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With the open source machine learning 
tools available today, you can build cus-

tom, machine learning–based malware 
detection tools, whether as your primary 

detection tool or to supplement commercial solu-
tions, with relatively little effort.

But why build your own machine learning tools when commercial anti-
virus solutions are already available? When you have access to examples of 
particular threats, such as malware used by a certain group of attackers tar-
geting your network, building your own machine learning–based detection 
technologies can allow you to catch new examples of these threats. 

In contrast, commercial antivirus engines might miss these threats unless 
they already include signatures for them. Commercial tools are also “closed 
books”—that is, we don’t necessarily know how they work and we have limited 
ability to tune them. When we build our own detection methods, we know 
how they work and can tune them to our liking to reduce false positives or 
false negatives. This is helpful because in some applications you might be 
willing to tolerate more false positives in exchange for fewer false negatives 



90   Chapter 6

(for example, when you’re searching your network for suspicious files so that 
you can hand-inspect them to determine if they are malicious), and in other 
applications you might be willing to tolerate more false negatives in exchange 
for fewer false positives (for example, if your application blocks programs 
from executing if it determines they are malicious, meaning that false posi-
tives are disruptive to users).

In this chapter, you learn the process of developing your own detection 
tools at a high level. I start by explaining the big ideas behind machine learn-
ing, including feature spaces, decision boundaries, training data, underfit-
ting, and overfitting. Then I focus on four foundational approaches—logistic 
regression, k-nearest neighbors, decision trees, and random forest—and how 
these can be applied to perform detection.

You’ll then use what you learned in this chapter to learn how to evalu-
ate the accuracy of machine learning systems in Chapter 7 and implement 
machine learning systems in Python in Chapter 8. Let’s get started.

Steps for Building a Machine learning–Based Detector
There is a fundamental difference between machine learning and other 
kinds of computer algorithms. Whereas traditional algorithms tell the com-
puter what to do, machine-learning systems learn how to solve a problem by 
example. For instance, rather than simply pulling from a set of preconfig-
ured rules, machine learning security detection systems can be trained to 
determine whether a file is bad or good by learning from examples of good 
and bad files.

The promise of machine learning systems for computer security is that 
they automate the work of creating signatures, and they have the potential 
to perform more accurately than signature-based approaches to malware 
detection, especially on new, previously unseen malware.

Essentially, the workflow we follow to build any machine learning–
based detector, including a decision tree, boils down to these steps:

1. Collect examples of malware and benignware. We will use these 
examples (called training examples) to train the machine learning 
system to recognize malware.

2. Extract features from each training example to represent the example 
as an array of numbers. This step also includes research to design good 
features that will help your machine learning system make accurate 
inferences.

3. Train the machine learning system to recognize malware using the fea-
tures we have extracted.

4. Test the approach on some data not included in our training examples 
to see how well our detection system works.

Let’s discuss each of these steps in more detail in the following sections.
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Gathering Training Examples
Machine learning detectors live or die by the training data provided to them. 
Your malware detector’s ability to recognize suspicious binaries depends 
heavily on the quantity and quality of training examples you provide. Be pre-
pared to spend much of your time gathering training examples when build-
ing machine learning–based detectors, because the more examples you feed 
your system, the more accurate it’s likely to be.

The quality of your training examples is also important. The malware 
and benignware you collect should mirror the kind of malware and benign-
ware you expect your detector to see when you ask it to decide whether new 
files are malicious or benign.

For example, if you want to detect malware from a specific threat actor 
group, you must collect as much malware as possible from that group for 
use in training your system. If your goal is to detect a broad class of mal-
ware (such as ransomware), it’s essential to collect as many representative 
samples of this class as possible.

By the same token, the benign training examples you feed your system 
should mirror the kinds of benign files you will ask your detector to analyze 
once you deploy it. For example, if you are working on detecting malware 
on a university network, you should train your system with a broad sampling 
of the benignware that students and university employees use, in order to 
avoid false positives. These benign examples would include computer games, 
document editors, custom software written by the university IT department, 
and other types of nonmalicious programs.

To give a real-world example, at my current day job, we built a detector 
that detects malicious Office documents. We spent about half the time on 
this project gathering training data, and this included collecting benign 
documents generated by more than a thousand of my company’s employees. 
Using these examples to train our system significantly reduced our false 
positive rate.

Extracting Features
To classify files as good or bad, we train machine learning systems by show-
ing them features of software binaries; these are file attributes that will help 
the system distinguish between good and bad files. For example, here are 
some features we might use to determine whether a file is good or bad:

•	 Whether it’s digitally signed

•	 The presence of malformed headers

•	 The presence of encrypted data

•	 Whether it has been seen on more than 100 network workstations

To obtain these features, we need to extract them from files. For 
example, we might write code to determine whether a file is digitally 
signed, has malformed headers, contains encrypted data, and so on. 



92   Chapter 6

Often, in security data science, we use a huge number of features in our 
machine learning detectors. For example, we might create a feature for 
every library call in the Win32 API, such that a binary would have that fea-
ture if it had the corresponding API call. We’ll revisit feature extraction in 
Chapter 8, where we discuss more advanced feature extraction concepts as 
well as how to use them to implement machine learning systems in Python.

Designing Good Features
Our goal should be to select features that yield the most accurate results. 
This section provides some general rules to follow.

First, when selecting features, choose ones that represent your best 
guess as to what might help a machine learning system distinguish bad 
files from good files. For example, the feature “contains encrypted data” 
might be a good marker for malware because we know that malware often 
contains encrypted data, and we’re guessing that benignware will contain 
encrypted data more rarely. The beauty of machine learning is that if this 
hypothesis is wrong, and benignware contains encrypted data just as often 
as malware does, the system will more or less ignore this feature. If our 
hypothesis is right, the system will learn to use the “contains encrypted 
data” feature to detect malware.

