
2
p l o t t i n g M a r k E r S a n D

M E S S a g E B o x E S

Creating simple maps is a cool and useful
way to see the area around a location, but

you’ll find creating maps even more fun and
useful when you plot your own points on a map.

Using mapping APIs you can overlay small graphics to
call attention to locations (determined by latitude and
longitude coordinates). Optionally, you can create
messages that describe a location when the marker is
clicked.

You’ve seen these principles in action on just about any chain store’s
website, among many others. If you’re looking to shop in person, you’ve
probably used the Find a Store link. From there, you enter your city, ZIP
Code, address, or some other determination of your location. Then a map

coming(jobj) {
h > 0) {
removeAllMarkers();

r ev in jobj) {
"http://upcoming.yahoo.com/event/" + ev.id;
= new Marker(new LatLonPoint(ev.latitude, ev.longitude
ev.cost;

= "") {
etAttribute('cost', parseInt(cost));
($" + cost + ")"; // Format cost for infoBubble

etAttribute('cost', 9999); // Set a way too high value

text = ev.date + " " + ev.title
 + "" + cost;

InfoBubble(bubbletext);
on.addMarker(marker);

t(document.forms[0].cost);

sults for this search');

MAPS_01.indb 23 7/13/2010 12:57:48 PM

Map Scripting 101
© 2010 by Adam DuVander

24 Chapter 2

appears showing the closest stores, with each store’s location marked, often
with a number that matches a results list. If the number is clickable, you will
likely find that store’s address, telephone number, or other information.

This chapter will get you started creating tools like store locators. You
will learn to add markers, create custom icons, show messages in hovering
boxes, and more. Mapping providers implement similar, but slightly differ-
ent ways, of plotting markers on your map. Mapstraction wrangles these
differences into a single set of functions that can add markers and message
boxes no matter the underlying map type.

#1: add a Marker to your Map
The basic marker is a staple of web maps. Markers bring the user’s attention
to one or more points on the map. For many projects, you won’t need to get
any more complicated than a map and a handful of basic markers.

Although we’ll be using Mapstraction to produce our markered maps,
the underlying work is being done by whichever mapping service we’re
using. Just like the look of the map is determined by the provider, so will
the default style of the basic marker. Figure 2-1 shows the differences
among the markers from major map services.

Figure 2-1: Default markers from different providers: Google, Yahoo!, and Microsoft

To add a simple marker to your map, you just need to use two
Mapstraction functions. First, create the marker. Next, add it to the map.
The reason for these two distinct steps will become clear in further projects
when we start to use advanced options, such as custom marker icons.

Let’s see what creating the marker looks like in code. Start with the
basic Mapstraction map you created in “Create a Mapstraction Map” on
page 10, and add these lines to the create_map() function:

marker = new mxn.Marker(new mxn.LatLonPoint(37.7740486,-122.4101883));
// marker options will go here
mapstraction.addMarker(marker);

The first line creates a marker object, passing latitude/longitude coor-
dinates for the No Starch Press offices in San Francisco. Remember this is

MAPS_01.indb 24 7/13/2010 12:57:48 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 25

the same point we used as the center of our map in Chapter 1. By drawing
attention to the graphical marker, we are essentially marking that spot as
important.

The second line is a placeholder for any marker options we want to
add later. (Any JavaScript line that begins with two slashes is a comment,
and the browser ignores them.) The marker options are where we tell
Mapstraction which icon to use or add a message to be displayed when the
marker is clicked.

Finally, the third line adds the marker to the map. Once this happens,
no additional options can be added. The reason is that the marker object
is used only by Mapstraction. Once the marker is added to the map, how-
ever, Mapstraction makes the appropriate calls to the mapping provider.
Mapstraction plots the marker based on all options set beforehand. In
this case, we don’t have options to add, but we’ll add to this map in future
projects.

If you’re using Google as your mapping provider, your new map will
look like Figure 2-2. The default Google icon sits in the center of the map.
Although the marker is clickable, this marker is very simple and nothing
actually happens if you click it. Read on to learn other cool things you can
do with markers.

Figure 2-2: Google map with a simple marker

MAPS_01.indb 25 7/13/2010 12:57:48 PM

Map Scripting 101
© 2010 by Adam DuVander

26 Chapter 2

#2: remove or Hide a Marker
Once your map has markers, you may wish to remove them from the map
selectively. You might replace the current markers with new results. Or
maybe the user added a filter that does not include the current marker.
Mapstraction provides three functions to make markers disappear and
reappear. Though removing and hiding may sound like similar terms, under-
standing the differences between them is important. Removing a marker
from a map means the marker is gone for good. Simply hiding the marker
allows you to make it visible again.

