far, so good. Now consider a directed graph, that of Figure 9-6, which is
in E. Notice that the traversals in Figure 9-6 are not all the same. A traversal
beginning with node 2 will exclude node 4, while nodes 0 and 2 are missed
by traversals beginning with node 4. This affects the search results like so:

>>> BreadthFirstSearch(E, 2, name="Drofo", data=people)
(True, 'halfling')

>>> BreadthFirstSearch(E, 2, name="Lelogas", data=people)
(False, None)

>>> DepthFirstSearch(E, 4, name="Drofo", data=people)
(False, None)

>>> DepthFirstSearch(E, 4, name="Lelogas", data=people)
(True, 'elf")

The calls to BreadthFirstSearch begin with node 2. The search for Drofo
succeeds because node 0 is in the list of nodes accessible from node 2, but
the search for Lelogas fails because node 4 is not. Beginning instead with
node 4 flips the results so that Drofo is now missing, but Lelogas isn’t.

Graphs 227

It’s often helpful to know the shortest path between two nodes in a graph.
We’re almost there with our basic algorithms; let’s understand what it takes
to get all the way.

The Shortest Path Between Nodes

Locating the shortest path between two points is a common problem that
we often take for granted because of our ever-present phones. The mapping
software on your phone implements a glorified version of the topic we’ll ex-
plore in this section: finding the shortest path between two nodes, including
scenarios where we can’t get from node A to node B.

The previous section showed that BFS first examines all nodes a dis-
tance 1 away from the starting node, then all a distance 2 away, and so on.
This insight will lead us from stock BFS to the shortest-path algorithm for
unweighted graphs. Processing weighted graphs takes more effort; we’ll get
to them next.

Unweighted Shortest Path

For a shortest-path algorithm for unweighted graphs, we need BFS as well
as a way to track the path so that when B is located, we have the sequence of
nodes from A to B. Because no path might exist between A and B, our algo-
rithm will account for that possibility. Finally, because we’re using adjacency
lists, the shortest-path algorithm is equally content with directed and undi-
rected graphs.

Let’s begin with the code in Listing 9-5.

def ShortestPath(graph, start, end):
visited, queue = [start], [[start]]

while queue:

path = queue.pop(0)

node = path[-1]

if (node == end):
return path

def BreadthFirst(graph, start):
visited, queue = [start], [start]
while queue:

node = queue.pop(0)

for neighbor in graph[node]:
if neighbor not in visited:
visited.append(neighbor)

queue.append(path + [neighbor])

return []

for neighbor in graph[node]:
if neighbor not in visited:
visited.append(neighbor)
queue.append(neighbor)
return visited

Listing 9-5: BFS modified to locate the shortest path between two nodes

Listing 9-5 shows ShortestPath on the left and BreadthFirst from Listing 9-
1 on the right. I paired like lines of code to accentuate differences.

BEFS uses a queue to hold the next node to investigate. The ShortestPath
function uses a queue as well, but in place of the node number, it holds a
list, the first of which is [start]; that is, the list holding a single number, the

starting node.

228 Chapter 9

BFS wants to examine all the neighbors of the current node with the for
loop. Because the queue holds lists (paths), ShortestPath extracts the last
node of the path just pulled from the front of the queue (path[-1]) to use
as the current node. If this node happens to be the endpoint, the path from
start to end is in path, which is returned.

If node isn’t the final destination, its neighbors are examined, and if not
already visited, are appended to the current path, then pushed on the queue.
This tracks the path from start to the neighbors of node. Should the end node
never appear during the breadth-first traversal, the while loop will exit when
the queue is empty and [] is returned to indicate no path to end was found.

Carefully review Listing 9-5 to convince yourself that ShortestPath does
what I claim. The fundamental takeaways include how BFS moves from the
starting node and the trick of pushing the path to the current node on the
queue instead of the node itself.

Let’s continue with a few more examples. Figure 9-9 presents four graphs
that match graphs U, W, T, and V in the graphs module.

Figure 9-9: Graphs U, W, T, and V

The ShortestPath function expects unweighted graphs, so let’s explore
what it makes of U (undirected) and T (directed):

>>> ShortestPath(U,0,7)
[0, 2, 5, 7]

>>> ShortestPath(T,0,7)
[0, 3, 5, 7]

>>> ShortestPath(U,7,0)
[7, 5, 2, 0]

>>> ShortestPath(T,7,0)
[]

Multiple paths exist between node 0 and node 7. The U, graph has three
of equal length: [0, 2, 5, 7], [0, 3, 5, 7], and [0, 3, 6, 7]. The ShortestPath
function stops on the first one found, which is [0, 2, 5, 7] because node 5 is
a neighbor of node 2, and node 5’s neighbor is node 7.

