Math for Deep Learning

What You Need to Know to Understand Neural Networks

by Ronald T. Kneusel

errata updated to print 2

Page	Error			Correction				Print corrected	
6	NumPy Name	Equivalent C Type	Range	NumPy Name	NumPy Name	Equivalent C Type	Range		Print 2
	float32	float	$\pm [1.175 \times 10^{38}, 3.403 \times 10^{38}]$		float32	float	$\pm [1.175 \times 10^{-38}, 3.403 \times 10^{38}]$		
	uint8	unsigned char	$[0, 255 = 2^2 - 1]$		uint8	unsigned char	$[0, 255 = 2^8 - 1]$		
119	Equation replacement	Equation replacement			$\boldsymbol{a} \times \boldsymbol{b} = \ \boldsymbol{a}\ \ \boldsymbol{b}\ \sin(\theta) \hat{\boldsymbol{n}}$				Pending
					$= (a_1b_2 - a_2b_1, a_2b_0 - a_0b_2, a_0b_1 - a_1b_0) $ (5.6)				
128	Equation replacement			$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 11 \\ 12 \\ 13 \end{bmatrix} = \begin{bmatrix} 74 \\ 182 \\ 290 \end{bmatrix}$				Pending	
175	But $e x \ln a = a^x$, so we have			But $e^{x \ln a} = a^x$, so we have				Pending	
183	For example, above, we saw that the partial derivative of $f(x, y) =$				For example, above, we saw that the partial derivative of $f(x, y, t, z) =$			Pending	

Page	Error	Correction	Print corrected
198	Equation replacement	$\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_{00}}{\partial x} & \frac{\partial f_{01}}{\partial x} & \cdots & \frac{\partial f_{0,m-1}}{\partial x} \\ \frac{\partial f_{10}}{\partial x} & \frac{\partial f_{11}}{\partial x} & \cdots & \frac{\partial f_{1,m-1}}{\partial x} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{n-1,0}}{\partial x} & \frac{\partial f_{n-1,1}}{\partial x} & \cdots & \frac{\partial f_{n-1,m-1}}{\partial x} \end{bmatrix}$	Pending
257	Equation replacement	$ \frac{\partial E}{\partial \mathbf{x}} = \frac{\partial E}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} $ $ = \left[\frac{\partial E}{\partial y_0} \frac{\partial y_0}{\partial x_0} \frac{\partial E}{\partial y_1} \frac{\partial y_1}{\partial x_1} \dots \right]^{\top} $ $ = \left[\frac{\partial E}{\partial y_0} \sigma'(\mathbf{x}_0) \frac{\partial E}{\partial y_1} \sigma'(\mathbf{x}_1) \dots \right]^{\top} $ $ = \frac{\partial E}{\partial \mathbf{y}} \odot \mathbf{\sigma}'(\mathbf{x}) \qquad (10.10) $	Pending
261	<pre>self.delta_w += np.dot(self.input.T, output_error)</pre>	<pre>self.delta_w += np.dot(weights_error)</pre>	Pending
307	URL update	You can find them here: https://www.cs.toronto.edu/~binton/coursera_lectures.html	Print 2