To use the functions to remove, hide, and show markers, you need
access to Mapstraction and marker objects. These objects are generated
when you create your new map and whenever you create a new marker.
Whether they become available to the rest of your script, however, depends
on the variable’s scope.

Scope refers to the parts of code where a variable can be accessed. Any
variable created inside the create_map function can only be used inside that
function. To remove or hide markers, we need to make our Mapstraction
and marker objects global. To do this, add this declaration right above the
create_map function:

var mapstraction, marker;

These two variables now have a global scope, meaning we can use the
variables outside of the create_map function. To remove a marker, you call
the removeMarker function on the Mapstraction object:

mapstraction.removeMarker(marker);

To simply hide a marker, you call the hide function on the marker object:

marker.hide();

To make a hidden marker reappear, you call the show function on the
marker object:

marker.show();

Where do you call these functions? Anywhere they’re needed. For test-
ing purposes, create a link anywhere after the <body> tag. For example, here
is a link that will hide your marker:

hide marker

Again, this location is just for testing. You want unobtrusive JavaScript
that isn’t called from a link’s href. One barrier to using all three of these
functions is having access to the marker object.

MAPS_01.indb 26 7/13/2010 12:57:48 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 27

This single marker example only requires the variable be within a
global scope. As you’ve seen, that’s easy enough. When you start using many
markers, you’ll need a way to organize them beyond declaring dozens of
variables.

Mapstraction’s built-in ability to filter out certain markers (see “#9:
Filter Out Certain Markers” on page 36) may be the easiest solution. If it does
not provide all the features you need, you can always access all the markers
that Mapstraction has added:

var allmarkers = mapstraction.markers;

Mapstraction’s markers object gives you an array of markers. From here,
you can remove, hide, or show them as you wish.

#3: Show a Message Box when your Marker is clicked
Markers alone are useful because they identify spots on the map. Once
your map has more than one, viewers will start wondering what each
marker means. Sure, you could use custom icons to differentiate markers
and we’ll see how to do that shortly. But you can provide more information
by showing descriptive text when the user clicks a marker.

Each mapping provider has a way to show a message box. Like markers
themselves, the box looks different depending on the provider. Figure 2-3
shows the differences among the message boxes from the major map services.

Figure 2-3: Message boxes from different providers

Mapstraction provides an interface, called an InfoBubble, that works
with all providers. To create an InfoBubble for a marker, you add a marker
option like so:

marker.setInfoBubble("Look ma, No Starch!");

The setInfoBubble function takes a string of text (HTML works, too)
and saves it in connection with the marker. The line must be inserted after
the marker object is created but before the marker is added to the map. If
you have the code from creating a basic marker (“#1: Add a Marker to Your
Map” on page 24), you can just add the setInfoBubble line in place of the com-
ment about marker options.

MAPS_01.indb 27 7/13/2010 12:57:48 PM

Map Scripting 101
© 2010 by Adam DuVander

28 Chapter 2

For clarification, here are the commands necessary to create a brand
new marker, include an InfoBubble, and place the marker on the map:

marker = new mxn.Marker(new mxn.LatLonPoint(37.7740486,-122.4101883));
marker.setInfoBubble("Look ma, No Starch!");
mapstraction.addMarker(marker);

Great! Now if you load this file, you see a basic marker in the No Starch
Press neighborhood. Where is the InfoBubble? Click the marker, and
you see something similar to Figure 2-4. Mapstraction and the mapping
provider do all the work of capturing the click event and displaying the
InfoBubble. All you need to do is provide the content. If you’re hoping to
open the InfoBubble automatically or from code, read on; I’ll show you how
to display a message box without making the user click in the next project.

Figure 2-4: Message box with message displayed

MAPS_01.indb 28 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 29

#4: Show and Hide Message Boxes without clicking the
Marker

Maps let users click around and interact with a location. You’ve seen
how you can add clickable markers that provide more information about
the spots you’ve plotted. But sometimes you want a little bit more con-
trol. Sometimes you want to open up that InfoBubble without the user’s
permission.

For example, if your map shows search results, you might duplicate the
locations in a list format beside the map. Then users can choose a location
from the list and its corresponding marker opens a message box on the map.

