Math for Deep Learning

What You Need to Know to Understand Neural Networks

by Ronald T. Kneusel

errata updated to print 3

Page	Error	Correction	Print corrected				
119	Equation replacement	$\begin{align*} \boldsymbol{a} \times \boldsymbol{b} & =\\|\boldsymbol{a}\\|\\|\boldsymbol{b}\\| \sin (\theta) \hat{\boldsymbol{n}} \\ & =\left(a_{1} b_{2}-a_{2} b_{1}, a_{2} b_{0}-a_{0} b_{2}, a_{0} b_{1}-a_{1} b_{0}\right) \tag{5.6} \end{align*}$	Print 3				
128	Equation replacement	$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{l}11 \\ 12 \\ 13\end{array}\right]=\left[\begin{array}{c}74 \\ 182 \\ 290\end{array}\right]$	Print 3				
131	for $n, m \in \square^{+}$(positive integers) and where \boldsymbol{A} is a square matrix.	for $n, m \in \mathbb{Z}^{+}$(positive integers) and where \boldsymbol{A} is a square matrix.	Pending				
175	But ex $\ln a=a^{x}$, so we have ...	But $e^{x \ln a}=a^{x}$, so we have \ldots	Print 3				
183	For example, above, we saw that the partial derivative of $f(x, y)=\ldots$	For example, above, we saw that the partial derivative of $f(x, y, t, z)=\ldots$	Print 3				
198	Equation replacement	$\frac{\partial \boldsymbol{F}}{\partial x}=\left[\begin{array}{cccc}\frac{\partial f_{00}}{\partial x} & \frac{\partial f_{01}}{\partial x} & \ldots & \frac{\partial f_{0, m-1}}{\partial x} \\ \frac{\partial f_{10}}{\partial x} & \frac{\partial f_{11}}{\partial x} & \ldots & \frac{\partial f_{1, m-1}}{\partial x} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_{n-1,0}}{\partial x} & \frac{\partial f_{n-1,1}}{\partial x} & \cdots & \frac{\partial f_{n-1, m-1}}{\partial x}\end{array}\right]$	Print 3				
201	Assume f accepts an m-element input and returns an n-element vector output.	Assume f accepts an m-element input and returns an n-element vector output.	Pending				
236	Equation replacement	$f_{0}:\left[\begin{array}{rrr}4 & 11 & 8 \\ 9 & 8 & 1 \\ 15 & 0 & 6\end{array}\right]+\left[\begin{array}{rrr}10 & 5 & 4 \\ 1 & -2 & -1 \\ -6 & -4 & -3\end{array}\right]=\left[\begin{array}{rrr}14 & 16 & 12 \\ 10 & 6 & 0 \\ 9 & -4 & 3\end{array}\right]+1=\left[\begin{array}{rrr}15 & 17 & 13 \\ 11 & 7 & 1 \\ 10 & -3 & 4\end{array}\right]$	Pending				

Page	Error		Correction
257	Equation replacement		