Second, don’t use so many features that your set of features becomes 
too large relative to the number of training examples for your detection 
system. This is what the machine learning experts call “the curse of dimen-
sionality.” For example, if you have a thousand features and only a thousand 
training examples, chances are you don’t have enough training examples to 
teach your machine learning system what each feature actually says about 
a given binary. Statistics tells us that it’s better to give your system a few fea-
tures relative to the number of training examples you have available and let 
it form well-founded beliefs about which features truly indicate malware.

Finally, make sure your features represent a range of hypotheses about 
what constitutes malware or benignware. For example, you may choose to 
build features related to encryption, such as whether a file uses encryption-
related API calls or a public key infrastructure (PKI), but make sure to also 
use features unrelated to encryption to hedge your bets. That way, if your 
system fails to detect malware based on one type of feature, it might still 
detect it using other features.

Training Machine Learning Systems
After you’ve extracted features from your training binaries, it’s time to train 
your machine learning system. What this looks like algorithmically depends 
completely on the machine learning approach you’re using. For example, 
training a decision tree approach (which we discuss shortly) involves a 
different learning algorithm than training a logistic regression approach 
(which we also discuss).

Fortunately, all machine learning detectors provide the same basic 
interface. You provide them with training data that contains features from 
sample binaries, as well as corresponding labels that tell the algorithm 
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which binaries are malware and which are benignware. Then the algo-
rithms learn to determine whether or not new, previously unseen binaries 
are malicious or benign. We cover training in more detail later in this 
chapter.

n o t e  In this book, we focus on a class of machine learning algorithms known as super-
vised machine learning algorithms. To train models using these algorithms, 
we tell them which examples are malicious and which are benign. Another class of 
machine learning algorithms, unsupervised algorithms, does not require us to 
know which examples are malicious or benign in our training set. These algorithms 
are much less effective at detecting malicious software and malicious behavior, and 
we will not cover them in this book. 

Testing Machine Learning Systems
Once you’ve trained your machine learning system, you need to check 
how accurate it is. You do this by running the trained system on data that 
you didn’t train it on and seeing how well it determines whether or not the 
binaries are malicious or benign. In security, we typically train our systems 
on binaries that we gathered up to some point in time, and then we test on 
binaries that we saw after that point in time, to measure how well our systems 
will detect new malware, and to measure how well our systems will avoid pro-
ducing false positives on new benignware. Most machine learning research 
involves thousands of iterations that go something like this: we create a 
machine learning system, test it, and then tweak it, train it again, and test it 
again, until we’re satisfied with the results. I’ll cover testing machine learn-
ing systems in detail in Chapter 8.

Let’s now discuss how a variety of machine learning algorithms work. 
This is the hard part of the chapter, but also the most rewarding if you take 
the time to understand it. In this discussion, I talk about the unifying ideas 
that underlie these algorithms and then move on to each algorithm in detail.

understanding Feature Spaces and Decision Boundaries
Two simple geometric ideas can help you understand all machine learning–
based detection algorithms: the idea of a geometrical feature space and the 
idea of a decision boundary. A feature space is the geometrical space defined by 
the features you’ve selected, and a decision boundary is a geometrical structure 
running through this space such that binaries on one side of this boundary 
are defined as malware, and binaries on the other side of the boundary are 
defined as benignware. When we use a machine learning algorithm to clas-
sify files as malicious or benign, we extract features so that we can place the 
samples in the feature space, and then we check which side of the decision 
boundary the samples are on to determine whether the files are malware or 
benignware.

This geometrical way of understanding feature spaces and decision 
boundaries is accurate for systems that operate on feature spaces of one, 
two, or three dimensions (features), but it also holds for feature spaces with 
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millions of dimensions, even though it’s impossible to visualize or conceive 
of million-dimensional spaces. We’ll stick to examples with two dimensions 
in this chapter to make them easy to visualize, but just remember that real-
world security machine learning systems pretty much always use hundreds, 
thousands, or millions of dimensions, and the basic concepts we discuss in 
a two-dimensional context hold for real-world systems that have more than 
two dimensions.

Let’s create a toy malware detection problem to clarify the idea of a 
decision boundary in a feature space. Suppose we have a training dataset 
consisting of malware and benignware samples. Now suppose we extract 
the following two features from each binary: the percentage of the file 
that appears to be compressed, and the number of suspicious functions 
each binary imports. We can visualize our training dataset as shown in 
Figure 6-1 (bear in mind I created the data in the plot artificially, for 
example purposes).
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Figure 6-1: A plot of a sample dataset we’ll use in this chapter, where  
gray dots are benignware and black dots are malware

The two-dimensional space shown in Figure 6-1, which is defined by 
our two features, is the feature space for our sample dataset. You can see 
a clear pattern in which the black dots (the malware) are generally in 
the upper-right part of the space. In general, these have more suspicious 
imported function calls and more compressed data than the benignware, 
which mostly inhabits the lower-left part of the plot. Suppose, after view-
ing this plot, you were asked to create a malware detection system based 
solely on the two features we’re using here. It seems clear that, based on 
the data, you can formulate the following rule: if a binary has both a lot 
of compressed data and a lot of suspicious imported function calls, it’s 
malware, and if it has neither a lot of suspicious imported calls nor much 
compressed data, it’s benignware.
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In geometrical terms, we can visualize this rule as a diagonal line that 
separates the malware samples from the benignware samples in the feature 
space, such that binaries with sufficient compressed data and imported func-
tion calls (defined as malware) are above the line, and the rest of the bina-
ries (defined as benignware) are below the line. Figure 6-2 shows such a line, 
which we call a decision boundary.
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Defining a Malware Detection Decision Boundary
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Figure 6-2: A decision boundary drawn through our sample dataset,  
which defines a rule for detecting malware

As you can see from the line, most of the black (malware) dots are on 
one side of the boundary, and most of the gray (benignware) samples are on 
the other side of the decision boundary. Note that it’s impossible to draw a 
line that separates all of the samples from one another, because the black 
and gray clouds in this dataset overlap one another. But from looking at 
this example, it appears we’ve drawn a line that will correctly classify new 
malware samples and benignware samples in most cases, assuming they fol-
low the pattern seen in the data in this image.