The basic setup for displaying a message box from code is the same as a
standard clickable marker. You can just set some text as a marker option:

marker.setInfoBubble("Look ma, No Starch!");

This ensures that a clicked marker will still show your message. Then,
from elsewhere in your code (such as when the user clicks one of the search
results), you can tell the marker to open the InfoBubble:

marker.openBubble();

You can close the InfoBubble with a similar command:

marker.closeBubble();

The openBubble and closeBubble functions require the marker variable
to be accessible globally. That is, the marker object needs to be declared
at the top of your code, or you need to find another way to access it. In
“Functions” on page 297, I describe variable scope and how to declare vari-
ables so they can be accessed anywhere in your code.

#5: create a custom icon Marker
The quickest way to make a map feel like your own is to change the default
icon used for markers. Mapstraction has simple marker options that make
the technical process of using custom icons a cinch. The more labori-
ous part may be creating the icon file itself. To avoid this, you can find
icons others have made online for free. I list several resources at http://
mapscripting.com/download-custom-markers/.

Still want to create your own? Read on.

Get Out the Image Editor
To create your own marker icon, you just need to have a graphics program
that can save a transparent .png file. The icon can be whatever size you

MAPS_01.indb 29 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

30 Chapter 2

want, but keeping each dimension between 20 and 50 pixels is probably
best. If the icon is too small, clicking it becomes difficult; too big, and the
icon obscures the location you’re attempting to call out.

If you’re using Google as your mapping provider, you also want to
create an image to use as your marker’s shadow. This step isn’t necessary
if your marker is a similar shape to the Google default or if you’re using
another provider.

n o t E Not much of an image magician? You can find an online service to create a shadow
at http://www.cycloloco.com/shadowmaker/.

Add Your Icon to the Map
Now that you have an icon, the easy part is adding it to the marker options.
All it takes is setting a few values to tell Mapstraction where the icon image
files resides. Your best bet is to keep custom marker icons in a special
directory on your server. If you’re testing locally, you can use local copies,
accessed by their location relative to the page containing the map. For sim-
plicity, I have the HTML file and the icon files in the same directory in this
example. In reality, you might prefer to be more organized.

I decided to use a teensy No Starch Press logo for my custom icon.
It’s 27 pixels wide by 31 pixels high. Like I said, the icon is teensy. Then,
I used a shadow-maker service to create a file that is 43×31 including the
marker’s shadow.

Finally, it’s time to code. Add these lines as marker options. These lines
are inserted after a marker has been created but before the marker has
been added to the map:

marker.setIcon(u'nostarch-logo.png', v[27,31]);
marker.setShadowIcon('nostarch-shadow.png', [43,31]);

The only parameter that you need to include is the path to the image u
for both the icon and the shadow. Notice that the dimensions of each graphic
get passed as an inline array v. This parameter is optional but recom-
mended. If you leave it out, some providers will assume the dimensions of the
default marker, which could mean a poorly scaled graphic.

The results of the custom marker code are shown in Figure 2-5. The
No Starch Press office is marked by the company’s logo, a little iron icon.
Notice the shadow, as well, which makes the graphic pop out from the map.

Omit the shadow icon at your own risk. Some mapping providers will
assume the default shadow, which might look silly with your icon. Not every
mapping provider uses shadows, but planning for one is good. If you really
don’t want a shadow, consider using a completely transparent graphic. I
show an example of shadowless icons in “#69: Create a Weather Map” on
page 237.

MAPS_01.indb 30 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 31

Figure 2-5: Custom marker shows the No Starch Press logo

#6: create numbered Markers
When you have a list of locations on your web page that you also want to
plot on a map, provide users with numbered markers. For example, when
displaying search results, you want a matching label both on and off the
map so users can easily identify what’s what.

Numbered markers are not any different from any other custom
marker. You’ll need to create a graphic icon for each number you want.
Numerous icon sets are available online that you can use, or you can create
them dynamically with the Google Charts API.

Generate the Numbered Icon
The Google Charts API generates reverse teardrop–style pins that look like
the default Google marker. Using these Google-generated icons does not
mean you have to use Google Maps. Mapstraction will add the icon for any
provider to your map.