Switching to T, a directed graph, restricts the number of paths. Now we
have only two paths from node 0 to node 7 of any length: [0, 3, 5, 7] and
[0, 3, 6, 7]. The neighbors of node 5 are examined first, meaning the func-
tion will locate [0, 3, 5, 7] before the path involving node 6.

Undirected graphs are symmetric in that if an edge is present between
node A and B, we can move from A to B and from B to A. Therefore, asking

Graphs 229

230

Chapter 9

for the shortest path from node 7 to node 0 returns the reverse of the path
from node 0 to node 7, [7, 5, 2, 0].

Finally, in T, there’s no way to move from node 7 as it is an absorbing
node with no outbound arrows. Therefore, no path exists from node 7 to
node 0, which explains the empty list returned by ShortestpPath.

Dijkstra’s Algorithm for Weighted Graphs

It’s possible to alter the code in ShortestPath to ignore weights so that we
might pass in graphs like those in W and Vv of Figure 9-9, but the path returned
won’t be satisfactory. This is because the very reason we place weights on
the edges of a graph is to use the information they provide. So how do we
find the shortest path that respects the edge weights?

The standard answer to that question is Dijkstra’s algorithm, developed
in 1956 by Dutch computer scientist Edsger Dijkstra (1930-2002). It’s imple-
mented in the graphs module as Dijkstra. Let’s see the algorithm in action
before working with it:

>>> Dijkstra(W,0,7)
([o, 1, 4, 6, 7], 7)
>>> Dijkstra(W,7,0)
([7) 6) 4) 1) 0]’ 7)
>>> Dijkstra(Vv,0,7)
([o, 3, 6, 7], 8)
>>> Dijkstra(V,7,0)
({1, 0)

The function returns the path as a list, as well as the total distance along the
path. The weights must be positive values, though floating-point is just fine.

The results differ from those returned by ShortestPath for graphs U and
T. Graph Wis a weighted version of U. Because of the weights, the “shortest”
path is now the longer path from node 0 to node 7 by way of nodes 1, 4, and
6. The total weight of this pathis 2+ 1+ 1 + 3 = 7. The next “lightest” path is
[0, 3, 6, 7], with a weight of 2+ 3 + 3 = 8. The “heaviest” path is [0, 2, 5, 7],
weighing inat3+7+9 = 19.

For the directed weighted graph in V, which mirrors T, the least heavy (or
least expensive) path is [0, 3, 6, 7] with a weight of 2+ 3 + 3 = 8. For T, the
shortest path was [0, 3, 5, 7], but with weights, that path totals 2+4+9 = 15,
making the other path the winner.

The Dijkstra function produces the expected output. An overview of the
algorithm followed by an analysis of the code will help in understanding how
the function works.

An Overview

We want the shortest path between a start node and an end node, where
shortest means the smallest edge sum. Interpreting the edge weights as dis-
tances is easiest, but the weights could represent anything we deem impor-
tant, like time, relationship strength, or difficulty.

Dijkstra’s algorithm tracks three sets of information as it runs: a set
of unvisited nodes, a set of shortest distances from the start node to every
other node, and, for each node, the neighbor that the shortest path from
the starting node comes from. As we walk through the code, the purpose of
this last collection will become less nebulous.

At its core, Dijkstra’s algorithm is a modified version of BFS in that the
neighbors of a current node are examined. The difference is that the next
node to examine, the next node to label the current node, is the unvisited
node with the smallest shortest distance.

The algorithm consists of three sections that I'm naming initialization,
the loop, and denouement.

Initialization configures the search by defining the set of unvisited nodes,
the distances, and the shortest path. The first is a set in Python, and the oth-
ers are lists. The distances list, one element for each node in the graph, is
initialized to “infinity.” As distances to that node from the start node are un-
covered, they are updated appropriately. If a node is never visited, marking
its distance as infinite is appropriate. For us, “infinity” is a googol, 10109,
The distance to the starting node is zero, so distance[start] is assigned o.