In Figure 6-2, we manually drew a decision boundary through our data. 
But what if we want a more exact decision boundary and want to do it in an 
automated way? This is exactly what machine learning does. In other words, 
all machine learning detection algorithms look at data and use an auto-
mated process to determine the ideal decision boundary, such that there’s 
the greatest chance of correctly performing detection on new, previously 
unseen data.

Let’s look at the way a real-world, commonly used machine learning 
algorithm identifies a decision boundary within the sample data shown in 
Figure 6-3. This example uses an algorithm called logistic regression.
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Logistic Regression
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Figure 6-3: The decision boundary automatically created by training  
a logistic regression model

Notice that we’re using the same sample data we used in the previous 
plots, where gray dots are benignware and black dots are malware. The line 
running through the center of the plot is the decision boundary that the 
logistic regression algorithm learns by looking at the data. On the right side 
of the line, the logistic regression algorithm assigns a greater than 50 per-
cent probability that binaries are malware, and on the left side of the line, it 
assigns a less than 50 percent probability that a binary is malware.

Now note the shaded regions of the plot. The dark gray shaded region is 
the region where the logistic regression model is highly confident that files 
are malware. Any new file the logistic regression model sees that has features 
that land in this region should have a high probability of being malware. As 
we get closer and closer to the decision boundary, the model has less and 
less confidence about whether or not binaries are malware or benignware. 
Logistic regression allows us to easily move the line up into the darker region 
or down into the lighter region, depending on how aggressive we want to be 
about detecting malware. For example, if we move it down, we’ll catch more 
malware, but get more false positives. If we move it up, we’ll catch less mal-
ware, but get fewer false positives.

I want to emphasize that logistic regression, and all other machine 
learning algorithms, can operate in arbitrarily high dimensional feature 
spaces. Figure 6-4 illustrates how logistic regression works in a slightly 
higher dimensional feature space.

In this higher-dimensional space, the decision boundary is not a line, 
but a plane separating the points in the 3D volume. If we were to move to 
four or more dimensions, logistic regression would create a hyperplane, 
which is an n-dimensional plane-like structure that separates the malware 
from benignware points in this high dimensional space.
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Figure 6-4: A planar decision boundary through a  
hypothetical three dimensional feature space created  
by logistic regression

Because logistic regression is a relatively simple machine learning algo-
rithm, it can only create simple geometrical decision boundaries such as 
lines, planes, and higher dimensional planes. Other machine learning algo-
rithms can create decision boundaries that are more complex. Consider, for 
example, the decision boundary shown in Figure 6-5, given by the k-nearest 
neighbors algorithm (which I discuss in detail shortly).
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Figure 6-5: A decision boundary created by the k-nearest neighbors  
algorithm

As you can see, this decision boundary isn’t a plane: it’s a highly irregu-
lar structure. Also note that some machine learning algorithms can generate 
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disjointed decision boundaries, which define some regions of the feature 
space as malicious and some regions as benign, even if those regions are 
not contiguous. Figure 6-6 shows a decision boundary with this irregular 
structure, using a different sample dataset with a more complex pattern of 
malware and benignware in our sample feature space.
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Figure 6-6: A disjoint decision boundary created by the k-nearest  
neighbors algorithm

Even though the decision boundary is noncontiguous, it’s still common 
machine learning parlance to call these disjoint decision boundaries simply 
“decision boundaries.” You can use different machine learning algorithms 
to express different types of decision boundaries, and this difference in 
expressivity is why we might pick one machine learning algorithm over 
another for a given project.

Now that we’ve explored core machine learning concepts like feature 
spaces and decision boundaries, let’s discuss what machine learning practi-
tioners call overfitting and underfitting next.

what Makes Models Good or Bad: overfitting and 
underfitting

I can’t overemphasize the importance of overfitting and underfitting in 
machine learning. Avoiding both cases is what defines a good machine 
learning algorithm. Good, accurate detection models in machine learn-
ing capture the general trend in what the training data says about what 
distinguishes malware from benignware, without getting distracted by 
the outliers or the exceptions that prove the rule.
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Underfit models ignore outliers but fail to capture the general trend, 
resulting in poor accuracy on new, previously unseen binaries. Overfit 
models get distracted by outliers in ways that don’t reflect the general 
trend, and they yield poor accuracy on previously unseen binaries. 
Building machine learning malware detection models is all about captur-
ing the general trend that distinguishes the malicious from the benign.

Let’s use the examples of underfit, well fit, and overfit models in 
Figures 6-7, 6-8, and 6-9 to illustrate these terms. Figure 6-7 shows an 
underfit model.
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Figure 6-7: An underfit machine learning model

Here, you can see the black dots (malware) cluster in the upper-right 
region of the plot, and the gray dots (benignware) cluster in the lower 
left. However, our machine learning model simply slices the dots down 
the middle, crudely separating the data without capturing the diagonal 
trend. Because the model doesn’t capture the general trend, we say that it 
is underfit.

Also note that there are only two shades of certainty that the model 
gives in all of the regions of the plot: either the shade is dark gray or it’s 
white. In other words, the model is either absolutely certain that points 
in the feature space are malicious or absolutely certain they’re benign. 
This inability to express certainty correctly is also a reason this model is 
underfit.

Let’s contrast the underfit model in Figure 6-7 with the well-fit model in 
Figure 6-8.
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Figure 6-8: A well-fit machine learning model

In this case, the model not only captures the general trend in the data 
but also creates a reasonable model of certainty with respect to its estimate 
of which regions of the feature space are definitely malicious, definitely 
benign, or are in a gray area.