MAPS_01.indb 31 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

32 Chapter 2

You control the marker’s background and border color, as well as what
the label reads. The criteria you require are sent in the URL of the icon itself.
For example, here is the URL for a red marker labeled with a number one:

http://chart.apis.google.com/chart?chst=d_map_pin_letter&chld=u1|vFF3333|w000000

The final argument of the URL contains all the important information
for the marker: the label text u (in this case, the number one), the back-
ground color, v and the border w color. The colors are represented as hex
values, similar to how colors are declared in CSS.

The individual pieces of the chld argument are separated by the pipe
character, |. In a way, the final argument is really three arguments with its
own way of segmenting the values.

Custom markers added to a map when using Google as a mapping pro-
vider also require a shadow. Because the shapes of these dynamic markers
are all the same, the shadow can be static. The Google Charts API provides
this URL:

http://chart.apis.google.com/chart?chst=d_map_pin_shadow

Now that you can generate the icons, you need to place them on the
map. To do this, we’ll call these Google Charts URLs on the fly.

Add the Icon to the Map
Armed with dynamically generated marker URLs from Google Charts, the
process of adding these numbered markers to a map is much like adding
any custom icon. Here is the code listing that creates five random points
within San Francisco. Each marker is given an icon with a label numbered
one through five based on the order that it is created:

mapstraction = new mxn.Mapstraction('mymap', 'googlev3');
mapstraction.setCenterAndZoom(new mxn.LatLonPoint(37.7740486,-122.4101883), 11);
mapstraction.addLargeControls();
for (i=1; i<=5; i++) {
 var rndlatlon = get_random_by_bounds(mapstraction.getBounds());
 marker = new mxn.Marker(rndlatlon);
 marker.setIcon(
 'http://chart.apis.google.com/chart?chst=d_map_pin_letter&chld=' + i +
 '|FF3333|000000', [21,32]);
 marker.setShadowIcon(
 'http://chart.apis.google.com/chart?chst=d_map_pin_shadow');
 mapstraction.addMarker(marker);
}
mapstraction.autoCenterAndZoom();

MAPS_01.indb 32 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 33

The lines in bold set the generated icon and its shadow. The rest either
sets up the map or creates the random points. For the code to work, you
need a JavaScript function, get_random_by_bounds, which is discussed in
Chapter 6 but which I have reprinted next. Put the previous code inside
the create_map function used in all examples so far, and then make sure the
following function is included somewhere in the JavaScript (but outside of
other functions):

function get_random_by_bounds(bounds) {
 var lat = bounds.sw.lat + (Math.random() * (bounds.ne.lat – bounds.sw.lat));
 var lon = bounds.sw.lon + (Math.random() * (bounds.ne.lon – bounds.sw.lon));
 return new mxn.LatLonPoint(lat, lon);
}

Save your file. You’ll see a map like the one shown in Figure 2-6
(marker locations vary—remember, they’re random).

Figure 2-6: Numbered markers, randomly plotted

Use numbered markers when the order matters, such as when display-
ing nearby locations. Numbering is also helpful when users will match
search results or another list from outside the map to the individual
markers.

MAPS_01.indb 33 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

34 Chapter 2

#7: loop through all Markers
When you’ve added a bunch of markers to the map, you may want a way to
access them all. For example, you might be looking for outliers or determin-
ing which marker is the farthest north.

Mapstraction provides a property that holds an array of every marker
plotted on the map. You can then reference an individual marker from
within that array using standard JavaScript code to pull out a value at a spe-
cific index. Doing this for each marker on the map lets you loop through
and perform an action on all the markers.

Add these lines to your code wherever you need to do something to
each marker:

u var allm = mapstraction.markers;
v for (var i=0; i<allm.length; i++) {
w var thism = allm[i];

 // Any code for thism variable goes here
}

The first thing we do is reference the array of all markers from
Mapstraction u with a new variable name, allm. The saves us some typ-
ing, as we’ll need to use the marker variable several times. Next, we use
JavaScript’s for statement v to loop through the array. A temporary vari-
able, i, keeps track of the index, as we count from zero (the first element in
an array is at zero) up to the total number of markers.

As each marker becomes available, we place a reference to it inside
the temporary thism variable w, a name I chose because it describes “this
marker,” as in the marker we are currently utilizing. Anything within the
braces, { and }, of the for loop now has access to this new variable.

We can look up marker options or call functions on the marker (such
as showBubble or hide, for example). In most cases, we cannot add options
because options need to be added before the marker is added to the map.
For example, we cannot change the marker’s icon without removing and
re-adding the marker.