The shortest-path list, also one element per graph node in length, is ini-
tially all None, the Python way to represent null. As the loop runs, the ele-
ments of the shortest-path list are set to the current node when it becomes
clear that the shortest path to that node passes through the current node.
The initial current node is the starting node.

The loop runs until the end node has been made the current node or
all nodes have been visited. While it runs, the loop examines the neighbors
of the current node and, when a shorter distance—the distance to the cur-
rent node as currently known plus the weight from the current node to the
neighbor—is uncovered, the shortest path for the neighbor updates to indi-
cate that the shortest path comes from the current node.

The denouement constructs the list of nodes representing the shortest
path from start to end by walking backward through the shortest-path list,
beginning with the end node, then reversing the resulting list. The path and
the total distance (sum of the edge weights) are then returned. If no path is
found, the empty list and zero are returned.

The Code

I invite you to reread the preceding paragraphs, nebulous as they may still
be, then read the Dijkstra function code in Listing 9-6. When you’re ready,
we’ll walk through it together.

def Dijkstra(graph, start, end):
googol = 1E100
n = len(graph)
distances = [googol] * n
distances[start] = 0
shortest path = [None] * n
unvisited = {i for i in range(n)}
current_node = start

Graphs 231

232

Chapter 9

while True:
for neighbor, weight in graph[current_node]:
new_distance = distances[current_node] + weight
if (new_distance < distances[neighbor]):
distances[neighbor] = new_distance
shortest_path[neighbor] = current_node

unvisited.remove(current node)
if (not unvisited) or (current node == end):
break

k = [i for i in unvisited]
d = [distances[i] for i in unvisited]
current_node = k[d.index(min(d))]

path = []
while end is not None:
path.append(end)
end = shortest path[end]
path.reverse()
if distances[path[-1]] < googol:
return path, distances[path[-1]]
return [], O

Listing 9-6: Dijkstra’s algorithm in Python

Listing 9-6 reflects the three sections of the algorithm. The first code
block is the initialization that defines googol, sets n to the number of nodes in
the graph, and configures distances, shortest_path, and unvisited. Notice that
current_node is start and that distances[start] is o.

The while loop performs the search. It runs until break is hit, which hap-
pens if the unvisited set is empty (not unvisited) or the desired end node has
been reached.

The first code block of the while loop iterates over the neighbors of the
current node. Note the similarity to BFS. For each neighbor, a new distance
is calculated as the distance to the current node from start (distances[current_node])
plus the weight from the current node to the neighbor. If this new distance is
less than the current distance from start to the neighbor (distances[neighbor]),
we know that the shortest-path distance from start to neighbor is new_distance.
Moreover, we know that the shortest path from start to neighbor passes through
current_node, which is why shortest_path[neighbor] is updated.

The second while loop code block removes the current node from the
set of unvisited nodes, then asks if all nodes have been visited (not unvisited)
or if the current node is the desired end node. If either condition holds,
break from the while loop.

The third while loop code block sets current_node to the unvisited node
with the smallest distance from start to the current node.

The denouement code block builds the shortest-path node list (path)
by beginning at the end and using the links in shortest_path to move to start.
The loop updates end as it goes and stops when end is None because shortest_path[start]
is never updated from its initial value of None. We want the path from start
to end, but the loop constructed it in reverse order, so we use reverse to flip
the path list.
Finally, if the distance to end is something other than infinity, end was
reached from start, so the path and distance along the path are returned.
Otherwise, there is no path from start to end.

The Shortest Path to All Nodes

The Dijkstra function in the graphs module is slightly more complex than
Listing 9-6. The additional complexity exists for good reason. If we ignore
the end node and instead run the algorithm to visit all nodes, we’re left with
the information we need in order to know the minimum path from the start-
ing node to every other node in the graph. Calling Dijkstra with only a start-
ing node does this for us.

Visiting all nodes in the graph leaves distances holding the total dis-
tance along the shortest path from the start node to every other node in the
graph (index distances by the desired node number). Further, the shortest_path
list contains, for each node, the previous node in the path from start to that
node. Therefore, building the shortest path from start to every other node
is possible. I'll let you read the extra code yourself. Here’s what it gives us:

>>> Dijkstra(W,0)

([fo], [o, 11, [o, 2], [0, 3], [0, 1, 4], [0, 3, 51,

[O) 1) 4) 6]) [0) 1) 4) 6) 7]]) [OJ 2) 3) 2) 3) 6) 4) 7])
>>> Dijkstra(V,0)

([[o], [o, 1], [o, 2], [o, 3], [4], [o, 3, 5], [0, 3, 6],
(o, 3, 6, 711, [0, 2, 3, 2, 1e+100, 6, 5, 8])

The Dijkstra function now returns a list of the shortest paths to every
node from the starting node and the total distance along that path. For v, a
directed graph, the start node, 0, isn’t in the path to node 4 because node
4 is not accessible from node 0. The distance for node 4, then, is infinite
(1e+100).