Note the decision line running from the top to the bottom of this 
plot. The model has a simple theory about what divides the malware 
from the benignware: a vertical line with a diagonal notch in the middle 
of the plot. Also note the shaded regions in the plot, which tells us that 
the model is only certain that data in the upper-right part of the plot are 
malware, and only certain that binaries in the lower-left corner of the plot 
are benignware.

Finally, let’s contrast the overfit model shown next in Figure 6-9 to 
the underfit model you saw in Figure 6-7 as well as the well-fit model in 
Figure 6-8.

The overfit model in Figure 6-9 fails to capture the general trend in 
the data. Instead, it obsesses over the exceptions in the data, including the 
handful of black dots (malware training examples) that occur in the cluster 
of gray dots (benign training examples) and draws decision boundaries 
around them. Similarly, it focuses on the handful of benignware examples 
that occur in the malware cluster, drawing boundaries around those as well.

This means that when we see new, previously unseen binaries that hap-
pen to have features that place them close to these outliers, the machine 
learning model will think they are malware when they are almost definitely 
benignware, and vice versa. In practice, this means that this model won’t be 
as accurate as it could be.
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Figure 6-9: An overfit machine learning model

Major types of Machine learning algorithms
So far I’ve discussed machine learning in very general terms, touching on 
two machine learning methods: logistic regression and k-nearest neighbors. 
In the remainder of this chapter, we delve deeper and discuss logistic regres-
sion, k-nearest neighbors, decision trees, and random forest algorithms in 
more detail. We use these algorithms quite often in the security data science 
community. These algorithms are complex, but the ideas behind them are 
intuitive and straightforward.

First, let’s look at the sample datasets we use to explore the strengths 
and weaknesses of each algorithm, shown in Figure 6-10.

I created these datasets for example purposes. On the left, we have our 
simple dataset, which I’ve already used in Figures 6-7, 6-8, and 6-9. In this 
case, we can separate the black training examples (malware) from the gray 
training examples (benignware) using a simple geometric structure such as 
a line.

The dataset on the right, which I’ve already shown in Figure 6-6, is com-
plex because we can’t separate the malware from the benignware using a 
simple line. But there is still a clear pattern to the data: we just have to use 
more complex methods to create a decision boundary. Let’s see how differ-
ent algorithms perform with these two sample datasets.
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Simple Dataset
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Figure 6-10: The two sample datasets we use in this chapter, with black dots representing malware and gray 
dots representing benignware

Logistic Regression
As you learned previously, logistic regression is a machine learning algo-
rithm that creates a line, plane, or hyperplane (depending on how many 
features you provide) that geometrically separates your training malware 
from your training benignware. When you use the trained model to detect 
new malware, logistic regression checks whether a previously unseen binary 
is on the malware side or the benignware side of the boundary to deter-
mine whether it’s malicious or benign.

A limitation of logistic regression is that if your data can’t be sepa-
rated simply using a line or hyperplane, logistic regression is not the right 
solution. Whether or not you can use logistic regression for your problem 
depends on your data and your features. For example, if your problem has 
lots of individual features that on their own are strong indicators of mali-
ciousness (or “benignness”), then logistic regression might be a winning 
approach. If your data is such that you need to use complex relationships 
between features to decide that a file is malware, then another approach, 
like k-nearest neighbors, decision trees, or random forest, might make more 
sense.

To illustrate the strengths and weaknesses of logistic regression, let’s 
look at the performance of logistic regression on our two sample datasets, 
as shown in Figure 6-11. We see that logistic regression yields a very effec-
tive separation of the malware and benignware in our simple dataset (on 
the left). In contrast, the performance of logistic regression on our com-
plex dataset (on the right) is not effective. In this case, the logistic regres-
sion algorithm gets confused, because it can only express a linear decision 
boundary. You can see both binary types on both sides of the line, and the 
shaded gray confidence bands don’t really make any sense relative to the 
data. For this more complex dataset, we’d need to use an algorithm capable 
of expressing more geometric structures.
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Logistic Regression

Simple Dataset
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Figure 6-11: A decision boundary drawn through our sample datasets using logistic regression

The Math Behind Logistic Regression

Let’s now look at the math behind how logistic regression detects malware 
samples. Listing 6-1 shows Pythonic pseudocode for computing the prob-
ability that a binary is malware using logistic regression.

def logistic_regression(compressed_data, suspicious_calls, learned_parameters): u
compressed_data = compressed_data * learned_parameters["compressed_data_weight"] v 
    suspicious_calls = suspicious_calls * learned_parameters["suspicious_calls_weight"]
score = compressed_data + suspicious_calls + bias w
    return logistic_function(score)

def logistic_function(score): x
    return 1/(1.0+math.e**(-score))

Listing 6-1: Pseudocode using logistic regression to calculate probability

Let’s step through the code to understand what this means. We first 
define the logistic_regression function u and its parameters. Its parameters 
are the features of the binary (compressed_data and suspicious_calls) that rep-
resent the amount of compressed data and the number of suspicious calls 
it makes, respectively, and the parameter learned_parameters stands for the 
elements of the logistic regression function that were learned by training 
the logistic regression model on training data. I discuss how the param-
eters were learned later in this chapter; for now, just accept that they were 
derived from the training data.

Then, we take the compressed_data feature v and multiply it by the 
compressed_data_weight parameter. This weight scales the feature up or 
down, depending on how indicative of malware the logistic regression 
function thinks this feature is. Note that the weight can also be negative, 
which indicates that the logistic regression model thinks that the feature 
is an indicator of a file being benign.
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On the line below that, we perform the same step for the suspicious_calls 
parameter. Then, we add these two weighted features together w, plus add 
in a parameter called the bias parameter (also learned from training data). 
In sum, we take the compressed_data feature, scaled by how indicative of mali-
ciousness we believe it to be, add the suspicious_calls feature, also scaled by 
how indicative of maliciousness we believe it to be, and add the bias param-
eter, which indicates how suspicious the logistic regression model thinks we 
should be of files in general. The result of these additions and multiplications 
is a score indicating how likely it is that a given file is malicious.