Despite these few limitations, looping through the markers is a useful
trick to add to your mapping tool bag. Many of Mapstraction’s functions,
such as filtering or autocentering, use a loop internally.

#8: determine the correct Zoom level to use Based on
Markers

Once your map has several markers, ensuring that all of them can be
viewed becomes a chore. This is especially true when your locations are
being served up by a database (“#66: Plot Locations from a Database” on
page 226). Markers start to fall outside of your manually set center and zoom
levels.

MAPS_01.indb 34 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 35

You may have tried to fix this on your own by changing the zoom level.
If you zoom out, your markers can end up scrunched together, with lots of
room to zoom in. The only way to achieve a good zoom level for any marker is
to determine it programmatically after all the markers are added to the map.

Mapstraction makes setting the zoom level as easy as one function call.
Add the following line to the create_map function from the basic map after
you have added some markers:

mapstraction.autoCenterAndZoom();

You can also use a similar function that only works on displayed mark-
ers. That is, if you’ve hidden or filtered out some markers, you will probably
want to zoom in to the ones that are still on the map. Instead of the previ-
ous function, use this:

mapstraction.visibleCenterAndZoom();

If these functions feel like magic, that’s okay. Mapstraction makes it
easy, but a lot is going on behind the curtain. Here’s the run-down of how
Mapstraction makes auto-zooming happen:

1. Loops through all the markers (or just the visible ones), and deter-
mines the maximum and minimum latitude and longitude of the
markers. This measurement is called the bounding box and consists of
four numbers that describe each edge of the box.

2. Finds the center of the bounding box by averaging the two latitudes
and the two longitudes.

3. Checks zoom levels until it finds one that displays the entire
bounding box.

Actually, Mapstraction does not need to perform the last two steps for
very many mapping providers. Most already have something that does the
auto-zooming work within their own library. That wasn’t always the case,
however, and it points to the power of Mapstraction. Mapstraction is able to
add these indispensable functions before they’re available in all map APIs.

To get a feel for how auto-zooming works, insert this code in the basic
map’s create_map function to add random markers:

u var num_markers = 5;
v var bigbounds = new mxn.BoundingBox(37.766, -122.400, 37.784, -122.418);

for (i=1; i<=num_markers; i++) {
 var rndlatlon = wget_random_by_bounds(bigbounds);
 marker = new mxn.Marker(rndlatlon);
 mapstraction.addMarker(marker);
}

x mapstraction.autoCenterAndZoom();

This code chooses five random markers, but you can change the first
variable u to any number you want. I’ve also created a bounding box v

MAPS_01.indb 35 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

36 Chapter 2

that is larger than the basic map’s visible area (you can learn more about
bounds in Chapter 6). These bounds are used to produce a new random
point for each of my markers. You actually need to include a special func-
tion w to create the point. We’ll get to that in a moment.

First, note the last line x, the one that auto-zooms. Try commenting
it out by placing a // at the front of the line to see how the markers look
without auto-zooming. Reload the map a few times with and without the
comment slashes. Figure 2-7 shows an example comparison of the maps in
each of these situations.

Figure 2-7: Difference between markers without and with automatic centering and
zooming

Of course, you need that special function, get_random_by_bounds. Unlike
in the previous code, add this outside of the create_map function but within
the JavaScript section:

function get_random_by_bounds(bounds) {
 var lat = bounds.sw.lat + (Math.random() * (bounds.ne.lat – bounds.sw.lat));
 var lon = bounds.sw.lon + (Math.random() * (bounds.ne.lon – bounds.sw.lon));
 return new mxn.LatLonPoint(lat, lon);
}

This function is described in detail in “#44: Get a Random Point in a
Bounding Box” on page 140.

As for the automatic centering and zooming, now that you can do it in a
single function call, you’ll likely include it for all but the simplest maps—it’s
really that useful.

#9: Filter out certain Markers
You must have a map with a whole bunch of markers by now, right? That
means you’re getting the hang of this mapping stuff. With a full screen
of markers, users will likely want to way to see only what they care about.
That’s where you’ll find Mapstraction’s filtering options handy.

MAPS_01.indb 36 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 37

Keeping track of many markers without the filtering options is a pain.
You need to maintain global arrays or make use of the mapstraction.markers
object. In either case, you need a way to distinguish the type of marker or
some data associated with it.

