Math for Deep Learning

What You Need to Know to Understand Neural Networks

by Ronald T. Kneusel

errata updated to print 3

Page	Error				Correction				Print corrected
5	we can let NumPy choose the data type for us, or we can specify it explicitly .				we can let NumPy choose the data type for us, or we can specify it explicitly .				Pending
6	NumPy Name	Equivalent C Type	Range		NumPy Name	Equivalent C Type	Range		Print 2
	float32	float	$\pm [1.175 \times 10^{38}, 3.403 \times 10^{38}]$		float32	float	$\pm [1.175 \times 10^{-38}, 3.403 \times 10^{38}]$		
	uint8	unsigned char	$[0, 255 = 2^2 - 1]$		uint8	unsigned char	$[0, 255 = 2^8 - 1]$		
18	If there's no chance the something will happen, its probability is zero.				If there's no chance that something will happen, its probability is zero.				Pending
29	<pre>a = np.random.randint(0,364) b = np.random.randint(0,364) The code simulates 100,000 random pairs of people, where the random integer in [0, 364] represents the person's birthday.</pre>				<pre>a = np.random.randint(0,365) b = np.random.randint(0,365) The code simulates 100,000 random pairs of people, where the random integer in [0, 365] represents the person's birthday.</pre>				Pending
29	<pre>b = np.random.randint(0,364,m)</pre>				<pre>b = np.random.randint(0,365,m)</pre>				Pending
39	which shows us correct way to compare conditional probabilities.				which shows us the correct way to compare conditional probabilities.			Pending	
39	<pre>s = np.random.randint(0,50,3)</pre>				<pre>s = np.random.choice(50,3,replace=False)</pre>			Pending	
82	The top chart in Figure 4-4 shows the box plot for the three sets of exam scores in lexams.npyl.				The top chart in Figure 4-4 shows the box plot for the three sets of exam scores in <i>exams.npy</i> .			Pending	

Page	Error	Correction	
119	Equation replacement	$\boldsymbol{a} \times \boldsymbol{b} = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \sin(\theta) \hat{\boldsymbol{n}}$ = $(a_1 b_2 - a_2 b_1, a_2 b_0 - a_0 b_2, a_0 b_1 - a_1 b_0)$ (5.6)	Print 3
128	Equation replacement	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 11 \\ 12 \\ 13 \end{bmatrix} = \begin{bmatrix} 74 \\ 182 \\ 290 \end{bmatrix}$	Print 3
131	for $n, m \in I^+$ (positive integers) and where A is a square matrix.	for $n, m \in \mathbb{Z}^+$ (positive integers) and where A is a square matrix.	Pending
175	But $e x \ln a = a^x$, so we have	But $e^{x \ln a} = a^x$, so we have	Print 3
183	For example, above, we saw that the partial derivative of $f(x, y) =$	For example, above, we saw that the partial derivative of $f(x, y, t, z) =$	Print 3
198	Equation replacement	$\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_{00}}{\partial \boldsymbol{x}} & \frac{\partial f_{01}}{\partial \boldsymbol{x}} & \cdots & \frac{\partial f_{0,m-1}}{\partial \boldsymbol{x}} \\ \frac{\partial f_{10}}{\partial \boldsymbol{x}} & \frac{\partial f_{11}}{\partial \boldsymbol{x}} & \cdots & \frac{\partial f_{1,m-1}}{\partial \boldsymbol{x}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{n-1,0}}{\partial \boldsymbol{x}} & \frac{\partial f_{n-1,1}}{\partial \boldsymbol{x}} & \cdots & \frac{\partial f_{n-1,m-1}}{\partial \boldsymbol{x}} \end{bmatrix}$	Print 3
201	Assume f accepts an m-element input and returns an n -element vector output.	Assume f accepts an m-element input and returns an n -element vector output.	Pending
236	Equation replacement	$f_0: \begin{bmatrix} 4 & 11 & 8 \\ 9 & 8 & 1 \\ 15 & 0 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 5 & 4 \\ 1 & -2 & -1 \\ -6 & -4 & -3 \end{bmatrix} = \begin{bmatrix} 14 & 16 & 12 \\ 10 & 6 & 0 \\ 9 & -4 & 3 \end{bmatrix} + 1 = \begin{bmatrix} 15 & 17 & 13 \\ 11 & 7 & 1 \\ 10 & -3 & 4 \end{bmatrix}$	Pending

Page	Error	Correction		
257	Equation replacement	$\begin{aligned} \frac{\partial E}{\partial \mathbf{x}} &= \frac{\partial E}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \\ &= \left[\frac{\partial E}{\partial y_0} \frac{\partial y_0}{\partial x_0} \frac{\partial E}{\partial y_1} \frac{\partial y_1}{\partial x_1} \dots \right]^\top \\ &= \left[\frac{\partial E}{\partial y_0} \sigma'(x_0) \frac{\partial E}{\partial y_1} \sigma'(x_1) \dots \right]^\top \end{aligned}$	Print 3	
		$=\frac{\partial E}{\partial \mathbf{y}}\odot\mathbf{\sigma}'(\mathbf{x})\tag{10.10}$		
261	<pre>self.delta_w += np.dot(self.input.T, output_error)</pre>	<pre>self.delta_w += np.dot(weights_error)</pre>	Print 3	
265	\ldots so we reshape the training data from (60000, 196) to (60000, 1, 196) \ldots	\dots so we reshape the training data from (60000,14,14) to (60000,1,196) \dots	Pending	
286	As before, we begin at $x = 0.75 \dots$	We begin at $x = 0.75$	Pending	
307	URL update	You can find them here: https://www.cs.toronto.edu/~binton/coursera_lectures.html	Print 2	