Finally, we use logistic_function x to convert our suspiciousness score 
into a probability. Figure 6-12 visualizes how this function works.

0 2 4 6–2–4–6

0.5

1

Figure 6-12: A plot of the logistic function used in logistic regression

Here, the logistic function takes a score (shown on the x-axis) and 
translates it into a value that’s bounded between 0 and 1 (a probability).

How the Math Works

Let’s return to the decision boundaries you saw in Figure 6-11 to see how 
this math works in practice. Recall how we compute our probability:

logistic_function(feature1_weight * feature1 + feature2_weight*feature2 + bias)

For example, if we were to plot the resulting probabilities at every point 
in the feature spaces shown in Figure 6-11 using the same feature weights 
and bias parameter, we’d wind up with the shaded regions shown in the 
same figure, which shows where the model “thinks” malicious and benign 
samples lie, and with how much confidence.

If we were then to set a threshold of 0.5 (recall that at a probability 
of greater than 50 percent, files are defined as malicious), the line in 
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Figure 6-11 would appear as our decision boundary. I encourage you to 
experiment with my sample code, plug in some feature weights and a bias 
term, and try it yourself.

n o t e  Logistic regression doesn’t constrain us to using only two features. In reality, we usu-
ally use scores or hundreds or even thousands of features with logistic regression. But 
the math doesn’t change: we just compute our probability as follows for any number of 
features: 

logistic_function(feature1 * feature1_weight + feature2 * feature2_weight + 
feature3 * feature3_weight ... + bias)

So how exactly does logistic regression learn to place the decision 
boundary in the right place based on the training data? It uses an itera-
tive, calculus-based approach called gradient descent. We won’t get into the 
details of this approach in this book, but the basic idea is that the line, 
plane, or hyperplane (depending on the number of features you’re using) 
is iteratively adjusted such that it maximizes the probability that the logistic 
regression model will get the answer right when asked if a data point in the 
training set is either a malware sample or a benignware sample.

You can train logistic regression models to bias the logistic regression 
learning algorithm toward coming up with simpler or more complex theories 
about what constitutes malware and benignware. These training methods are 
beyond the scope of this book, but if you’re interested in learning about these 
helpful methods, I encourage you to Google “logistic regression and regular-
ization” and read explanations of them online.

When to Use Logistic Regression

Logistic regression has distinct advantages and disadvantages relative to 
other machine learning algorithms. An advantage of logistic regression 
is that one can easily interpret what a logistic regression model thinks 
constitutes benignware and malware. For example, we can understand a 
given logistic regression model by looking at its feature weights. Features 
that have high weight are those the model interprets as malicious. Features 
with negative weight are those the model believes are benignware. Logistic 
regression is a fairly simple approach, and when the data you’re working 
with contains clear indicators of maliciousness, it can work well. But when 
the data is more complex, logistic regression often fails.

Now let’s explore another simple machine learning approach that can 
express much more complex decision boundaries: k-nearest neighbors.

K-Nearest Neighbors
K-nearest neighbors is a machine learning algorithm based on the idea 
that if a binary in the feature space is close to other binaries that are 
malicious, then it’s malicious, and if its features place it close to binaries 
that are benign, it must be benign. More precisely, if the majority of the 
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k closest binaries to an unknown binary are malicious, the file is malicious. 
Note that k represents the number of nearby neighbors that we pick and 
define ourselves, depending on how many neighbors we think should be 
involved in determining whether a sample is benign or malicious.

In the real world, this makes intuitive sense. For example, if you have 
a dataset of weights and heights of both basketball players and table ten-
nis players, chances are that the basketball players’ weights and heights 
are likely closer to one another than they are to the measurements of 
table tennis players. Similarly, in a security setting, malware will often 
have similar features to other malware, and benignware will often have 
similar features to other benignware.

We can translate this idea into a k-nearest neighbors algorithm to com-
pute whether a binary is malicious or benign using the following steps:

1. Extract the binary’s features and find the k samples that are closest to it 
in the feature space.

2. Divide the number of malware samples that are close to the sample by k 
to get the percentage of nearest neighbors that are malicious.

3. If enough of the samples are malicious, define the sample as malicious.

Figure 6-13 shows how k-nearest neighbors algorithm works at a high 
level.
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Figure 6-13: An illustration of the way k-nearest neighbors can be used  
to detect previously unseen malware

We see a set of malware training examples in the upper left and a set of 
benignware examples in the lower right. We also see a new, unknown binary 
that is connected to its three nearest neighbors. In this case, we’ve set k to 3, 
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meaning we’re looking at the three nearest neighbors to unknown binaries. 
Because all three of the nearest neighbors are malicious, we’d classify this 
new binary as malicious.

The Math Behind K-Nearest Neighbors

Let’s now discuss the math that allows us to compute the distance between 
new, unknown binaries’ features and the samples in the training set. We 
use a distance function to do this, which tells us the distance between our 
new example and the examples in the training set. The most common dis-
tance function is Euclidean distance, which is the length of the shortest path 
between two points in our feature space. Listing 6-2 shows pseudocode for 
Euclidean distance in our sample two-dimensional feature space.

import math
def euclidean_distance(compression1,suspicious_calls1, compression2, suspicious_calls2): u
    comp_distance = (compression1-compression2)**2 v
    call_distance = (suspicious_calls1-suspicious_calls2)**2 w
    return math.sqrt(comp_distance + call_distance) x

Listing 6-2: Pseudocode for writing the euclidean_distance function

Let’s walk through how the math in this code works. Listing 6-2 takes 
a pair of samples and computes the distance between them based on the 
differences between their features. First, the caller passes in the features 
of the binaries u, where compression1 is the compression feature of the 
first example, suspicious_calls1 is the suspicious_calls feature of the first 
example, compression2 is the compression feature of the second example, 
and suspicious_calls2 is the suspicious calls feature of the second example.