You now know how to find the shortest paths for any graph, weighted
or unweighted, directed or undirected. Let’s continue to explore a particu-
larly useful type of directed graph and the concept of a topological sort on a
graph.

Directed Acyclic Graphs and Topological Sort

A particularly common graph application involves directed acyclic graphs (DAGs).
A cycle exists in a directed graph if a path exists from node A back to node

A. In a DAG, no such path exists; the arrows impose paths leading, essen-
tially, in one direction only.

Graphs 233

234

Chapter 9

For example, consider the left-hand top and bottom portions of Fig-
ure 9-10.

o%oo O O~
o%ae O~ OO

Figure 9-10: A directed graph with a cycle (top) and with the cycle
removed (bottom)

The top graph contains a cycle providing a path from node 0 through
node 2, then node 3, back to node 0. The bottom graph removes the edge
between nodes 2 and 3 to turn the graph into a DAG.

A lack of cycles means that DAGs can be topologically sorted. A topologi-
cal sort is a linear ordering of the nodes in the graph such that the arrows all
lead in one direction. If the nodes represent tasks that must be completed
before other tasks, the topological sort generates a sequence by which tasks
can be completed so that prior tasks are always done before tasks that de-
pend on their outputs. All DAGs possess at least one valid topological sort
and often more than one.

Look again at Figure 9-10, paying attention to the graphs on the right-
hand side. They show, or attempt to show, a topological sort of the graph on
the left.

Let’s start with the graph on the lower right, which shows a topological
sort of the cycle-free (acyclic) graph on the lower left. You can see that all
arrows point from left to right. If we interpret the arrows as indicators of
task dependencies, we see that the topological sort tells us to do task 3 first,
then task 0, followed by tasks 2, 1, and finally, 4. Performing the tasks in this
order ensures that inputs required by later tasks are available when needed.

Now look at the “sort” on the upper right. I use quotation marks be-
cause the graph contains a cycle indicated by an arrow pointing from right
to left, the one from node 3 back to node 0. Such a cycle poses a problem if
we want to schedule tasks. Task 3 depends on task 2, task 2 depends on task
0, but task 0 depends on task 3, and now we’re stuck. A topological sort can
reveal cycles in a graph, which in turn may represent failures in structuring
the process that produced the directed graph in the first place.

Working Through an Example

We all have the same problem every morning: getting dressed. Figure 9-11
displays a DAG representing the task dependencies of getting dressed.

/”/’» 6: Shoes
0: Socks /
3: Pants
/ / 8: Watch

4: Belt

/v 7 Jacket
5: Tie

Figure 9-11: Getting dressed as a directed acyclic graph

1: Underwear

9: Hat

2: Shirt

The arrows show dependencies. For example, we must have pants and
socks on before putting on shoes. Therefore, nodes 0 and 3 must happen
before node 6. Likewise, we must (usually) have a shirt on before putting on
a hat. Some tasks have no prerequisites, like node 8, putting on a watch. We
can put on a watch at any time during the process.

Figure 9-11 is a DAG, meaning there are no cycles and at least one topo-
logical sort exists. Figure 9-12 shows one such sort.

® O-0-0 § O-O-0 O-®

Figure 9-12: Getting dressed as a topologically sorted graph

I'll detail the sorting algorithm momentarily, but for now, consider the
sort in the figure. All arrows point in the same direction because the graph
has no cycles. For example, nodes 0 and 3 both occur before node 6, repre-
senting the requirement that socks and pants be on before putting on shoes.

Node 2, putting on a shirt, is a prerequisite of nodes 4 (belt), 5 (tie), and
9 (hat). The sort enforces these requirements as shown.

The sort puts node 8, the watch, first. Because it has no dependencies
and nothing depends on it, we can put node 8 anywhere in the sequence.
Therefore, getting dressed has many possible topological sorts.

Let’s learn how to produce a topological sort for a given DAG.

Coding Topological Sort

Finding a topological sort of an arbitrary DAG might initially sound tricky.