The first step in filtering is to create a new attribute and add it to your
new marker. You do this by adding some marker options, which has to hap-
pen after a marker is created but before you add it to the map. Here, I’ll set
the price to be 1000—maybe the marker represents an apartment and this
attribute is its rent:

marker.setAttribute('price', '1000');

If you’d like to add more attributes, such as number of bedrooms, you
can do that with additional setAttribute lines. Once you’ve added the data
for several markers, you can move on to filtering.

Filters are applied after the markers have been added to the map. In
fact, filtering usually happens in response to user behavior, such as when a
user clicks a filter button or enters search terms.

To show only markers with a price attribute greater than or equal to
1000, use this code:

mapstraction.removeAllFilters();
mapstraction.addFilter(u'price', v'ge', w1000);

x mapstraction.doFilter();

First, use removeAllFilters unless you know no filters are applied. The
reason is that filters are additive, meaning a second filter does not remove
the first. You could end up with fewer results than you expect because of a
previously applied filter.

Once filters are removed, you can continue. To add the filter requires
three parameters: the attribute name u, the operator (in this case greater
than or equal to) v, and the number w to use as a comparison. Finally, the
map will not change at all unless you apply the filter x.

Table 2-1: Filtering .Operators

Operator Description

ge Greater .than .or .equal .to—use .on .numbers .
le Less .than .or .equal .to—use .on .numbers .
eq Equal .to—use .on .numbers .or .with .words .(such .as .tags .or .types) .

Once a filter is applied, the markers that don’t match the filter will dis-
appear. In our example, anything with a price attribute less than 1000 (or
without a price attribute) will be removed. Thus, filtering can be thought of
as filtering in rather than out.

Mapstraction provides three operators to use to filter markers, as seen
in Table 2-1. You can combine filters to achieve more granular results.

MAPS_01.indb 37 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

38 Chapter 2

Sticking with the apartment search theme, you might add a neighborhood
attribute, so users can view apartments in a certain neighborhood that are
below a certain price, for example.

Mapstraction filters are a speedy way to show only a subset of markers
based on simple criteria. They do not require any additional communica-
tion with the server because Mapstraction stores information about every
marker in memory. For an example of filtering used in a real project, see
“#71: Search Music Events by Location” on page 260.

#10: remove or Hide all Markers
Need to start fresh, or want to show a clear map in some situations? We all
can use a little spring cleaning from time to time. I’ve already shown how to
remove or hide a single marker in this chapter. Now we’ll get rid of them all.

Again, make sure you understand that when you remove a marker it is
gone forever. Removing a marker is sometimes desired, such as when the
user activates a new search. Mapstraction has a function to achieve a clean
slate. A hidden marker, on the other hand, can always be shown again.
We’ll have to write our own function to hide all markers and make the slate
appear clean.

First, let’s be destructive and remove all the markers from our map.
Add this line wherever you want to axe all the markers:

mapstraction.removeAllMarkers();

That’s it—they’re gone. “#71: Search Music Events by Location” on page
260 shows an example of this function in use every time a user starts a search.
By removing the markers, we ensure the previous search results don’t get
mixed up with the new ones.

If we only want to hide all markers, we need to write our own function.
To do this, we need to loop through all markers (described in detail in “#7:
Loop Through All Markers” on page 34) and hide each one.

function hideAllMarkers() {
u var allm = mapstraction.markers;

 for (var i=0; i<allm.length; i++) {
v var thism = allm[i];
w thism.hide();

 }
}

So far, much of our code has been used inside the create_map function.
Because hideAllMarkers is a new function, we need to add it in its own place
outside of other functions but still in the JavaScript section of the page.

The function itself is straightforward. It first grabs a reference to the
marker object u from Mapstraction, which holds an array of every marker
added to the map. Then, using that array of markers, the function goes

MAPS_01.indb 38 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 39

through them one by one. Each time through the loop, the function takes
another marker and puts it in a temporary variable named thism v (for
“this marker”). Finally, it calls the hide function w on this marker.

By the end of the function, no markers will be displayed on the map.
We’ve looped through every marker and hidden them one at a time.

To write the function is not enough. We need to call the function from
somewhere else in our code:

hideAllMarkers();

Notice that this call looks very similar to the call for removing
all the markers. One major difference is that removeAllMarkers was called
on the Mapstraction object. This new function is merely called on its own.
The difference is that we wrote hideAllMarkers in our own code, whereas
Mapstraction’s functions are part if its package.

Writing utility functions, as we did here to hide every marker, is an
important part of programming. Now that we’ve written the function once,
we can call it any time we need it.