Then we compute the squared difference between the compres-
sion features of each sample v, and we compute the squared difference 
between the suspicious calls feature of each sample w. We won’t cover 
the reason we use squared distance, but note that the resulting difference 
is always positive. Finally, we compute the square root of the two differ-
ences, which is the Euclidean distance between the two feature vectors, 
and return it to the caller x. Although there are other ways to compute 
distances between examples, Euclidean distance is the most commonly 
used with the k-nearest neighbors algorithm, and it works well for security 
data science problems.

Choosing the Number of Neighbors That Vote

Let’s now look at the kinds of decision boundaries and probabilities that a 
k-nearest neighbors algorithm produces for the sample datasets we’re using 
in this chapter. In Figure 6-14, I set k to 5, thus allowing five closest neigh-
bors to “vote.”
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Simple Dataset
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K-Nearest Neighbors, 5 Neighbors

Figure 6-14: The decision boundaries created by k-nearest neighbors when k is set to 5

But in Figure 6-15, I set k to 50, allowing the 50 closest neighbors to 
“vote.”
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Figure 6-15: The decision boundaries created by k-nearest neighbors when k is set to 50

Note the dramatic difference between the models depending on the 
number of neighbors that vote. The model in Figure 6-14 shows a gnarly, 
complex decision boundary for both datasets, which is overfit in the 
sense that it draws local decision boundaries around outliers, but under-
fit because it fails to capture the simple, general trends. In contrast, the 
model in Figure 6-15 is well-fit to both datasets, because it doesn’t get dis-
tracted by outliers and cleanly identifies general trends.

As you can see, k-nearest neighbors can produce a much more complex 
decision boundary than logistic regression. We can control the complexity 
of this boundary to guard against both over- and underfitting by chang-
ing k, the number of neighbors that get to vote on whether a sample is 
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malicious or benign. Whereas the logistic regression model in Figure 6-11 
got it completely wrong, k-nearest neighbors does well at separating the 
malware from the benignware, especially when we let 50 neighbors vote. 
Because k-nearest neighbors is not constrained by a linear structure and is 
simply looking at the nearest neighbors of each point to make a decision, it 
can create decision boundaries with arbitrary shapes, thus modeling com-
plex datasets much more effectively.

When to Use K-Nearest Neighbors

K-nearest neighbors is a good algorithm to consider when you have data 
where features don’t map cleanly onto the concept of suspiciousness, but 
closeness to malicious samples is a strong indicator of maliciousness. For 
example, if you’re trying to classify malware into families that share code, 
k-nearest neighbors might be a good algorithm to try, because you want to 
classify a malware sample into a family if its features are similar to known 
members of a given family.

Another reason to use k-nearest neighbors is that it provides clear 
explanations of why it has made a given classification decision. In other 
words, it’s easy to identify and compare similarities between samples and 
an unknown sample to figure out why the algorithm has classified it as mal-
ware or benignware.

Decision Trees
Decision trees are another frequently used machine learning method for 
solving detection problems. Decision trees automatically generate a series 
of questions through a training process to decide whether or not a given 
binary is malware, similar to the game Twenty Questions. Figure 6-16 shows 
a decision tree that I automatically generated by training it on the simple 
dataset we’ve been using in this chapter. Let’s follow the flow of the logic in 
the tree.

True False

True

True

True

True

False

False

False

False

Calls <= 40.111

Calls <= 33.836 P(malware) = 38% P(malware) = 94% Calls <= 46.955

P(malware) = 0% P(malware) = 3% P(malware) = 98% P(malware) = 100%

Compressed <= 37.254 Compressed <= 38.28

Figure 6-16: A decision tree learned for our simple dataset example
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The decision tree flow starts when we input the features we’ve extracted 
from a new, previously unseen binary into the tree. Then the tree defines 
the series of questions to ask of this binary’s features. The box at the top 
of the tree, which we call a node, asks the first question: is the number of 
suspicious calls in the tree less than or equal to 40.111? Note that the deci-
sion tree uses a floating point number here because we’ve normalized the 
number of suspicious calls in each binary to a range between 0 and 100. 
If the answer is “yes,” we ask another question: is the percentage of com-
pressed data in the file less than or equal to 37.254? If the answer is “yes,” 
we proceed to the next question: is the number of suspicious calls in the 
binary less than or equal to 33.836? If the answer is “yes,” we reach the end 
of the decision tree. At this point, the probability that the binary is malware 
is 0 percent.

Figure 6-17 shows a geometrical interpretation of this decision tree.
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Figure 6-17: The decision boundary created by a decision tree for our  
simple dataset example

Here, the shaded regions indicate where the decision tree thinks 
samples are malicious. The lighter regions indicate where the decision 
tree thinks samples are benign. The probabilities assigned by the series of 
questions and answers in Figure 6-16 should correspond with those in the 
shaded regions in Figure 6-17.

Choosing a Good Root Node

So how do we use a machine learning algorithm to generate a decision 
tree like this from training data? The basic idea is that the decision tree 
starts with an initial question called a root node. The best root node is the 
one for which we get a “yes” answer for most if not all samples of one type, 
and a “no” answer for most if not all samples of the other type. For example, 
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in Figure 6-16, the root node question asks whether a previously unseen 
binary has 40.111 or fewer calls. (Note that the number of calls per binary 
here is normalized to a 0 to 100 scale, making floating point values valid.) 
As you can see from the vertical line in Figure 6-17, most of the benign data 
has less than this number, while most of the malware data has more than 
this number of suspicious calls, making this a good initial question to ask.

Picking Follow-Up Questions

After choosing a root node, pick the next questions using a method simi-
lar to the one we used to pick the root node. For example, the root node 
allowed us to split the samples into two groups: one group that has less than 
or equal to 40.111 suspicious calls (negative feature space) and another that 
has more than 40.111 suspicious calls (positive feature space). To choose 
the next question, we just need questions that will further distinguish the 
samples in each area of the feature space into malicious and benign train-
ing examples.