Thankfully, however, we already know what we need because, in the end,

topological sorting is nothing more than a slight twist on depth-first search.
Listing 9-7 presents topological sorting in Python.

def TopologicalSort(graph):
def DFS(graph, node, visited, result):

Graphs 235

visited.add(node)
for neighbor in graph[node]:
if (neighbor not in visited):
DFS(graph, neighbor, visited, result)
result.insert(0, node)
visited = set()
result = []
for node in range(len(graph)):
if (node not in visited):
DFS(graph, node, visited, result)
return result

Listing 9-7: Topological sorting of unweighted DAGs

The TopologicalSort function expects a DAG represented as an adjacency
list of the form we’ve used consistently throughout the chapter. The cap-
tion reads “unweighted DAGs.” As with the code for DFS earlier, Listing 9-7
is slightly simpler than the TopologicalSort code in the graphs module. The
latter includes a weighted keyword telling the function to expect and then ig-
nore weights on the graph’s edges.

I embedded a custom DFS function to implement the twist, the result.insert
line. The DFS function is recursive but passes a reference to a visited set and
a result list. These are updated on each recursive call to mark the current
node as visited and to insert the current node at the head of the result list.
Why the head of the list and not the end will become clear momentarily.

The main part of TopologicalSort initializes visited and result, then it-
erates over all the nodes in the graph, calling DFS on every unvisited node.
Throughout this process, the single instances of visited and result are up-
dated by DFS. When all nodes have been visited, result is returned as the
topological sort.

The TopologicalSort function works like so:

>>> TopologicalSort(cycle)

[O) 2) 3) 1) 4]

>>> TopologicalSort(nocycle)
[3, 0, 2, 1, 4]

>>> TopologicalSort(dress)

[81 2) 5) 7) 9) 1) 3) 4) OJ 6]

Here, cycle and nocycle are the graphs in Figure 9-10, and dress is the
graph in Figure 9-11:

({6}, {3}, {9, 4, 5}, {4, 6}, set(), {7}, set(), set(), set(), set()]

As an exercise, convince yourself that Figure 9-11 is represented by dress.
Note also that TopologicalSort, as implemented, always returns something,
even if the resulting “sort” isn’t valid because the graph isn’t a DAG (for ex-
ample, cycle).

The code in Listing 9-7 recursively performs DFS on every node. Earlier
in the chapter, you learned that this translates into diving as deeply as possi-

236 Chapter 9

ble through the graph from a current node before being forced to backtrack.
The algorithm visits every node that occurs after the current node, before
backtracking to the current node. This is why the current node is placed at
the head of the result list: all nodes coming later have already been placed at
the head of the list, meaning the current node comes before all of them. Ar-
rows imply dependency, so this arrangement of DFS and placing the current
node at the head of the result list ensures that the current node happens be-
fore any node that might depend on it.

Summary

This chapter introduced graph theory, a rich discipline with a long history
that’s taken on greater significance with the advent of computer science. We
focused on basic concepts and then shifted into a more pragmatic approach
to present core algorithms often encountered by practicing software engi-
neers.

Specifically, we discussed two options for representing graphs: adja-
cency lists and adjacency matrices. I then introduced breadth-first and depth-
first traversals, the two foundational graph theory algorithms. We imple-
mented both in Python, then demonstrated how to use graph traversals as
searches. Breadth-first and depth-first traversals as search are so common
that most people refer to either use as BFS or DFS, respectively.

We examined finding paths through a graph from a starting node (ver-
tex) to an ending node. Modern reliance on computers for navigation has
only made solving such problems all the more necessary, even critical. We
discussed two algorithms for finding the shortest path between nodes. The
first works for unweighted graphs, directed or undirected. The second, Dijk-
stra’s algorithm, applies to weighted graphs with positive weights.

We concluded the chapter by discussing directed acyclic graphs, or DAGs.
DAGs are especially prevalent because they typically represent neural net-
works, the backbone of modern Al. DAGs are amenable to topological sort-
ing, which sequences the nodes in order so that if the nodes represent tasks,
prerequisite tasks are completed before tasks that depend on their outputs.
You learned that topological sorting is little more than a tweak on depth-first
graph traversal.

One type of graph is so commonly encountered by programmers that it
deserves a separate chapter: trees. Let’s press on and explore the forest, or
at least a few of'its trees.

Graphs 237

Math for Programming (sample chapter) © 2025 by Ronald T. Kneusel