#11: Handle clusters of Markers
This chapter has already covered several ways to make sense of a map with
many markers plotted. You can number them and filter them. You can
automatically zoom to show all the markers within the visible portion of the
map. These tools are all good to have, but you’ll find that sometimes your
markers are still scrunched together and overlapping. You can’t avoid it, but
you can make it less of a problem.

Instead of showing every single marker, you can use a special icon to
represent a cluster of markers. Then, when users zoom in, the cluster will
disappear and be replaced by the actual markers. You can see an example
of many markers, with and without clustering, in Figure 2-8.

Figure 2-8: Difference between markers with and without clustering

MAPS_01.indb 39 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

40 Chapter 2

The code behind marker clustering is surprisingly complicated, but the
concept is simple. Although many approaches exist, commonly the map is
divided into a grid. If one cell of the map contains more than one marker
(or more than a certain number—you may prefer a cutoff of five markers
per cell), they’re replaced by a cluster.

Rather than write this algorithm ourselves, we’ll use a utility that is
already written to work directly with Google Maps, called ClusterMarker. You
can download the code from http://www.acme.com/javascript/ and save it in a
file named clusterer2.js.

Unlike most examples in this book, you’ll work with Google Maps
directly, as you did in “Create a Google Map” on page 7. In addition to
including the Google Maps API JavaScript in the header, you also need
to reference the new cluster file. Add this to the header section of your
HTML:

<script type="text/javascript" src="clusterer2.js"></script>

The cluster code is similar to Mapstraction in that it wraps itself around
Google Maps. The code to add markers will go through the cluster func-
tions and then be routed to Google Maps. Replace your create_map function
with this one, which will place 100 random markers on the map and cluster
where necessary:

function create_map() {
 if (GBrowserIsCompatible()) {
 // Basic Google Map
 var map = new Gmap2(document.getElementById("mymap"));
 var center_point = new GLatLng(39.34, -98.26);
 map.setCenter(center_point, 8);
 map.addControl(new GsmallMapControl());
 // Cluster settings

u var clustobj = new Clusterer(map);
v clustobj.SetMaxVisibleMarkers(50);
w clustobj.SetMinMarkersPerCluster(2);

 // Add Markers
 for (var i=1; i<=100; i++) {
 var lat = center_point.lat() + Math.random() - 0.5;
 var lon = center_point.lng() + Math.random() - 0.5;
 var gmk = new GMarker(new GLatLng(lat, lon));

x clustobj.AddMarker(gmk, 'Marker #' + i);
 }
}

I’ve centered this map roughly in the middle of the United States
(hello, Kansas!). Once the basic map has been created, we need to tell the
cluster code where to find it u, which creates an object that is put into a
variable named clustobj.

MAPS_01.indb 40 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

Plotting Markers and Message Boxes 41

Before we add any markers, we want to reset some properties of the
clusterer. The first v sets the number of markers when the cluster code will
begin clustering. The default is 150, which means every single one of our
100 markers will be shown without clustering if we don’t change this setting.
The next setting w declares how many markers need to occupy a grid cell
before clustering takes over. The default is 5 and, for our example, seems a
little too crowded. Experiment with what works best for your map.

Now we’re ready to add markers to the map. I wrote a for loop that
creates 100 markers at random points near the center of our map. Then,
instead of adding them directly to the map, we add them to the clusterer x.

Save your file, and load it in a browser to see the large clustered mark-
ers. You may also see a few stray normal markers—these markers didn’t need
to be clustered because other markers weren’t nearby. The map looks a whole
lot cleaner, doesn’t it? Zoom in and some of the clusters will disappear, as the
map is able to display the actual markers without crowding them.

Change the Cluster Icon
Out of the box, your cluster code uses a large, blue icon for cluster mark-
ers. If you have another graphic you would rather use, you can include it
instead.

Add the following code after your other cluster settings but before you
start adding markers:

var cicon = new GIcon();
cicon.image = 'icon.png';
cicon.iconSize = new GSize(27,31);
cicon.shadow = 'shadow.png';
cicon.shadowSize = new Gsize(43,31);
clusterer.SetIcon(cicon);

Clustering icons solves the marker overload problem, in which the
markers are so numerous they become meaningless. Clustering is also a
quick way to still show everything without overwhelming your users.

MAPS_01.indb 41 7/13/2010 12:57:49 PM

Map Scripting 101
© 2010 by Adam DuVander