We can see this in the way the decision tree is structured in Figure 6-16 
and 6-17. For example, Figure 6-16 shows that after we ask an initial “root” 
question about the number of suspicious calls binaries make, we ask ques-
tions about how much compressed data binaries have. Figure 6-17 shows 
why we do this based on the data: after we ask our first question about suspi-
cious function calls, we have a crude decision boundary that separates most 
malware from most benignware in the plot. How can we refine the decision 
boundary further by asking follow-up questions? It’s clear visually that the 
next best question to ask, which will refine our decision boundary, will be 
about the amount of compressed data in the binaries.

When to Stop Asking Questions

At some point in our decision tree creation process, we need to decide 
when the decision tree should stop asking questions and simply determine 
whether a binary file is benign or malicious based on our certainty about 
our answer. One way is to simply limit the number of questions our decision 
tree can ask, or to limit its depth (the maximum number of questions we can 
ask of any binary). Another is to allow the decision tree to keep growing 
until we’re absolutely certain about whether or not every example in our 
training set is malware or benignware based on the structure of the tree.

The advantage of constraining the size of the tree is that if the tree 
is simpler, we have a greater chance of getting the answer right (think of 
Occam’s razor—the simpler the theory, the better). In other words, there’s 
less chance that the decision tree will overfit the training data if we keep it 
small.

Conversely, allowing the tree to grow to maximum size can be useful if 
we are underfitting the training data. For example, allowing the tree to grow 
further will increase the complexity of the decision boundary, which we’ll 
want to do if we’re underfitting. In general, machine learning practitioners 
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usually try multiple depths, or allow for maximum depth on previously 
unseen binaries, repeating this process until they get the most accurate 
results.

Using Pseudocode to Explore Decision Tree Generation Algorithms

Now let’s examine an automated decision tree generation algorithm. You 
learned that the basic idea behind this algorithm is to create the root node 
in the tree by finding the question that best increases our certainty about 
whether the training examples are malicious or benign, and then to find 
subsequent questions that will further increase our certainty. The algorithm 
should stop asking questions and make a decision once its certainty about 
the training examples has surpassed some threshold we set in advance.

Programmatically, we can do this recursively. The Python-like pseudo-
code in Listing 6-3 shows the complete process for building a decision tree 
in simplified form.

tree = Tree()
def add_question(training_examples):

    u question = pick_best_question(training_examples)
    v uncertainty_yes,yes_samples=ask_question(question,training_examples,"yes")
    w uncertainty_no,no_samples=ask_question(question,training_examples,"no")
    x if not uncertainty_yes < MIN_UNCERTAINTY:

        add_question(yes_samples)
    y if not uncertainty_no < MIN_UNCERTAINTY:

        add_question(no_samples)
z add_question(training_examples)

Listing 6-3: Pseudocode for building a decision tree algorithm

The pseudocode recursively adds questions to a decision tree, begin-
ning with the root node and working its way down until the algorithm feels 
confident that the decision tree can provide a highly certain answer about 
whether a new file is benign or malicious.

When we start building the tree, we use pick_best_question() to pick our 
root node u (for now, don’t worry about how this function works). Then, 
we look at how much uncertainty we now have about the training samples 
for which the answer is “yes” to this initial question v. This will help us to 
decide if we need to keep asking questions about these samples or if we can 
stop, and predict whether the samples are malicious or benign. We do the 
same for the samples for which we answered “no” for the initial question w.

Next, we check if the uncertainty we have about the samples for which 
we answered “yes” (uncertainty_yes) is sufficiently low to decide whether 
they are malicious or benign x. If we can determine whether they’re mali-
cious or benign at this point, we don’t ask any additional questions. But if 
we can’t, we call add_question() again, using yes_samples, or the number of 
samples for which we answered “yes,” as our input. This is a classic example 
of recursion, which is a function that calls itself. We’re using recursion to 



Understanding Machine Learning–Based Malware Detectors   113

repeat the same process we performed for the root node with a subset of 
training examples. The next if statement does the same thing for our “no” 
examples y. Finally, we call our decision tree building function on our 
training examples z.

How exactly pick_best_question() works involves math that is beyond 
the scope of this book, but the idea is simple. To pick the best question 
at any point in the decision tree building process, we look at the training 
examples about which we’re still uncertain, enumerate all the questions we 
could ask about them, and then pick the one that best reduces our uncer-
tainty about whether the examples are malware or benignware. We mea-
sure this reduction in uncertainty using a statistical measurement called 
information gain. This simple method for picking the best question works 
surprisingly well.

n o t e  This is a simplified example of how real-world, decision tree–generating, machine 
learning algorithms work. I’ve left out the math required to calculate how much a 
given question increases our certainty about whether or not a file is bad.

Let’s now look at the behavior of decision trees on the two sample data-
sets we’ve been using in this chapter. Figure 6-18 shows the decision bound-
ary learned by a decision tree detector.
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Decision Tree

Figure 6-18: Decision boundaries for our sample datasets produced by a decision tree approach

In this case, instead of setting a maximum depth for the trees, we allow 
them to grow to the point where there are no false positives or false nega-
tives relative to the training data so that every training sample is correctly 
classified.

Notice that decision trees can only draw horizontal and vertical lines 
in the feature space, even when it seems clear and obvious that a curved 
or diagonal line might be more appropriate. This is because decision trees 
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only allow us to express simple conditions on individual features (such as 
greater than or equal to and less than or equal to), which always leads to 
horizontal or vertical lines.

You can also see that although the decision trees in these examples suc-
ceed in separating the benignware from the malware, the decision bound-
aries look highly irregular and have strange artifacts. For example, the 
malware region extends into the benignware region in strange ways, and 
vice versa. On the positive side, the decision tree does far better than logis-
tic regression at creating a decision boundary for the complex dataset.

Let’s now compare the decision trees in Figure 6-18 to the decision tree 
models in Figure 6-19.

Decision Tree (Limited Depth)

Simple Dataset

Number of suspicious imported function calls

A
m

ou
nt

 o
f c

om
pr

es
se

d 
da

ta
 (%

) 100

80

60

40

20

0
100806040200

Complex Dataset

Number of suspicious imported function calls

A
m

ou
nt

 o
f c

om
pr

es
se

d 
da

ta
 (%

) 100

80

60

40

20

0
100806040200

Figure 6-19: Decision boundaries for our sample datasets produced by a limited-depth decision tree

The decision trees in Figure 6-19 use the same decision tree generation 
algorithm used for Figure 6-18, except I limit the tree depth to five nodes. 
This means that for any given binary, I can ask a maximum of five questions 
of its features.

The result is dramatic. Whereas the decision tree models shown in 
Figure 6-18 are clearly overfit, focusing on outliers and drawing overly com-
plex boundaries that fail to capture the general trend, the decision trees in 
Figure 6-19 fit the data much more elegantly, identifying a general pattern 
in both datasets without focusing on outliers (with one exception, the skin-
nier decision region in the upper-right area of the simple dataset). As you 
can see, picking a good maximum decision tree depth can have a big effect 
on your decision tree–based machine learning detector.

When to Use Decision Trees

Because decision trees are expressive and simple, they can learn both simple 
and highly irregular boundaries based on simple yes-or-no questions. We can 
also set the maximum depth to control how simple or complex their theories 
of what constitutes malware versus benignware should be.
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Unfortunately, the downside to decision trees is that they often simply 
do not result in very accurate models. The reason for this is complex, but 
it’s related to the fact that decision trees express jagged decision boundar-
ies, which don’t fit the training data in ways that generalize to previously 
unseen examples very well.

Similarly, decision trees don’t usually learn accurate probabilities around 
their decision boundaries. We can see this by inspecting the shaded regions 
around the decision boundary in Figure 6-19. The decay is not natural or 
gradual and doesn’t happen in the regions it should—areas where the mal-
ware and benignware examples overlap.

Next, I discuss the random forest approach, which combines multiple 
decision trees to yield far better results.

Random Forest
Although the security community relies heavily on decision trees for 
malware detection, they almost never use them individually. Instead, 
hundreds or thousands of decision trees are used in concert to make 
detections through an approach called random forest. Instead of training 
one decision tree, we train many, usually a hundred or more, but we train 
each decision tree differently so that it has a different perspective on the 
data. Finally, to decide whether a new binary is malicious or benign, we 
allow the decision trees to vote. The probability that a binary is malware 
is the number of positive votes divided by the total number of trees.

Of course, if all the decision trees are identical, they would all vote the 
same way, and the random forest would simply replicate the results of the 
individual decision trees. To address this, we want the decision trees to have 
different perspectives on what constitutes malware and benignware, and 
we use two methods, which I discuss next, to induce this diversity into our 
collection of decision trees. By inducing diversity, we generate a “wisdom of 
crowds” dynamic in our model, which typically results in a more accurate 
model.

We use the following steps to generate a random forest algorithm:

1. Training: for every tree out of the number we plan to generate (typi-
cally 100 or more)

•	 Randomly sample some training examples from our training set.

•	 Build a decision tree from the random sample.

•	 For each tree that we build, each time we consider “asking a ques-
tion,” consider asking a question of only a handful of features, and 
disregard the other features.

2. Detection on a previously unseen binary

•	 Run detection for each individual tree on the binary.

•	 Decide whether or not the binary is malware based on the number 
of trees that voted “yes.”
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To understand this in more detail, let’s examine the results generated 
by the random forest approach on our two sample datasets, as shown in 
Figure 6-20. These results were generated using 100 decision trees.
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Figure 6-20: Decision boundaries created using the random forest approach

In contrast to the individual decision tree results shown in Figures 6-18 
and 6-19, random forest can express much smoother and more intuitive 
decision boundaries for both simple and complex datasets than individ-
ual decision trees. Indeed, the random forest model fits the training data-
set very cleanly, with no jagged edges; the model seems to have learned 
good theories about what constitutes “malicious versus benign” for both 
datasets.

Additionally, the shaded regions are intuitive. For example, the fur-
ther you get from benign or malicious examples, the less certainty ran-
dom forest has about whether examples are malicious or benign. This 
bodes well for random forest’s performance on previously unseen bina-
ries. In fact, as you’ll see in the next chapter, random forest is the best 
performing model on previously unseen binaries of all the approaches 
discussed in this chapter.

To understand why random forest draws such clean decision boundar-
ies compared to individual decision trees, let’s think about what the 100 
decision trees are doing. Each tree sees only about two-thirds of the train-
ing data, and only gets to consider a randomly selected feature whenever it 
makes a decision about what question to ask. This means that behind the 
scenes, we have 100 diverse decision boundaries that get averaged to create 
the final decision boundaries in the examples (and the shaded regions). 
This “wisdom of crowds” dynamic creates an aggregate opinion that can 
identify the trends in the data in a much more sophisticated way than indi-
vidual decision trees can.
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Summary
In this chapter, you got a high-level introduction to machine learning–
based malware detection as well as four major approaches to machine 
learning: logistic regression, k-nearest neighbors, decision trees, and ran-
dom forests. Machine learning–based detection systems can automate the 
work of writing detection signatures, and they often perform better in prac-
tice than custom written signatures.

In the following chapters, I’ll show you how these approaches perform 
on real-world malware detection problems. Specifically, you’ll learn how 
to use open source, machine learning software to build machine learning 
detectors to accurately classify files as either malicious or benign, and how 
to use basic statistics to evaluate the performance of your detectors on pre-
viously unseen binaries.




